General Exam Part II

You have two hours to complete this part of the examination. Name:

Good luck!

Problem 5: Let (X, \mathcal{M}, μ) be a measure space, $E_n \in \mathcal{M}$, $E_n \subseteq E_{n+1}$ for all n = 1, 2, ..., and $E = \bigcup_{n \ge 1} E_n$. Prove that $\mu(E_n) \xrightarrow[n \to \infty]{} \mu(E)$.

- **Problem 6:** Given a measure space (X, \mathcal{M}, μ) , let $f_n, n = 1, 2, \ldots$ and f be extended real-valued functions defined on X.
 - a. Define the notion of a measurable function on this space, the notions of convergence in measure, and almost sure convergence of the sequence $\{f_n\}$ to f.
 - b. If $f_n \xrightarrow[n \to \infty]{} f$ almost surely, prove that $f_n \xrightarrow[n \to \infty]{} f$ in measure.

Problem 7: Let (X, \mathcal{M}, μ) be a measure space. Given an extended real-valued function f defined on X, define $\int f d\mu$. Prove that $f(x) \ge 0$ for all $x \in E \subseteq \mathcal{M}$, and $\int_E f d\mu = 0$ imply that f = 0 almost everywhere on E.

Problem 8: State the Monotone and Dominated Convergence Theorems.