1. [10 pts] Given vectors \(\vec{a} = \vec{j} - \vec{k} \) and \(\vec{b} = \vec{i} + 2\vec{j} - 3\vec{k} \), find the following:

 (a) the angle between \(\vec{a} \) and \(\vec{b} \)

 (b) the scalar projection of \(\vec{b} \) onto \(\vec{a} \).

2. [12 pts] Given the three points \(P(0, 1, 1) \), \(Q(1, 0, 1) \), and \(R(1, 1, 0) \), find the following:

 (a) An equation of the plane through the points \(P \), \(Q \), and \(R \).

 (b) The equation of the plane through the origin and parallel to the plane in part (a).

 (c) The area of the triangle \(\Delta PQR \).

3. [12 pts] Consider the parametric equations \(x = 2 \cos t \), \(y = 2 \sin t \), and \(z = t \).

 (a) Find the length of the curve from \(t = 0 \) to \(t = 2\pi \).

 (b) Find a parametric equation for the tangent line to the curve at \(t = \pi/2 \).

4. [8 pts] Find the position vector \(\vec{r}(t) \) of a particle with velocity \(\vec{v}(t) = \vec{i} + \vec{j} + (9 - 10t)\vec{k} \) and initial position \(\vec{r}(1) = 2\vec{i} + 3\vec{j} \).

5. [8 pts] Consider the function \(g(x, y) = \sqrt{4 - x^2 - y^2} \).

 (a) Find and sketch the domain of \(g \).

 (b) Sketch the level curves \(g(x, y) = 0 \) and \(g(x, y) = 1 \).