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Abstract (2004) model. We first test whether or not the new proto-
) o type model is able learn and generalize a stimulus structure
The computational modeling literature suggests Examplar containing XOR logic like humans do. Then, we conduct an

models of categorization often replicated psychologida-p ” . - r o
nomena better thaRrototypemodels. However, those pro- additional simulation study to test the descriptive vayidif

totype models may have failed because the models’ impor- OUr New attention mechanisms.
tant information processing mechanisms were misspecified.

Here we introduce a new prototype model with complex yet A New Modd: CASPRE
realistic learning and selective attention processesattesn-

tion processes (a) have a prototype specific attention ageer Overview

structure and (b) are sensitive to correlations among fealiy i ; _
mensions. In simulation studies, CASPRE, our new prototype We call our new model CASPRE (Category learning with At

model, replicates the results of two important classicaieim tention augmented Simplistic Prototype Representatidi).
cal studies. is a cognitive model based on prototype theory. It assumes

that categorical knowledge is organized by small numbers of
. prototypes and that humans utilize psychological sintitzsi
Introduction between input stimulus and prototypes for categorization.
The issue ofnternal Representatiohas been one of the cen- CASPRE is comprised of two components. The first
tral theoretical interests and debates in the human caregor component assumes a somewhat complex attention process,
tion research. While many competing theories on internahamely a local attention process (each prototype has a cus-
representations have been advanced, most studies have béemized selective attention process) and sensitivity toeco
dedicated to evaluating the descriptive validity of exemnpl lations among features to form attention-augmented proto-
theory and/or prototype theory (e.g. Minda & Smith, 2002,type representations. Selective attention may be intergre
Zaki, Nosofsky, Stanton, & Cohen, 2002). Previous model-as processes of mental rotation and psychological scafing o
ing studies suggest thekemplaitheory is descriptively more proximities or similarities between input stimuli and prot
valid thanPrototypetheory. More precisely, computational types. In other words, in CASPRE each prototype is aug-
models built upon exemplar theory produced more successfuhented with a customized selective attention process to for
replications of observed phenomena than prototype model& uniquely shaped and oriented prototyqunceptual field
One example of a categorization problem showing a limita-Unlike traditional prototype models, characteristics aitp-
tion of traditional prototype models is a simple XOR logic types in CASPRE cannot be explained by centroids alone, but
stimulus set (i.e., [00, 11] for Category A and [01, 10] for by a combination of centroids and within-prototype psycho-
Category B), whose prototypes for Categories A and B ardogical scaling processes.
theoretically identical (i.e., [0.5, 0.5]). By internalkgp- The second component is the principle of simplicity in
resenting categorical knowledge with these identicalgrot high-order human cognition. One plausible theoreticdifjus
types, previous prototype models with traditional selecéit-  cation of prototype theory is that its compact represewaif
tention mechanisms failed to categorize or learn to categor knowledge allows a limited-processing-capacity humainbra
these stimuli. This is because the models’ mathematical forto handle rich information (whereas exemplar theory assume
mulations yield identical psychological similarity meassi  that humans utilize information on many if not all exemplars
for any input stimulus to both prototypes, providing no con-they have previously encountered to categorize an input sti
structive information for categorization. ulus). The incorporation of local attention mechanismdaou
However, by employing a general and exploratory mod-inflate knowledge complexity. To stem the growth of unnec-
eling method, Matsuka (2004) revealed that a model withessary complexity, CASPRE incorporates a multi-objective
prototype-like internal representation can learn XORdog learning algorithm. It tries to acquire manageably simge y
if the model integrates complex attention allocation mechasufficiently accurate concepts.
nisms, namely the capability of attending correlations agno ) .
feature dimensions and prototype-specific selective taien ASSUMptions on Attention Processes
allocation processes (i.e. each prototype has a custoraized Local Attention Coverage Most quantitative models of
tention pattern). categorization (e.g. Nosofsky 1986, Smith & Minda 2002)
In the present research, we introduce a new prototypand category learning (e.g. Kruschke, 1992; Love, Medin,
model for human category learning based on Matsuka's$sureckis, 2004) assume that selective attention procasses
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uniformly applied to all reference points (e.g. exemplars o (vs. Minkowskir metric in ALCOVE). Therefore,
prototypes). In other words, the models utilize the samanatt

tion at all locations along a dimension in the represemntatio d;(x) = ZI ZI ol (mji — ) (Tjm — ) (L)
space, indicating that the attention coverage is globalv-Ho i@ b—tm T '

ever, some laboratory experiments (e.g. Aha & Goldston

1992) suggest attention could be specific to the region aloewherea defines directions and strengths of attention field

. 2= , L fbr 7;, subscripts andm indicate feature dimensions, ahd

a dimension in the representational space, indicatinglfeat g e \umber of feature dimensions. Note that it is assumed

attention coverage s in fact local. thataim = ami, 02, < | - G|, @ndag; > 0,Vi. For
Recent studies (Corter & Matsuka 2004; Matsuka &off-diagonal entries (i.e.; # m), an attention weight can

Corter, 2006) provide more direct evidence of differentialpe a negative value, where its signum indicates direction of

attention allocation patterns by using the MouselLab experiattention field while its magnitude indicates the strength o

mental paradigm (Bettman, Johnson, Luce, & Payne, 1993httention. Psychological distance measures activateiyy
Computational modeling research also indicates that somgnits by the following function:

phenomena require the local attention coverage system in

order to replicate some psychological phenomena (e.g. Kr- h; = exp(—c- d;(x)) (2)
uschke, 2002; Sakamoto, Matsuka & Love, 2004). Although o o

more thorough empirical studies on locality-vs-globality Wh_erec controls overall sensitivity. Activations of prototype
selective attention processes may be necessary, thesrebult Units are then fed forwarded to category output nodes, or
empirical and simulation studies provide sufficient evitken

of the possibility of a local attention coverage system. Ok(z) = Zj wijhy; ()
Attention to correlationsamong featuredimensions  An-

other notable selective attention mechanism widely agplie WNeréwy; is an association weights betweenand category
to models of categorization, yet not extensively sought fofnodek. The output activations will be used to obtain the re-

alternative possibilities, is the independent dimensign- SPONSe probability by the following function:

dimension selective attention process. Virtually all mede exp(¢Or)
of categorization and category learning assume that humans P(k) = i St 7 (4)
pay no attention to correlations among feature dimensions 21 exp(e0y)

nor psychologically rotate feature space during c_:ategeriz here¢ scales the decisiveness of response (e.g. Kruschke
tion: the humans’ _percelved psychological space IS assum 92). In short, CASPRE assumes that humaris'utilize psy-'
not only to be logically orthogonalz but also to be identical choIoQicaI simiiarity between input objeck)(and proto-
:\C/I)z;ggoipa%egg)]astu;egseesa:recdhter::\tﬁgnr?w.aplg?r%e(\)/fezoyh@ziﬁ:tgll j(;l_%es @), psychologically scaled by correlation sensitive

; /7 SE : . prototype-specific selective attention processes, asrea
ordinates of stimuli to psychologically perceived onessioe for categorizing the input instance into the most probabte c
not have to be linear (orthogonal). In addition, humans ar

known to be capable of carrying out mental rotation %gory. : .
' In this paper we refer to CASPRE’s constants that experi-

Other empirical studies indicate that humans are indeeghenters can manipulate (e.3s) as free parameters, and its
sensitive to correlations between feature dimensions #n cajearnable variables (e.gv,& «) as coefficients to avoid con-

egorization (e.g. Anderson & Fincham, 1996; Chin-Parker &;sion.
Ross, 2002). Although the sensitivity to correlations maiy n
necessarily directly translate to attention in a strictssethe  Backward Algorithm (L earning)

selective sensitivity to a particular feature dimensiosieen |, CASPRE, human learning is not considered an error mini-
traditionally interpreted as selective attention (e.gusthke  mization process, but an optimization of a subjectively and
1992; Nosofsky 1986). Thus, the sensitivity to a particularcontextually defined utility of knowledge or concepts be-
combination of feature dimensions can be interpreted as a;ﬁg acquired. There are many functions or sets of func-
tention to the correlations. T_hls is the basis for CASPRE'Stjgns appropriately defined for describing a variety of con-
assumption that humans are indeed capable and do pay attBxya| factors, including motivation. However, the rudim
tion to correlations among feature dimensions if needed. tary set of objective functions for CASPRE consists of two
elements: concept accuracy and concept simplicity. That is
Forward Algorithm (Categorization) CASPRE assumes that in ordinary situations humans would
_ prefer and try to acquire manageably simple yet sufficiently
CASPRE's forward algorithm resembles that of ALCOVE accurate knowledge. In order to integrate this multi-otijec
(Kruschke, 1992), one of the most successful models ofearning, CASPRE incorporates the gradient descent ver-
category learning. However, there are two crucial differ-sion of Stochastic Context-Dependent Learning framework
ences. First, in CASPRE, it is assumed that people utilizgSCODEL: Matsuka, 2005a, 2005b) (Note: SCODEL prob-
psychological distances or similarities between inpunsti - |ems are framed as minimization problems, thus higher galue
uli and prototypes (vs. exemplars in ALCOVE). Second, inindicate poorer concept utility.).
CASPRE, psychological similarity or distancg; between The minimal set of objective or utility functions for a par-

an input stimulusy) and prototypg (r;) are defined by Ma- tjcular set of coefficients (i.e., concepts @); thus, can be
halanobis distance (in quadratic form) between them, allowformulated as:

ing for sensitivity to correlations among features dimensi

1796



I—-1 I j 2 )
Ug) = Z lei + Z Z Z M (5) Table 1: Schematic Representation of Stimulus Set Used in
k2 7 L+ (0q,,)/Z; Simulation 1 (Medin et al., 1982).

i m=i+1

whereey, is the difference between the target and predicted Training Transfer
outputs for category node and Dl Dz D3 D4 Dl Dz D3 D4
21 1 0 otz 0 0 1 1
- A
2
Zi=3_ > (@) ® A3 0 1 1 1|/T3 0 1 0 O
¢om= A4 1 0 0 O0|T4 1 0 1 1
The first term in Eq. 5 is a function defining categorization B5 0 0 1 0|T5 1 1 1 0
accuracy. The second term is a simplicity bias or an atten- gg 0 0 0 11T6 1 1 0 1
tion elimination function (e.g. Matsuka, 2005b), reduding 1 0 1 0lT7 o 1 1 0
number of correlations among dimensions attended on the ba-
sis of therelative attention strengths. Matsuka (2005b, 2006; B8 0 1 0 1] 1 0 0 1
Matsuka & Chouchourelou, 2006) discusses a more general
utility function, including models for multiple prototypend
various contextual factors. Initialization & Number of Free Parameter The associa-
Learnable coefficientw anda are updated by the follow- tion weights are initialized with small Uniform random num-
ing functions, bers around zero. The centroids of prototypes are also ini-
U tialized with small Uniform random number, but around mid-
Awgj = —Ap5— + Vkj = Awerhy + v (7)  points between minimum and maximum values. For example,
Owy; if a feature dimension consists of '0’ and '1’ (e.g. Table 1),
then values for each centroid in that dimension are smaH Uni
; ou ; form random numbers around 0.5. Initial selective attentio
Aaryy, = _Aaaa—a_‘ + Vi = =A% Zekwkihi5ﬁi5ﬂmc weight matrices are diagonal matrices with = !, Vi.
m k

There are a total of five free parameters in CASPRE, two
j for its forward process (i.eq and¢) and three for learning
. — + Vi, (8) process (i.e ., A\Z, \2). Thus, CASPRE has only one more
(2(a§m)2 + Zzgim(af)Q) parameter than ALCOVE.

A 20, - Zzgim(fﬁ)Q

[e3

whered;; = m;; — z;, AS are learning rates, andare in- Simulations
dependent Gaussian noise in learning with means equal to _ o _
zero and some time-decreasing standard deviations (e-g. m8imulation 1: Replication of Medin et al. (1982)

dian Aw™=Y & Aa"=1), whereT indicates time). Noise |n Simulation 1, we simulated a classical study in human-cate
is introduced in CASPRE, because recent cognitive modelyory learning (Medin, Altom, Edelson & Freko, 1982). Table
ing studies indicate the importance of stochasticity in Bam 1 shows the schematic representation of the stimulus set use
learning for quantitative fits and qualitative interpr&iB6,  in the present simulation study. Note that in order to pelfec
including probabilistically successful learning, asyntrite  categorize the stimulus set, subjects need to memorize-all e
utilization of redundant information, and exhibiting arety  emplars, acquire XOR logic in Dimensions 3 and 4, or some
decisions in learning. (e.g. Matsuka, 2005a, 2005b) combination of both.

_The centroids of category prototypes are updated with a | the empirical study, subjects were asked to learn to clas-
simple competitive learning algorithm (e.g. Kohonen, 2001 sify eight unique training exemplars (Al - B4) to either Cat-
Love et al., 2004), where the centroid for only the currentegory A or B with corrective feedback. The training session
category prototype will be updated. Thus, was followed by a transfer session in which subjects were

(T) (D) _ asked to categorize the eight training exemplars and eight
Trg.T“) = ﬂ'J’T +1/VT(x m) iG= _C"J‘ (9) novel exemplars. The observed profile (see Fig.1) indicates
' ; otherwise. subjects tended to exhibit weak XOR-like classification-pro

whereT indicates time and’y indicates a correct category for files. Because of this XOR-like conceptualization, to our
x gory knowledge, no previous prototype models had successfully

stimuli x. . . ... replicated the observed classification profile.
There are several reasons for incorporating the simplicity

bias in CASPRE. Intuitively, a preference for simpler yétsu Methods CASPRE was run in a simulated training proce-
ficiently accurate concepts appears a plausible phenomenaiure with 50 trial blocks, where each block consisted of a
in high-order human cognition. More importantly, some em-random presentation of the eight unique training exemplars
pirical studies suggested its possibility (Corter & Matauk exactly once, in order to learn the correct classification re
2004; Matsuka & Corter, 2006). In addition, this bias to- sponses for the stimulus set. Note that in the original axper
ward simpler yet sufficiently accurate concepts (vs. comple ment (Medin et al., 1982), subjects were allowed to study all
but marginally more accurate concepts) might have resultedight training stimuli simultaneously for 10 or 15 minutes,
in the emergence of other psychological phenomena such akepending on learning speed. After the training session,
Basic Categories in human cognition (Rosch, Mervis, GrayCASPRE was run in a simulated transfer procedure with one
Johnson & Boyes-Braem, 1976). transfer block, where all 16 exemplars were presented kgxact
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Figure 1: Result of Simulation Left Predicted classification profile by CASPRE and its critefioofiles reported in Medin
et al., (1982)Right Predicted prototype conceptual fields by CASPRE.

once. No corrective feedback was given in the transfer ses- i . . o .
sion, and thus no learning occurred within the session. S‘I’able 2: Average Relative Attention Distributions for Medi

The model parameters were optimized so that the sum dit al. (1982) XOR Stimulus Set Predicted by CASPRE
squared errors (SSE) between observed and predicted clas- _Prototype A b1 D2 b3 D4

sification profiles were minimized. The selected parameters Prototype A

were as followst = 3.85, ¢ = 3.94, \,, = 0.38, \Z = 0.02, D1 0.136 0.016 0.007 -0.006

A = 0.02. There were a total of 100 simulated subjects. D2 - 0.127 -0.022 0.006
D3 - - 0.255 -0.081

Results & Interpretations D4 - - - 0.255

Figure 1 shows CASPRE's predicted classification profiles Prototype B D1 D2 D3 D4

along with the observed profile of Medin et al. (1982). D1 0.134 0.009 -0.013 -0.006
The figure indicates CASPRE successfully replicated the ob- D2 - 0136 0.011 0.007
served response profile (SSE=0.028). The averalgive D3 - - 0.266 0.081
attention allocations are shown in Table 2. The attention co D4 - - - 0.266

erage structures for Prototypes A and B for Dimensions 3 and

4 (i.e., the XOR dimensions) are shown as a contour plot in

Fig.1. For these dimensions, Prototype A and B Conceptuaéimulation 2 - Filtration Advantage
fields (attention coverage areas) are tilted approximatgly i . _
and -45 degrees, respectively, making an X-shape attentidprevious empirical studies (e.g. Gottwald & Garner, 1975;
or conceptual coverage area (this reflects the alpha ceeffici Kruschke, 1993) showed that the Filtration task (e.g. cate-
weighting s of Eq. 1). One plausible interpretation of sugh a gorization task with one diagnostic dimension) is easianth
tention coverage areas is that CASPRE paid attention to thé€ Condensation task (e.g. categorization task with twe co
directions of deviations from the prototypes with the ident related diagnostics dimensions). Kruschke (1993) present
cal centroid; and perhaps mentally rotated its psychoidgic this phenomenon as evidence for an orthogonal dimensional
space to make stimulus space more interpretable. That igttention process (i.e., attention is allocated dimenbipn
CASPRE mentally rotated the dimensions for both prototype§limension independently, but not dependently). That is, if
in almost an identical manner, making each prototype’iatte humans are capable of attending correlations among feature

tion coverage area sensitive to a single rotated dimension. dimensions (or mentally rotating feature space), then tire C

CASPRE, then, compares an input stimulus and the proto(jensation task becomes equivalent to the Filtration task, a

types to see and use the directions of deviations of the stimt-here is nto F_iltr:?tion I?dv?ﬁtage. Iffthiézrsgglr?nEent is trbs t
ulus from prototypes as a criterion for deciding which cate—"m?_'umen mightwea enh eéissepgzz 4 correct i
gory the stimulus belongs to. Both prototypes have idehtica owever, we expect that would correctly repli-

characteristics on Dimension 3 and 4, yet because of their cate the Filtration advantage because of CASPRE's bias to-

cal correlation sensitive attention coverage structineper-  Ward simpler concepts or coefficient configurations: the bia
ceived similarities between the input stimulus to Protetpp causes CASPRE to learn to categorize a stimulus structure

and Prototype B were different depending on the directiong"Ith one_d_lagnostlc d'mef‘s'on (i.e., the F|Itr§1t|on task)qln
of deviation from the Prototypes. more efficiently than a stimulus structure with two conjunc-

We conducted an additional simulation study without thetlvely diagnostic dimensions (i.e., the Condensation Jtask

(relative) attention elimination process by fixing at 0 to The present simulation tests this claim.

test the importance of the process. The modified model's SSHethods Figure 2 shows the stimulus sets used in the
was approximately 8 times worse than the original CASPREpresent study. CASPRE was run in a simulated training pro-
indicating the attention elimination process was a key@ssc cedure. The procedure consisted of eight trial blocks, eher
in successfully replicating the observed phenomena. each block consisted of a random presentation of the eight
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Filtration Codensation 1975). Given the impact of selective attention, however, an
A @ e o internally-represented prototype may be only an average of
its important and diagnostic feature dimensions, but not of
its useless dimensions. This is because there are so many
A ° A ° feature dimensions possible for any category; selectiop ma
always be taking place. If this is the case, CASPRE’s proto-
type learning or identifying algorithm needs to be modified t

® Category A ® Category A incorporate selective attention processes (e.g. usinghgsy

A ) A A

A Category B A Category B logically perceived distances in Eq. 9).
Recently, Matsuka and Nickerson (2006) introduced learn-
Figure 2: Stimulus Structures used in Simulation_2ft Fil- ing algorithms based on simulated evolutionary processes
tration Stimuli.RightCondensation Stimuli that offer unique qualitative interpretations of learning

process, including (a) combining several ideas into onsipar
monious idea, (b) creating "radical” hypothesis, and (¢heo
petition among hypotheses. This learning algorithm may be
applied to CASPRE to enhance its qualitative charactesisti

Medin & Schaffer (1972)

One of the most frequently tested stimulus sets in evaluat-
ing descriptive validities of models of categorization aad

Accuracy
o
~

0.6y O Filtration—Observed || egory learning is that of Experiment 2 of Medin and Schaffer
0sl @~ Filtration-CASPRE || (1972). In a modeling study, Matsuka (2006) showed that
' ‘_'?_‘gf’”de”s-‘Obse"’e" CASPRE indeed performed better than an exemplar model
ondens.—CASPRE . . . s g . . .
045 s . . : if the criterion cIa_SS|f|cat|on response p_roﬂle was estedat
Block based on 30 studies summarized in Smith and Minda (2002).

It performed slightly worse when the criterion was the orig-
Figure 3: Predicted classification accuracies for theditn ~ inal Medin and Smith’s observation. In addition, CASPRE
and Condensation tasks by CASPRE. CASPRE successful(?(‘l;';‘f5 ﬁblhe tf replicate thi2 ﬁdvé?”tagé'-z-zﬁ! phenomenon ml
. : . ich the less "prototypical” stimulus IS more accurgte
replicated the Filtration advantage. classified than more "prototypical” stimulus Al). This phe-
nomenon has been presented as evidence for exemplar theory

unique training exemplars exactly once, as to ascertain th@nd against prototype theory. The argument merits reconsid
correct classification responses for the stimulus set. Thgration because it has been shown that a prototype model,
model parameters were optimized so that the sum of squardd”SPRE, is capable of replicating the phenomenon.

errors (SSE) between observed (Kruschke, 1993) and pre- .

dicted classification profiles were minimized. The selected Conclusion

parameters were as follows:= 1.07, ¢ = 8.14, A, = 0.96,  There is long running and heated debate on the descriptive
AL =082, A2 = 0.30. There were a total of 100 simulated validity of Exemplartheory andPrototypetheory of internal
subjects in the present study. representation of categories. One of the main means of test-
. . ing the descriptive validity has been computational cagmit
Results & Discussion models. Because of the less frequently successful replica-
Figure 3 shows observed and predicted learning curves fajon of some important psychological phenomena by proto-
both Filtration and Condensation tasks. CASPRE was ab|g/pe models, many studies have suggested or concluded that
to replicate the Filtration advantage (SSE = 0.027). Alffou  Exemplar theory is descriptive more valid than Prototye th
the independent attention allocation principle holds for e ory.
emplar models (Kruschke, 1993), the results of Simulation e, however, hypothesized that the inadequacy of previous
2 showed that the principle does not necessarily hold foprototype models might be caused by mismatches between
CASPRE. three elements: the system of internal representatiorsehe
. . lective attention mechanism, and the routine of learnimg. |

General Discussion order to test this hypothesis, we introduced two novel mecha
Model Extension The selective attention process is one of nisms to a prototype model of human category learning: cor-
a few cognitive processes that are widely accepted by a maelation sensitive local attention process and multi-cfje
jority of cognitive scientists involved in human categariz learning (preferring manageably simple yet sufficiently ac
tion and category learning. The previous successful modelsurate concepts over complex but marginally more accurate
of human category learning incorporate this process in someoncepts). The former mechanism is evident in recent empir-
form. So does CASPRE. However, we have not integratedcal studies (e.g. Chin-Parker & Ross 2002; Corter & Mat-
this process in the process of learning prototypes (i.e., Ecguka, 2004). The latter mechanism is based on work suggest-
9). This was done so in order to make CASPRE to acquiréng that human learning is not merely characterized by Elass
prototypes that meet a traditional definition of a prototypefication error minimization, but by the optimization of sabj
— an average member of a category (e.g. Rosch & Mervigjvely and contextually defined utility of the knowledge ibgi
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acquired (e.g. Matsuka 2005a; Matsuka & ChouchourelouMatsuka, T. (2004). Generalized exploratory model of human

2006). category learninginternational Journal of Computational
When we integrated these key mechanisms into a prototype Intelligence, 17 - 15.

model of category learning, we were able to replicate daSSiMatsuka, T. (2005a).

cal empirical studies. We replicated two important empiri- context-depending learning methods for models of human

cal studies. We anticipate conducting additional simafati category learningBehavior Research Methods, 3740 -
studies to more thoroughly compare the validity of Exemplar g5 "

and Prototype theories. This study takes an initial step b%/l ) .
facilitating fairer comparisons between prototype andexe Matsuka, T. (2005b) Modeling human learning as context
plar theories in order to better understand the nature otinum ~ dependent knowledge utility optimizationAdvances in

Simple, individually unique, and

categorization processes. Natural Computation LNCS, Vol.3610. (pp. 933-946).
Berlin: Springer-Verlag.
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