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Abstract

The computational modeling literature suggests thatExemplar
models of categorization often replicated psychological phe-
nomena better thanPrototypemodels. However, those pro-
totype models may have failed because the models’ impor-
tant information processing mechanisms were misspecified.
Here we introduce a new prototype model with complex yet
realistic learning and selective attention processes. Itsatten-
tion processes (a) have a prototype specific attention coverage
structure and (b) are sensitive to correlations among feature di-
mensions. In simulation studies, CASPRE, our new prototype
model, replicates the results of two important classical empiri-
cal studies.

Introduction
The issue ofInternal Representationhas been one of the cen-
tral theoretical interests and debates in the human categoriza-
tion research. While many competing theories on internal
representations have been advanced, most studies have been
dedicated to evaluating the descriptive validity of exemplar
theory and/or prototype theory (e.g. Minda & Smith, 2002,
Zaki, Nosofsky, Stanton, & Cohen, 2002). Previous model-
ing studies suggest thatExemplartheory is descriptively more
valid thanPrototypetheory. More precisely, computational
models built upon exemplar theory produced more successful
replications of observed phenomena than prototype models.
One example of a categorization problem showing a limita-
tion of traditional prototype models is a simple XOR logic
stimulus set (i.e., [00, 11] for Category A and [01, 10] for
Category B), whose prototypes for Categories A and B are
theoretically identical (i.e., [0.5, 0.5]). By internallyrep-
resenting categorical knowledge with these identical proto-
types, previous prototype models with traditional selective at-
tention mechanisms failed to categorize or learn to categorize
these stimuli. This is because the models’ mathematical for-
mulations yield identical psychological similarity measures
for any input stimulus to both prototypes, providing no con-
structive information for categorization.

However, by employing a general and exploratory mod-
eling method, Matsuka (2004) revealed that a model with
prototype-like internal representation can learn XOR-logic
if the model integrates complex attention allocation mecha-
nisms, namely the capability of attending correlations among
feature dimensions and prototype-specific selective attention
allocation processes (i.e. each prototype has a customizedat-
tention pattern).

In the present research, we introduce a new prototype
model for human category learning based on Matsuka’s

(2004) model. We first test whether or not the new proto-
type model is able learn and generalize a stimulus structure
containing XOR logic like humans do. Then, we conduct an
additional simulation study to test the descriptive validity of
our new attention mechanisms.

A New Model: CASPRE
Overview
We call our new model CASPRE (Category learning with At-
tention augmented Simplistic Prototype Representation).It
is a cognitive model based on prototype theory. It assumes
that categorical knowledge is organized by small numbers of
prototypes and that humans utilize psychological similarities
between input stimulus and prototypes for categorization.

CASPRE is comprised of two components. The first
component assumes a somewhat complex attention process,
namely a local attention process (each prototype has a cus-
tomized selective attention process) and sensitivity to corre-
lations among features to form attention-augmented proto-
type representations. Selective attention may be interpreted
as processes of mental rotation and psychological scaling of
proximities or similarities between input stimuli and proto-
types. In other words, in CASPRE each prototype is aug-
mented with a customized selective attention process to form
a uniquely shaped and oriented prototypeconceptual field.
Unlike traditional prototype models, characteristics of proto-
types in CASPRE cannot be explained by centroids alone, but
by a combination of centroids and within-prototype psycho-
logical scaling processes.

The second component is the principle of simplicity in
high-order human cognition. One plausible theoretical justifi-
cation of prototype theory is that its compact representation of
knowledge allows a limited-processing-capacity human brain
to handle rich information (whereas exemplar theory assumes
that humans utilize information on many if not all exemplars
they have previously encountered to categorize an input stim-
ulus). The incorporation of local attention mechanisms could
inflate knowledge complexity. To stem the growth of unnec-
essary complexity, CASPRE incorporates a multi-objective
learning algorithm. It tries to acquire manageably simple yet
sufficiently accurate concepts.

Assumptions on Attention Processes
Local Attention Coverage Most quantitative models of
categorization (e.g. Nosofsky 1986, Smith & Minda 2002)
and category learning (e.g. Kruschke, 1992; Love, Medin,
Gureckis, 2004) assume that selective attention processesare
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uniformly applied to all reference points (e.g. exemplars or
prototypes). In other words, the models utilize the same atten-
tion at all locations along a dimension in the representational
space, indicating that the attention coverage is global. How-
ever, some laboratory experiments (e.g. Aha & Goldstone,
1992) suggest attention could be specific to the region along
a dimension in the representational space, indicating thatthe
attention coverage is in fact local.

Recent studies (Corter & Matsuka 2004; Matsuka &
Corter, 2006) provide more direct evidence of differential
attention allocation patterns by using the MouseLab experi-
mental paradigm (Bettman, Johnson, Luce, & Payne, 1993).
Computational modeling research also indicates that some
phenomena require the local attention coverage system in
order to replicate some psychological phenomena (e.g. Kr-
uschke, 2002; Sakamoto, Matsuka & Love, 2004). Although
more thorough empirical studies on locality-vs-globalityin
selective attention processes may be necessary, the results of
empirical and simulation studies provide sufficient evidence
of the possibility of a local attention coverage system.

Attention to correlations among feature dimensions An-
other notable selective attention mechanism widely applied
to models of categorization, yet not extensively sought for
alternative possibilities, is the independent dimension-by-
dimension selective attention process. Virtually all models
of categorization and category learning assume that humans
pay no attention to correlations among feature dimensions
nor psychologically rotate feature space during categoriza-
tion: the humans’ perceived psychological space is assumed
not only to be logically orthogonal, but also to be identical
to the space that researchers define. However, Ashby and
Maddox (1992) suggested that the mapping of physical co-
ordinates of stimuli to psychologically perceived ones does
not have to be linear (orthogonal). In addition, humans are
known to be capable of carrying out mental rotation.

Other empirical studies indicate that humans are indeed
sensitive to correlations between feature dimensions in cat-
egorization (e.g. Anderson & Fincham, 1996; Chin-Parker &
Ross, 2002). Although the sensitivity to correlations may not
necessarily directly translate to attention in a strict sense, the
selective sensitivity to a particular feature dimension has been
traditionally interpreted as selective attention (e.g. Kruschke
1992; Nosofsky 1986). Thus, the sensitivity to a particular
combination of feature dimensions can be interpreted as at-
tention to the correlations. This is the basis for CASPRE’s
assumption that humans are indeed capable and do pay atten-
tion to correlations among feature dimensions if needed.

Forward Algorithm (Categorization)

CASPRE’s forward algorithm resembles that of ALCOVE
(Kruschke, 1992), one of the most successful models of
category learning. However, there are two crucial differ-
ences. First, in CASPRE, it is assumed that people utilize
psychological distances or similarities between input stim-
uli and prototypes (vs. exemplars in ALCOVE). Second, in
CASPRE, psychological similarity or distance (dj) between
an input stimulus (x) and prototypej (πj) are defined by Ma-
halanobis distance (in quadratic form) between them, allow-
ing for sensitivity to correlations among features dimensions

(vs. Minkowskir metric in ALCOVE). Therefore,

dj(x) =
∑I

i

∑I

m
αj

im(πji − xi)(πjm − xm) (1)

whereαj defines directions and strengths of attention field
for πj , subscriptsi andm indicate feature dimensions, andI
is the number of feature dimensions. Note that it is assumed
thatαim = αmi, α2

im ≤ |αii · αmm|, andαii ≥ 0, ∀i. For
off-diagonal entries (i.e.,i 6= m), an attention weight can
be a negative value, where its signum indicates direction of
attention field while its magnitude indicates the strength of
attention. Psychological distance measures activate prototype
units by the following function:

hj = exp(−c · dj(x)) (2)

wherec controls overall sensitivity. Activations of prototype
units are then fed forwarded to category output nodes, or

Ok(x) =
∑

j
wkjhj ; (3)

wherewkj is an association weights betweenπj and category
nodek. The output activations will be used to obtain the re-
sponse probability by the following function:

P (k) =
exp(φOk)

∑

l exp(φOl)
(4)

whereφ scales the decisiveness of response (e.g. Kruschke,
1992). In short, CASPRE assumes that humans utilize psy-
chological similarity between input object (x) and proto-
types (π), psychologically scaled by correlation sensitive
prototype-specific selective attention processes, as evidence
for categorizing the input instance into the most probable cat-
egory.

In this paper we refer to CASPRE’s constants that experi-
menters can manipulate (e.g.λs) as free parameters, and its
learnable variables (e.g.,w & α) as coefficients to avoid con-
fusion.

Backward Algorithm (Learning)
In CASPRE, human learning is not considered an error mini-
mization process, but an optimization of a subjectively and
contextually defined utility of knowledge or concepts be-
ing acquired. There are many functions or sets of func-
tions appropriately defined for describing a variety of con-
textual factors, including motivation. However, the rudimen-
tary set of objective functions for CASPRE consists of two
elements: concept accuracy and concept simplicity. That is,
CASPRE assumes that in ordinary situations humans would
prefer and try to acquire manageably simple yet sufficiently
accurate knowledge. In order to integrate this multi-objective
learning, CASPRE incorporates the gradient descent ver-
sion of Stochastic Context-Dependent Learning framework
(SCODEL: Matsuka, 2005a, 2005b) (Note: SCODEL prob-
lems are framed as minimization problems, thus higher values
indicate poorer concept utility.).

The minimal set of objective or utility functions for a par-
ticular set of coefficients (i.e., concepts orθ), thus, can be
formulated as:
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U(θ) =
∑

k

1

2
e2

k +
∑

j

I−1
∑

i

I
∑

m=i+1

(αj
im)2/Zj

1 + (αj
im)2/Zj

(5)

whereek is the difference between the target and predicted
outputs for category nodek, and

Zj =

I−1
∑

i

I
∑

m=i+1

(αj
im)2 (6)

The first term in Eq. 5 is a function defining categorization
accuracy. The second term is a simplicity bias or an atten-
tion elimination function (e.g. Matsuka, 2005b), reducingthe
number of correlations among dimensions attended on the ba-
sis of therelativeattention strengths. Matsuka (2005b, 2006;
Matsuka & Chouchourelou, 2006) discusses a more general
utility function, including models for multiple prototypes and
various contextual factors.

Learnable coefficientsw andα are updated by the follow-
ing functions,

∆wkj = −λw
∂U

∂wkj
+ νkj = λwekhj + νkj (7)

∆αj
im = −λα

∂U

∂αj
im

+ νj
im = −λE

α

∑

k

ekwkjhjδjiδjmc

− λA
α

2αj
im ·

∑

l/∈im(αj
l )

2

(

2(αj
im)2 +

∑

l/∈im(αj
l )

2
)2 + νj

im (8)

whereδji = πji − xi, λs are learning rates, andν are in-
dependent Gaussian noise in learning with means equal to
zero and some time-decreasing standard deviations (e.g. me-
dian∆w(T−1) & ∆α(T−1), whereT indicates time). Noise
is introduced in CASPRE, because recent cognitive model-
ing studies indicate the importance of stochasticity in human
learning for quantitative fits and qualitative interpretations,
including probabilistically successful learning, asymmetric
utilization of redundant information, and exhibiting arbitrary
decisions in learning. (e.g. Matsuka, 2005a, 2005b)

The centroids of category prototypes are updated with a
simple competitive learning algorithm (e.g. Kohonen, 2001;
Love et al., 2004), where the centroid for only the current
category prototype will be updated. Thus,

π
(T+1)
j =

{

π
(T )
j + 1/

√
T (x − π

(T )
j ) if Cx = Cπj

π
(T )
j otherwise.

(9)

whereT indicates time andCx indicates a correct category for
stimuli x.

There are several reasons for incorporating the simplicity
bias in CASPRE. Intuitively, a preference for simpler yet suf-
ficiently accurate concepts appears a plausible phenomenon
in high-order human cognition. More importantly, some em-
pirical studies suggested its possibility (Corter & Matsuka,
2004; Matsuka & Corter, 2006). In addition, this bias to-
ward simpler yet sufficiently accurate concepts (vs. complex
but marginally more accurate concepts) might have resulted
in the emergence of other psychological phenomena such as
Basic Categories in human cognition (Rosch, Mervis, Gray,
Johnson & Boyes-Braem, 1976).

Table 1: Schematic Representation of Stimulus Set Used in
Simulation 1 (Medin et al., 1982).

Training Transfer
D1 D2 D3 D4 D1 D2 D3 D4

A1 1 1 1 1 T1 0 0 0 0
A2 1 1 0 0 T2 0 0 1 1
A3 0 1 1 1 T3 0 1 0 0
A4 1 0 0 0 T4 1 0 1 1
B5 0 0 1 0 T5 1 1 1 0
B6 0 0 0 1 T6 1 1 0 1
B7 1 0 1 0 T7 0 1 1 0
B8 0 1 0 1 T8 1 0 0 1

Initialization & Number of Free Parameter The associa-
tion weights are initialized with small Uniform random num-
bers around zero. The centroids of prototypes are also ini-
tialized with small Uniform random number, but around mid-
points between minimum and maximum values. For example,
if a feature dimension consists of ’0’ and ’1’ (e.g. Table 1),
then values for each centroid in that dimension are small Uni-
form random numbers around 0.5. Initial selective attention
weight matrices are diagonal matrices withαii = I−1, ∀i.

There are a total of five free parameters in CASPRE, two
for its forward process (i.e.,c andφ) and three for learning
process (i.e.,λw, λE

α , λA
α ). Thus, CASPRE has only one more

parameter than ALCOVE.

Simulations
Simulation 1: Replication of Medin et al. (1982)
In Simulation 1, we simulated a classical study in human cate-
gory learning (Medin, Altom, Edelson & Freko, 1982). Table
1 shows the schematic representation of the stimulus set used
in the present simulation study. Note that in order to perfectly
categorize the stimulus set, subjects need to memorize all ex-
emplars, acquire XOR logic in Dimensions 3 and 4, or some
combination of both.

In the empirical study, subjects were asked to learn to clas-
sify eight unique training exemplars (A1 - B4) to either Cat-
egory A or B with corrective feedback. The training session
was followed by a transfer session in which subjects were
asked to categorize the eight training exemplars and eight
novel exemplars. The observed profile (see Fig.1) indicates
subjects tended to exhibit weak XOR-like classification pro-
files. Because of this XOR-like conceptualization, to our
knowledge, no previous prototype models had successfully
replicated the observed classification profile.

Methods CASPRE was run in a simulated training proce-
dure with 50 trial blocks, where each block consisted of a
random presentation of the eight unique training exemplars
exactly once, in order to learn the correct classification re-
sponses for the stimulus set. Note that in the original experi-
ment (Medin et al., 1982), subjects were allowed to study all
eight training stimuli simultaneously for 10 or 15 minutes,
depending on learning speed. After the training session,
CASPRE was run in a simulated transfer procedure with one
transfer block, where all 16 exemplars were presented exactly
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Figure 1: Result of Simulation 1.Left: Predicted classification profile by CASPRE and its criterion profiles reported in Medin
et al., (1982).Right: Predicted prototype conceptual fields by CASPRE.

once. No corrective feedback was given in the transfer ses-
sion, and thus no learning occurred within the session.

The model parameters were optimized so that the sum of
squared errors (SSE) between observed and predicted clas-
sification profiles were minimized. The selected parameters
were as follows:c = 3.85, φ = 3.94, λw = 0.38, λE

α = 0.02,
λA

α = 0.02. There were a total of 100 simulated subjects.

Results & Interpretations

Figure 1 shows CASPRE’s predicted classification profiles
along with the observed profile of Medin et al. (1982).
The figure indicates CASPRE successfully replicated the ob-
served response profile (SSE=0.028). The averagerelative
attention allocations are shown in Table 2. The attention cov-
erage structures for Prototypes A and B for Dimensions 3 and
4 (i.e., the XOR dimensions) are shown as a contour plot in
Fig.1. For these dimensions, Prototype A and B conceptual
fields (attention coverage areas) are tilted approximately45
and -45 degrees, respectively, making an X-shape attention
or conceptual coverage area (this reflects the alpha coefficient
weighting s of Eq. 1). One plausible interpretation of such at-
tention coverage areas is that CASPRE paid attention to the
directions of deviations from the prototypes with the identi-
cal centroid; and perhaps mentally rotated its psychological
space to make stimulus space more interpretable. That is,
CASPRE mentally rotated the dimensions for both prototypes
in almost an identical manner, making each prototype’s atten-
tion coverage area sensitive to a single rotated dimension.

CASPRE, then, compares an input stimulus and the proto-
types to see and use the directions of deviations of the stim-
ulus from prototypes as a criterion for deciding which cate-
gory the stimulus belongs to. Both prototypes have identical
characteristics on Dimension 3 and 4, yet because of their lo-
cal correlation sensitive attention coverage structure, the per-
ceived similarities between the input stimulus to Prototype A
and Prototype B were different depending on the directions
of deviation from the Prototypes.

We conducted an additional simulation study without the
(relative) attention elimination process by fixingλA

α at 0 to
test the importance of the process. The modified model’s SSE
was approximately 8 times worse than the original CASPRE,
indicating the attention elimination process was a key process
in successfully replicating the observed phenomena.

Table 2: Average Relative Attention Distributions for Medin
et al. (1982) XOR Stimulus Set Predicted by CASPRE

Prototype A D1 D2 D3 D4
Prototype A

D1 0.136 0.016 0.007 -0.006
D2 - 0.127 -0.022 0.006
D3 - - 0.255 -0.081
D4 - - - 0.255

Prototype B D1 D2 D3 D4
D1 0.134 0.009 -0.013 -0.006
D2 - 0.136 0.011 0.007
D3 - - 0.266 0.081
D4 - - - 0.266

Simulation 2 - Filtration Advantage
Previous empirical studies (e.g. Gottwald & Garner, 1975;
Kruschke, 1993) showed that the Filtration task (e.g. cate-
gorization task with one diagnostic dimension) is easier than
the Condensation task (e.g. categorization task with two cor-
related diagnostics dimensions). Kruschke (1993) presented
this phenomenon as evidence for an orthogonal dimensional
attention process (i.e., attention is allocated dimension-by-
dimension independently, but not dependently). That is, if
humans are capable of attending correlations among feature
dimensions (or mentally rotating feature space), then the Con-
densation task becomes equivalent to the Filtration task, and
there is no Filtration advantage. If this argument is true, this
argument might weaken the case for CASPRE.

However, we expect that CASPRE would correctly repli-
cate the Filtration advantage because of CASPRE’s bias to-
ward simpler concepts or coefficient configurations: the bias
causes CASPRE to learn to categorize a stimulus structure
with one diagnostic dimension (i.e., the Filtration task) much
more efficiently than a stimulus structure with two conjunc-
tively diagnostic dimensions (i.e., the Condensation task).
The present simulation tests this claim.

Methods Figure 2 shows the stimulus sets used in the
present study. CASPRE was run in a simulated training pro-
cedure. The procedure consisted of eight trial blocks, where
each block consisted of a random presentation of the eight
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Figure 3: Predicted classification accuracies for the Filtration
and Condensation tasks by CASPRE. CASPRE successfully
replicated the Filtration advantage.

unique training exemplars exactly once, as to ascertain the
correct classification responses for the stimulus set. The
model parameters were optimized so that the sum of squared
errors (SSE) between observed (Kruschke, 1993) and pre-
dicted classification profiles were minimized. The selected
parameters were as follows:c = 1.07, φ = 8.14, λw = 0.96,
λE

α = 0.82, λA
α = 0.30. There were a total of 100 simulated

subjects in the present study.

Results & Discussion
Figure 3 shows observed and predicted learning curves for
both Filtration and Condensation tasks. CASPRE was able
to replicate the Filtration advantage (SSE = 0.027). Although
the independent attention allocation principle holds for ex-
emplar models (Kruschke, 1993), the results of Simulation
2 showed that the principle does not necessarily hold for
CASPRE.

General Discussion
Model Extension The selective attention process is one of
a few cognitive processes that are widely accepted by a ma-
jority of cognitive scientists involved in human categoriza-
tion and category learning. The previous successful models
of human category learning incorporate this process in some
form. So does CASPRE. However, we have not integrated
this process in the process of learning prototypes (i.e., Eq.
9). This was done so in order to make CASPRE to acquire
prototypes that meet a traditional definition of a prototype
– an average member of a category (e.g. Rosch & Mervis,

1975). Given the impact of selective attention, however, an
internally-represented prototype may be only an average of
its important and diagnostic feature dimensions, but not of
its useless dimensions. This is because there are so many
feature dimensions possible for any category; selection may
always be taking place. If this is the case, CASPRE’s proto-
type learning or identifying algorithm needs to be modified to
incorporate selective attention processes (e.g. using psycho-
logically perceived distances in Eq. 9).

Recently, Matsuka and Nickerson (2006) introduced learn-
ing algorithms based on simulated evolutionary processes
that offer unique qualitative interpretations of learning
process, including (a) combining several ideas into one parsi-
monious idea, (b) creating ”radical” hypothesis, and (c) com-
petition among hypotheses. This learning algorithm may be
applied to CASPRE to enhance its qualitative characteristics.

Medin & Schaffer (1972)
One of the most frequently tested stimulus sets in evaluat-
ing descriptive validities of models of categorization andcat-
egory learning is that of Experiment 2 of Medin and Schaffer
(1972). In a modeling study, Matsuka (2006) showed that
CASPRE indeed performed better than an exemplar model
if the criterion classification response profile was estimated
based on 30 studies summarized in Smith and Minda (2002).
It performed slightly worse when the criterion was the orig-
inal Medin and Smith’s observation. In addition, CASPRE
was able to replicate theA2 advantage(i.e. a phenomenon in
which the less ”prototypical” stimulus A2 is more accurately
classified than more ”prototypical” stimulus A1). This phe-
nomenon has been presented as evidence for exemplar theory
and against prototype theory. The argument merits reconsid-
eration because it has been shown that a prototype model,
CASPRE, is capable of replicating the phenomenon.

Conclusion
There is long running and heated debate on the descriptive
validity of Exemplartheory andPrototypetheory of internal
representation of categories. One of the main means of test-
ing the descriptive validity has been computational cognitive
models. Because of the less frequently successful replica-
tion of some important psychological phenomena by proto-
type models, many studies have suggested or concluded that
Exemplar theory is descriptive more valid than Prototype the-
ory.

We, however, hypothesized that the inadequacy of previous
prototype models might be caused by mismatches between
three elements: the system of internal representation, these-
lective attention mechanism, and the routine of learning. In
order to test this hypothesis, we introduced two novel mecha-
nisms to a prototype model of human category learning: cor-
relation sensitive local attention process and multi-objective
learning (preferring manageably simple yet sufficiently ac-
curate concepts over complex but marginally more accurate
concepts). The former mechanism is evident in recent empir-
ical studies (e.g. Chin-Parker & Ross 2002; Corter & Mat-
suka, 2004). The latter mechanism is based on work suggest-
ing that human learning is not merely characterized by classi-
fication error minimization, but by the optimization of subjec-
tively and contextually defined utility of the knowledge being
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acquired (e.g. Matsuka 2005a; Matsuka & Chouchourelou,
2006).

When we integrated these key mechanisms into a prototype
model of category learning, we were able to replicate classi-
cal empirical studies. We replicated two important empiri-
cal studies. We anticipate conducting additional simulation
studies to more thoroughly compare the validity of Exemplar
and Prototype theories. This study takes an initial step by
facilitating fairer comparisons between prototype and exem-
plar theories in order to better understand the nature of human
categorization processes.
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