232

CHAPTER 8
CONCLUSIONS

8.1. RECAPITULATION

In surveying the fidd of visud programming, we looked firs a diagrams, and made the
digtinction between metric, topologica, and symbolic redims. Within the topologicd redm, we
identified three conventions used in diagramming software sysems - adjoinment, linking, and
containment. We then surveyed the use of diagrams in computer science, followed by the use

of diagramsin visud programming systems.

In the following three chapters we produced prototypica visua programming sysems. The first
system operated on top of the Unix Shell, awk, and SASL. The second system operated over
APL. The third system generated Mathematica code.

We then consdered the issues of system design, and looked at the work of Buhr in depth. We
generated new conventions as extensons of Buhr's notation to be used in representing Ada 9X

concepts.

In a chapter entitled The Limits of the Visual we examined existing textud complexity metrics
and congdered thelr trandation for use on visud programs. We introduced severd new
metrics, the primary one being Graphic Token Count. Using Textud Token Count and Graphic

Token Count as tools, we andyzed tree and graph representations and concluded that textua



233

representation is more efficient than graphic representation, except for graphs, where graphic
illustrations are equaly compact and much more undersandable. We then looked at examples

from the previous chaptersin light of these complexity measures.

8.2. CONCLUSIONS
From the lagt chapter, it is dear tha fully generd fully visud programming languages are not
practica. The symbolic redim dlows for much more compact representation of dgorithms. And

the symboalic realm has the power of naming, which dlows sdif-referentidity and recurson.

So our firgt strong conclusion is tha research into fully generd visud programming languages
will prove fruitless, as measured by the ability of such a language to be used to build large
sysems with productivity matching that of textud languages.

Much of the attraction of current visud models is their domain-specificity - they are used to
build smal programs on top of large libraries of pre-exising routines written in textud
languages. For this activity, the visud rem will work well, as has been demondrated here in
the development of severd such didects. So visud shdls and visud glue programs that dlow
routines to be strgpped together will continue to proliferate. Yet they will only work on top of
routines that will be written in textud languages.

Our second strong conclugion, isthat the visud is more effective in the representation of graphs
than the symboalic is, as measured by a textual and graphic token count metric. As a corrolary,
it makes most sense to use the graphic for graph representation rather than tree representation

- trees can be expressed well textudly, but graphs cannot.



234

This suggests that the mogt fruitful use of the visud will be in those aspects of programming
activity that are graphrintengve. The first area we can identify is the modding of data, afidd
that is dready permeated with graphic tools. The second isin the area of system design, where

attention is on processes and places, not on memory locations and mathematical expressons.

Another strong conclusion is that the concept of the H-graph is very much a the root of any
successful large-scale visua system. Without this abstraction capability, graphic representations

become non-planar and muddled, aresult of the hard congraints of planarity and resolution.

Our andysis of computer science diagrams reveded that the three conventions of adjoinment,
linking, and containment can be combined to generate dl the types of diagrams currently seen.
This suggests that in the fidd of CASE tool generators, or meta CASE tools, that such
conventions, combined with H-graph capability, can be used and combined to create any
conceivable type of modedl.

Findly, the work of Tufte on data dengty suggests that much of the power of the visua comes
in the metric, not the topologica domain. Without the restriction of textua labding, and with the
power of a continuous scae, many points of information can be organized and presented for
smultaneous viewing. The Balsa sysem isacase in point of the power of usng metric space as

away of gaining ingght into computer programs.

Metric space can have a time axis. The use of the visua for scoring is powerful, as can be
scene in the work of Buhr. Other examples of scoring occur in the use of computers to script

video and audio, and these uses of the visud, rooted in metric time, will prove fruitful.



235

It is obvious that many programming activities lie srongly in the symbolic redm, and make use
of skillsthat of dl our senses are closest to the auditory. It is dso evident from the history of
computing literature and from the proliferation of CASE tools and visudization tools thet there
is a portion of programming activities that lend themselves to visud trestment. Already our
programming tools are moving toward a hybrid state, where a a particular sage in a project
we move from a design tool into source coding. A fruitful area of research is in mapping the
graphic and textua pieces that can be combined into a productive programming environmen.
The work of Buhr, in which high-level graphtlike desgn activities are handled visudly, and
lower leve, expressonintense logic is handled textudly is the best current hypothesis about
how the two modes can fit together. It is likely that instead of visudizers that produce source,
we will eventualy work with languages that are hybrids, dlowing both the power of naming and
the power of diagrams to be used in programming.



