
VISUAL CONVENTIONS FOR SYSTEM DESIGN USING ADA 9X:
REPRESENTING ASYNCHRONOUS TWSFER OF CONTROL.

Jej?-ey V. Nickerson

New York University

jnickerson@acm.org

INTRODUCTION

A& 9X provides a number of features that increase the
power of the language to express time-based algorithms. In
particular, asynchronous transfer of control allows a
complex, time-based behavior to be expressed simply and
powerfidly.

System design is often accomplished in team meetings in
which diagmma am used to explain proposals and explore
possibtities. Buhr (1984) advocates the use of a standard
set of notations for time-based software system~ Buhr
(1990) makes the point that all engineering disciplines with
the possible exeeption of software design use well-defined
conventions for visualizing solutions. Buhr has created a
system design notation that is closely linked to the concepts
of Ada 83. This paper proposes extensions to Buhr’s
notation to allow for the representation of asynchronous
tmnsfer of control.

DEFINITION

Asynchronous transfer of control is defined in the
Annotated Ada 9X Reference Manual (1993) in the
following way (AARM 9.7.4.%2.0}

ASYNCHRONOUS_SELECT :: =
select

TRIGGERING ALTERNATIVE
then ehort
ABORTAELE PART

end select;

TRIG GE RI NG_ALTERNATIVE
TRIGGERING.STATEMENT [SEQUENCE_OF_STATi&liS]

TRIGGERING.STATEWENT ::= ENI’RY_CALL_STATIWEtW
I DELAY STATEMENT

ABORTABLE_PART :: = SEQUENCE OF STATEMENTS

Permission to copy without fee all or pwt of this materfal h granted
provided that the copi- are not made or distributed for direct commercial
adv.anbge, tie ACM copyright .cdice and the title of the p.blicatiom md MS
date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwfse or republish,
requires a fee and/m specific pemdikdon.

The transfer of control is accomplished through the use of
an abortable part . If an entry call is eomnpleted while
abortable part processing is taking place, the abortable part
processing is aborted and control goes to the triggering
akrnative.

A TEXTUAL EXAMPLE

A user command intqreter esn be represented as a loop, in
which commands are retrieved from a useI% input on a
Wmi@, and then illVOked. At any point the user my wish
to abort the program by pressing escape, Contro/-C, or
some other special key combination. This can be written in
the following manner (k4RM 9.7.4.~2.0~

100Q
,,f3elect

TERMINAL .WAIT_FOR_INTERRUPT;
PUT_LINE (” Interrupted”);

then abort
PUT_LINE(”-> ‘) ;
GET_LINE (COlOIANO, LAST) ;
PROCESS_COM4AND(COMNAND(1.. LAST)) ;

end select;
end loop;

Note that TERMINAL. WAIT_FOR_INTERRUPT is an
entry call meaning that the triggering statement will wait
until some event happens on the terminal that allows the
accept statement on the tmninal to complete.

CREATING THE VISUAL CONVENTION

Early discussion of asynchronous transfer of control
described it as being similar to an operating systems fork
MOIV recent discussions have speculated on using a two-
thread model to implement the feature. Therefore we first
consider using Buhr notation features that deal with the
creation and destruction of tasks.

@1993 ACM 0-89791ij21-2/93 /0009--Q379 1.50

379

Figure L

Buhr(1984) contained the concept of abort - Buhr(1990)
supersedes this with the paired concepts of installation and
removal. The convention shown in figure 1 shows a
machine being installed based on a bkprin4 qresented as
a scroll (we omit this scrolled icon from the remainder of
the paper). The second part of the figure shows a machine
being removed, which is equivalent conceptually to
aborting atask.

u

However, the diagram implies concepts that do not exist in
the language construct. In Ada 9x, there is no sense in
which the triggering alternative creates the abortable part..
In a more general sense, the triggering akxnative is not
intended to be an independent task. Also, the aboftable part
can only abort the triggering statement when the abortable
part completes - the diagram implies more symmetry than
exists in the language constmcL

As an alternate way to model asynchronous transfer of
control, Buhr’s conventions for exception-handling can be

Buhr (1990) calls for a hooked line to be used to indicate
propagation of exceptions and alarms. An alarm handler is
-enti as a rectangle

Figure 3.

Using this convention, an asynchronous transfer of control
can be Showm

/ /

P&’
6

Figure 4.
Figure Z

In figure 2 the triggering alternative installs the abortable
parL thenmakesaneatry call (2)andblock (Thedotat2
is a Buhr convention indicating a potential waiting.) If the
entry call completes, the triggering alternative removes the
abortable part (3a). If the abortable part completes firsg the
abortable part aborts the triggering alternative (Ada 9X
calls for the triggering statement to be aboti and the
sequence of statements of the triggering alternative not be
executed) (3b).

This diagram makes explicit the two-sided nature of the
asynchronous transfer of control - depending on whether
the abortable part or the triggering statement complete fnt,
either may end up aborting the sequence of statements or

the triggering statement of the other.

In the figureabove, both the triggeringaltanative(l) and
the abmtable part (4) am ahown as parallelograms inside a
task. First the triggering statement of the triggering
alternative is made. In this case, an entry call is placed to
another task (2). While the triggering statement waits, the
abortable part is running. So when the accept statement
completes, a signal is generated (3) that interrupts the
abortable part(4). The abortable part immediately transfers
conaol to the statements following the triggering statement
in the triggering alternative (S). ‘IIds is where the handling
really takes place - the triggering alternative may make
more calls outside the task (6).

This representation is a fairly complex and not very
accurate portrayal of what is happening. A normal
occurrence, the completion of an accept statement, is
represented here as an exception, as it is necessary to

380

suggest the interruption in the control of the abmtable part.
Yet this ia deceptive, as the programmer cannot write a
handler for an intemupt in the abortable part.

There is another issue with the above representation. l’le
relation between the final part and the triggering
alternatives ia not made clear. There is no way to gather
hum the diagram that the two inner parallelograms are part
of a single select statement. Nor is there away to recognize
the construction as being an asynchronous transfer of
control as opposed to a normal exception propagation.

We propose the following convention

Figure 5.

Note that overlap is used to indicate a form of precedence.
The triggering alternative can interrupt and abort the

abortable part. Overlap was chosen as it

● suggests the triggering alternative as interrupting
the abortable part

● establishes an association between the triggering
alternative and the abortable part of the select
statement.

● can be drawn easily.
● does not conflict with other Buhr conventions

The non- “temmakdvertical lineisasamned tocoanectup
@men~-Wfi~6,tie~-t*gmofaM

using an abmtable part an3 shown.

In Figme 6A the triggering alternative places an entry call.
In Figure 6B, the entry call has not returne& so the
abortable part begins running. In 6C, the entry call has
returnecL and the abortable part ia aborted. Control has gone
to the triggering alternative.

a)

b)

Fig& 6.

A VISUAL EXAMPLE

Figure 7 follows the text of that it mpreaents

loop
eelect

TERMINAL . WAIT_FOR_INTERRUPT;
PUT_LINE (” Interrupted’);

in
PU’J_LINE(”-> a, ;
GET_LINE (COMMAND, LAST) ;
PRCCESS_COMWAND(COMMAND(1.. LAST)) ;

end reelect;
d loop;

381

I

1

I
3

0 telmid

,

process

command

100Q

The triggering alternative waits for an interrupt from the
terminal. At the same time, the abtable part puts and gets
the command line to and tim the terminal, and processes
the command received. The eireular arrow indicates that the
main task is persistent and will continue to loop.

The example given in the AARM treats command
processing as a procedure. In many multi-tasking systems,
shells spawn tasks or procmes to perform the work of the
command. In A& 9X, the textual code and its visual
representation might lxx

ielect
TERMINAL .WAIT_FOR_INTERRUPT;
PUT_LINE (‘ Interrupted’);

in
declare

SHELL : COMMAND.INTERPRETER;
begin

GET_LINE (COMMAND);
SHELL . EXEC (COMMAND);

end
end select

and lcmp

abmi

aut?

382

In figure 8, note that a command task is created on every
loop through the shelL In the event that the abortable part is
interrupted, the command task will be aborted. This
happens automatically as a result of the abort of the
sequence of statements in the abortable part. We explicitly
represent this as a removal arrow originating from the

triggering alternative.

ASYNCHRONOUS TRANSFER ON EXPIRATION
OF A DELAY

An abortable part can also be interrupted by a delay
statement. This allows for code to be written that will be
interrupted if it exceeds some time boundary, as in the

example shown below (AARM 9.7.4.11;2.0):

select
delay 5.0

PUT_LINE (” Calculat ion doesn’ t converge’) ;

then short

HORRIBLY_COMPLICATED_RECURSIVB_FUNC (X, Y) ;
end select;

The visualization of this is analogous to the visualization
shown before of an entry call statement. Instead of waiting
for an accept statement to complete, the triggering
statement is waiting for a timer to exphe.

I 5.0

B
Figure9.

The clock symbol used here is consistent with Buhr (1990)
notation. When the timer expires, control will tmnsfer to
the triggering statement which in this case will put a
message out to the terminal.

In systems with many time-outs, it is easy to imagine a
short-hand emerging, in which the triggering statement
itself contains the clock symbol:

/2!!!/7
The intended meaning is that of figure 9: when the timer
runs out, if the abortable part is still running, abort the
sequence of statements in the abortable part and transfer
control to the triggering alternative.

CASCADING TRANSFERS

Given this new convention, it is worth considering how the
visual representation of asynchronous transfer of control
can contribute to the system design process. As Buhr
(1990) points out, the visual can sometimes aid in capturing
the essence of a problem that may be otherwise be
represented as many lines of disparate code. One point of
visual repmentation is to allow a concept to be represented
in such a way that it can be taken in instantly. Another
point speciilc to system design is to allow the multiple

potential sequences of interaction to be walked through and
discussed. Much of the utility of system design notations

come from the work that a team can do with a shared
convention and an interactive visual medium such as a
white board. This kind of conversation often involves using
the diagram as a map, and sequentially stepping through an
event and its implications on the process it directly touches,
along with the ripple effect on other dependent or
synchronized tasks. III a sense, in early design stages, the
diagrams are used as the basis for informal simulations of
the working system. Buhr proposes the use of graphic user
interfaces as an alternate way of doing these simulations.
With the proper design tools, and with the design diagrams
linked with underlying code, the hope is that time-based

systems design can benefit in the same way us other design
fields have benefited tiom CAD tools.

With this in mi@ we consider a more complicated instance
of asynchronous transfer of control. In the example of
figure 8, a new task is created by an abortable pmt It is

certainly possible that a task that is created may itself
include an asynchronous transfer of control. It may not be
immediately obvious in a system with many lines of axle
how deep this cascading of asynchronous transfers of

control goes. Yet the end effect is a set of tasks that are
closely linked together - the completion of an accept

statement on any of the blocked entry calls will affect all
the tasks at a deeper level of the cascade.

An instance of this sort of situation can be represented in
the following way

383

W /
rl

.

II

II

I II -lb

I r3 II

Figure 11.

In figure 11, the first robot (rl) mates r2, which ia turn

ereatear3, which intumereates r4. Eaehrobotcontainsaa
asynchronous transfer of control with a corresponding
waiting place (wI, w2, w3, w4). In the event that any
triggering statement completes, the task dependent on the
abortable partwill beaborted. lhisis shown through aset
of abort arrows from the triggering alternative to the
created tasks.

In the event that a task is aborte@ all tasks dependent on it
am also aborted, If, say, the accept completes at w2, then
not only will the abortable part of V be am but r3 will
tio&ati~eatiofr3 tik~umtieati
of r4.

of aborts is possible. It is also clear, that no matter what
else happens, IZ, r3, and r4 will be aborted when the timer
at W1 expires after 5 seconds.

For the system designer, the extension to the Buhr notation
shown hem makes it possible to visually lraee the possible
ramifications of a design that uses asynchronous transfer of
control.

ACKNOWLEDGMENTS

I want to thank Edmond Schonberg, my thesis advisor, for
his many contributions to this paper, especially his insights
into how Ada 9X features weds and how they should look.

REFERENCES

Buhr, R. J. A. 1990.Practical Visual Techniques in System
Design. Englewood Cliffs, W Prentice Hall.

Buhr, R. J. A. 1984. System Design With Ada. Englewood
cliffs, FLk Prentice Hall.

Ada 9X Mapping/Revision Team. 1993. AnnatatedAda 9X
Reference Manual. Cambridge, Ma!M Intermetrics Inc.

So, from this diagmm it becomes clear tha~ depending on
which triggering statement completes firs~ a chain reaetion

384

