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 CHAPTER 6      
 SYSTEM DESIGN NOTATION 
 
 

6.1. INTRODUCTION 

The emphasis of this work up to now has been on the representation of small programming 

problems. This chapter looks at problems related to system design.  

 

The system notation used in this chapter is Buhr's design notation. His original notation, referred 

to as Buhr diagrams (1984), is well-understood and accepted in the system design community. 

His later notation, MachineCharts, (1990),  is less well-known. MachineCharts are designed to 

address time-based issues of complex system design, and for that reason contain many 

interesting visual conventions for representing sequences and interactions. Buhr's work is most 

closely linked with the programming language Ada, but contains many constructs that don't 

map to Ada 83. Ada 9X contains structures anticipated by MachineCharts, but also contains 

concepts that are difficult to express in Buhr notation. 

 

As a way of understanding the power of visual techniques in system design, we look at Buhr 

notation as it exists, and attempt to apply it to Ada 9X constructs. In some cases we propose 

extensions or changes to the MachineChart notation. 
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6.2. BUHR'S ORIGINAL NOTATION 

Buhr (1984) created a notation for Ada programming that allows for the internal and external 

structure of packages and tasks to be represented in graphs. He writes: 
 
Our pictorial notation provides a hardware-like metaphor for systems as collections of 
black boxes connected together by plugs and sockets. 

Throughout his work there is an emphasis on mechanical or electrical analogs for computer 

programs. He differentiates the black boxes into the Ada language constructs of tasks and 

packages:  

 

package accessed through procedures 

task accessed through entries 

 
Figure 6.1. Buhr package and task notation. 

 

The notation emphasizes the interface points, the sockets through which data and control flow: 
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A 

B 

T 

 
 
Figure 6.2. Sockets in a task. 

In the above diagram, nested boxes are used to show the alternate selections possible by the 

server task in response to requests from clients. 

The text equivalent of figure 6.2 is: 
 
select 
 accept A do ... end 
 -- other processing 
or 
 accept B do .. end 
 -- other processing 
or 
 delay T; 
 -- DELAY PROCESSING 
end select; 

 

6.3. BUHR'S MACHINECHARTS: ROBOTS AND REACTORS 

In MachineCharts Buhr (1990) changes his terminology. Black boxes are differentiated into 

boxes and robots, instead of packages and tasks. 

 

 Buhr makes a distinction between an active robots, called actors, and passive robots, called 

reactors. Reactors model objects that provide mutual exclusion. Reactors can serve as glue 
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between actors to allow for asynchronous communication. And reactors may be implemented 

without the overhead of mechanisms such as rendezvous. 
 

box actor robot reactor robot  
 
Figure 6.3. MachineChart distinctions. 

 

 
 
Figure 6.4. A visit from an engine in an actor robot to the button of an actor robot. 

 Visits take place through buttons on black boxes. Procedure calls, RPC calls, and Ada 

rendezvous can all be considered visits; Buhr is generalizing his notation so that it can be 

applied to any time-based problems implemented in any language. 

 

6.3.1. Buhr's reactor 

The following is an example from Buhr of how reactors can be used: 
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Figure 6.5. A control flag as a reactor. 

 

Essentially, the trapezoid-shaped box signifies that mutual exclusion is assured. The 

corresponding Ada code for this is: 

 
type FLAGTYPE is range 0..1; 
task CONTROL_FLAG is 
        entry TAS (TEST_RESULT: out FLAGTYPE); 
        entry CLR; 
end CONTROL_FLAG; 
 
task body CONTROL_FLAG is 
        FLAG:FLAGTYPE; 
        begin 
                loop 
                        select 
                                accept TAS(TEST_RESULT: out FLAGTYPE) 
                                        do TEST_RESULT := FLAG; 
                                        FLAG := 1; end; 
                        or 
                                accept CLR 
                                        do FLAG := 0; end; 
                        end select 
                end loop 
        end CONTROL_FLAG 

 

6.3.2. Buhr's time extensions  
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Buhr has added timing diagrams to his notation system to help visually present the behavior of 

software machines. The following presents an expected visit scenario for the test and set 

example above: 

 

 

1 1 

0 

0 

User 1

User 2

Flag

CLR TAS CLR 

TAS TAS TAS   
Figure 6.6. Expected visit timing diagram for test and set. 

Timing diagrams are normal in engineering, but are uncommon in software design. Yet the 

diagram presents a scenario that is difficult to express textually. The best textual representation 

is a table as follows; note that such a representation makes it very difficult to get a sense of user 

overlap: 

Scenario  Intended Result 
User 1 CLR   
User 1 TAS  Flag = 0 
User 2 TAS  Flag = 1 
User 2 TAS  Flag = 1 
User 1 CLR 
User 2 TAS  Flag = 0 

 

Buhr suggests that a tool could be developed that could generate expected visit timing diagrams 

as output from interacting with a structure chart. 

 

6.4. MAPPING TO ADA: TASKS AND PROTECTED RECORDS 

Buhr's MachineCharts conventions were created prior to the Ada 9X mapping specification. 

Nevertheless, the visual conventions surrounding reactors map easily onto the proposal in Ada 
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9X for Protected Records.  In Ada 83, the only way to achieve synchronization is through the 

overhead of a rendezvous. In order to reduce the overhead for real-time programming, 

Protected Records are defined so they can be implemented as efficient conditional critical 

regions. The specification of the record distinguishes between functions, procedures, and 

entries that may block. Intermetrics points out that these distinctions are essential for design and 

analysis.  

 

Here is an example of a textual protected record from the Ada 9X Mapping Specification, 

followed by a visual representation using Buhr's MachineCharts. 

 
protected type  
COUNTING_SEMAPHORE(INITIAL_COUNT : INTEGER := 1) is 
function COUNT return INTEGER; 
procedure RELEASE; 
entry ACQUIRE; 
  private record 
 CURRENT_COUNT : INTEGER := INITIAL_COUNT; 
end COUNTING_SEMAPHORE; 
 
protected body COUNTING SEMAPHORE is 
function COUNT return INTEGER is 
begin 
 return CURRENT_COUNT; 
end COUNT;  
 
procedure RELEASE is 
begin 
 CURRENT_COUNT := CURRENT_COUNT + 1; 
end RELEASE; 
 
entry ACQUIRE when CURRENT_COUNT > 0 is 
begin 
 CURRENT_COUNT := CURRENT_COUNT - 1; 
end ACQUIRE; 
end COUNTING_SEMAPHORE; 
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R e l e a s e A c q u i r e 

Count 

c_count 

Figure 6.7.  A counting semaphor. 

The Protected Record is represented as a trapezoid, a reactor. Current_count, labeled as 

c_count, is shown as a variable that is updated by Release and Acquire. The function Count 

returns this number on a query.  

 

The visual representation makes it easy to differentiate between entries, functions, and 

procedures. The large dot outside the Acquire button indicates a waiting position in the design; 

it is possible requests are queued waiting for the semaphore. In the case of Ada, this indicates 

that Acquire is an entry.  Data flows are indicated by small arrows with a circle at the tail. It is 

easy to determine from these arrows that Count is a function and Release is a procedure. 

 

The curved lines on the inside of the diagram indicate synchronization. The open circle line from 

Release to Acquire indicates that the action of Release can release Acquire from a waiting 

condition. Buhr calls this event opening. The closed circle line from Acquire to itself indicates 

that Acquire's actions may impose a waiting condition; this is referred to as closing. Buhr 

points out that Ada performs opening and closing only through variable changes on guard 

expressions. He observes that in the design phase it is cleaner to explicitly draw the open and 

close operations. 
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Ada 9X specifies that when a function such as Release performs its actions, before it releases 

its lock it must re-evaluate the entry. This re-evaluation may cause the entry to execute. The 

convention of the open circle from Release to Acquire is a fitting representation for such a 

mechanism, as it suggests a more direct action than the changing of the current_count variable. 

 

6.5. ASYNCHRONOUS TRANSFER OF CONTROL 

This section proposes extensions to Buhr's notation to allow for the representation of 

asynchronous transfer of control.  

 

6.5.1. Definition 

Asynchronous transfer of control is defined in the Annotated Ada 9X Reference Manual 

(1993) in the following way (AARM  9.7.4.2;2.0): 

 
ASYNCHRONOUS_SELECT ::= 

select 
 TRIGGERING ALTERNATIVE 
then abort 
 ABORTABLE PART 
end select; 

 
TRIGGERING_ALTERNATIVE ::=  TRIGGERING_STATEMENT 
[SEQUENCE_OF_STATEMENTS] 
 
TRIGGERING_STATEMENT ::=  ENTRY_CALL_STATEMENT | DELAY STATEMENT 
 
ABORTABLE_PART ::=   SEQUENCE OF STATEMENTS 
 

 

The transfer of control is accomplished through the use of an abortable  part . If an entry call 

is completed while abortable part processing is taking place, the abortable part processing is 

aborted and control goes to the triggering alternative. 
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6.5.2. A Textual Example 

A user command interpreter can be represented as a loop, in which commands are retrieved 

from a user's input on a terminal,  and then invoked. At any point the user may wish to abort 

the program by pressing escape, Control-C, or some other special key combination. This can 

be written in the following manner (AARM  9.7.4.9;2.0): 

 
loop  
 select 
  TERMINAL.WAIT_FOR_INTERRUPT; 
  PUT_LINE("Interrupted"); 
 then abort 
  PUT_LINE("-> "); 
  GET_LINE(COMMAND, LAST); 
  PROCESS_COMMAND(COMMAND(1..LAST)); 
 end select; 
end loop; 

 

Note that TERMINAL.WAIT_FOR_INTERRUPT is an entry call  meaning that the triggering 

statement will wait until some event happens on the terminal that allows the accept statement on 

the terminal to complete. 

 

6.5.3. Creating the Visual Convention 

Early discussion of asynchronous transfer of control described it as being similar to an 

operating systems fork. More recent discussions have speculated on using a two-thread model 

to implement the feature. Therefore we first consider using Buhr notation features that deal with 

the creation and destruction of tasks. 
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install 

B A 

remove

B A 

 
Figure 6.8. Installing and removing a robot. 

 

Buhr(1984) contained the concept of abort - Buhr(1990) supersedes this with the paired 

concepts of installation and removal. The convention in the figure above shows a machine being 

installed based on a blueprint, represented as a scroll (we omit this scrolled icon from now on). 

The second part of the figure shows a machine being removed, which is equivalent conceptually 

to aborting a task.  

 

 

1 

2 

3a

3b

  Triggering  
Alternative 

  Abortable 
Part

 
Figure 6.9. Using abort. 

 

Above, the triggering alternative installs the abortable part,  then makes an entry call  (2) and 

blocks. (The dot at 2 is a Buhr convention indicating a potential waiting.) If the entry call 

completes, the triggering alternative removes the abortable part (3a). If the abortable part 
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completes first, the abortable part aborts the triggering alternative (Ada 9X calls for the 

triggering statement to be aborted, and the sequence of statements of the triggering alternative 

not be executed) (3b).  

 

This diagram makes explicit the two-sided nature of the asynchronous transfer of control - 

depending  on whether the abortable part or the triggering statement complete first, either may 

end up aborting the sequence of statements or the triggering statement of the other. 

 

However, the diagram implies concepts that do not exist in the language construct. In Ada 9X, 

there is no sense in which the triggering alternative creates the abortable part. In a more general 

sense, the triggering alternative is not intended to be an independent task. Also, the abortable 

part can only abort the triggering statement when the abortable part completes - the diagram 

implies more symmetry than exists in the language construct. 

 

As an alternate way to model asynchronous transfer of control, Buhr's conventions for 

exception-handling can be used. 

  

Buhr (1990) calls for a hooked line to be used to indicate propagation of exceptions and 

alarms. An alarm handler is represented as a rectangle: 

 

 

handler 

exception 

source of 
exception 

 
Figure 6.10. Using exceptions. 

  

Using this convention, an asynchronous transfer of control can be shown: 



144 

 

1 

2 
3 

4 

5 

6 

 
Figure 6.11. Asynchronous transfer using exceptions. 

 

In the figure above, both the triggering alternative (1) and the abortable part (4) are shown as 

parallelograms inside a task. First, the triggering statement of the triggering alternative is made. 

In this case, an entry call is placed to another task (2). While the triggering statement waits, the 

abortable part is running. So when the accept statement completes, a signal is generated  (3) 

that interrupts the abortable part (4). The abortable part immediately transfers control to the 

statements following the triggering statement in the triggering alternative (5). This is where the 

handling really takes place - the triggering alternative may make more calls outside the task (6). 

 

This  representation is a fairly complex and not very accurate portrayal of what is happening. A 

normal occurrence, the completion of an accept statement, is represented here as an exception, 

as it is necessary to suggest the interruption in the control of the abortable part. Yet this is 

deceptive, as the programmer cannot write a handler for an interrupt in the abortable part. 

 

There is another issue with the above representation. The relation between the final part and the 

triggering alternatives is not made clear. There is no way to gather from the diagram that the 

two inner parallelograms are part of a single select statement. Nor is there a way to recognize 
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the construction as being an asynchronous transfer of control as opposed to a normal exception 

propagation. 

 

We propose the following convention: 

 

 

Abortable Part

   Triggering 
Alternative 

 
Figure 6.12 Proposed convention. 

  

Note that overlap is used to indicate a form of precedence. The triggering alternative can 

interrupt and abort the abortable part. Overlap was chosen as it: 

 

• suggests the triggering alternative as interrupting the abortable part 

• establishes an association between the triggering alternative and the abortable part of 

the select statement. 

• can be drawn easily. 

• does not conflict with other Buhr conventions 

 

The non-terminated vertical line is assumed to connect up to an entry call. In figure 6.13, the 

different stages of a task using an abortable part are shown. 
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In  a), the triggering alternative places an entry call. In Figure b), the entry call has not returned, 

so the abortable part begins running. In c), the entry call has returned, and the abortable part is 

aborted. Control has gone to the triggering alternative. 

 

 

 

Abortable Part

Abortable Part

   Triggering 
Alternative 

   Triggering 
Alternative 

Abortable Part

   Triggering 
Alternative 
   Triggering 
Alternative 

   Triggering 
Alternative 

a)

b)

c)  
Figure 6.13. The sequence. 

 

6.5.4. A Visual Example 

Below, a textual and a graphic representation are compared: 
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loop  
 select 
  TERMINAL.WAIT_FOR_INTERRUPT; 
  PUT_LINE("Interrupted"); 
 in 
  PUT_LINE("-> "); 
  GET_LINE(COMMAND, LAST); 
  PROCESS_COMMAND(COMMAND(1..LAST)); 
 end select; 
end loop; 

put_line

get_line

terminalmain

wait
for 
interrupt 1 

2 

3 

process 
command 

 
Figure 6.14. Shell example. 

The triggering alternative waits for an interrupt from the terminal. At the same time, the 

abortable part puts and gets the command line to and from the terminal, and processes the 

command received. The circular arrow indicates that the main task is persistent and will 

continue to loop.  

 

The example given in the AARM treats command processing as a procedure. In many multi-

tasking systems, shells spawn tasks or processes to perform the work of the command. In Ada 

9X, the textual code and its visual representation might be: 
 
 loop 
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  select 
   TERMINAL.WAIT_FOR_INTERRUPT; 
   PUT_LINE("Interrupted"); 
  in 
   declare 
    SHELL: COMMAND_INTERPRETER; 
   begin 

   PUT_LINE("-> "); 
    GET_LINE(COMMAND); 
    SHELL.EXEC(COMMAND); 
   end 
  end select 
 end loop 

put_line

get_line

command 
interpreter 

terminalmain

wait
for 
interrupt 

abort 

create

1 

2 

3 

exec

 
Figure 6.15. Shell using robots. 

Above,  note that a command task is created on every loop through the shell. In the event that 

the abortable part is interrupted, the command task will be aborted. This happens automatically 

as a result of the abort of the sequence of statements in the abortable part. We explicitly 

represent this as a removal arrow originating from the triggering alternative. 

 

6.5.5. Delays 
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An abortable part can also be interrupted by a delay statement. This allows for code to be 

written that will be interrupted if it exceeds some time boundary, as in the example shown 

below (AARM 9.7.4.11;2.0) : 

 
select 
 delay 5.0 
  PUT_LINE("Calculation doesn't converge"); 
 then abort 
  HORRIBLY_COMPLICATED_RECURSIVE_FUNC(X,Y); 
end select; 

The visualization of this is analogous to the visualization shown before of an entry call statement. 

Instead of waiting for an accept statement to complete, the triggering statement is waiting for a 

timer to expire. 

 

 

  Recursive 
Function

5.0 

Put 
Line

 
Figure 6.16. Delay visualization. 

The clock symbol used here is consistent with Buhr (1990) notation. When the timer expires, 

control will transfer to the triggering statement, which in this case will put a message out to the 

terminal. 
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In systems with many time-outs, it is easy to imagine a short-hand emerging, in which the 

triggering statement itself contains the clock symbol: 

 

  
Figure 6.17. Delay shorthand.  

The intended meaning is that of figure 6.16: when the timer runs out, if the abortable part is still 

running, abort the sequence of statements in the abortable part and transfer control to the 

triggering alternative. 

6.5.6. Cascading Transfers  

Given this new convention, it is worth considering how the visual representation of 

asynchronous transfer of control can contribute to the system design process. As Buhr (1990) 

points out, the visual can sometimes aid in capturing the essence of a problem that may be 

otherwise be represented as many lines of disparate code. One point of visual representation is 

to allow a concept to be represented in such a  way that it can be taken in instantly. Another 

point specific to system design is to allow the multiple potential sequences of interaction to be 

walked through and discussed. Much of the utility of system design notations come from the 

work that a team can do with a shared convention and an interactive visual medium such as a 

whiteboard. This kind of conversation often involves using the diagram as a map, and 

sequentially stepping through an event and its implications on the process it directly touches, 

along with the ripple effect on other dependent or synchronized tasks. In a sense, in early 

design stages, the diagrams are used as the basis for informal simulations of the working 

system. Buhr proposes the use of graphic user interfaces as an alternate way of doing these 

simulations. With the proper design tools, and with the design diagrams linked with underlying 
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code, the hope is that time-based systems design can benefit in the same way as other design 

fields have benefited from CAD tools. 

 

With this in mind, we consider a more complicated instance of asynchronous transfer of 

control. In the example of figure 6.15, a new task is created by an abortable part. It is certainly 

possible that a task that is created may itself include an asynchronous transfer of control. It may 

not be immediately obvious in a system with many lines of code how deep this cascading of 

asynchronous transfers of control goes.  Yet the end effect is a set of tasks that are closely 

linked together - the completion of an accept statement on any of the blocked entry calls will 

affect all the tasks at a deeper level of the cascade. 

 

This sort of cascade can be represented in the following way: 
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5.0 

w1

w2

w3

w4

r1

r2

r3

r4  
Figure 6.18. Cascading transfer of control. 

 

The first robot (r1) creates r2,  which in turn creates r3, which in turn creates r4. Each robot 

contains an asynchronous transfer of control with a corresponding waiting place (w1, w2, w3, 

w4).  In the event that any triggering statement completes, the task dependent on the abortable 

part will be aborted. This is shown through a set of abort arrows from the triggering alternative 

to the created tasks.  
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In the event that a task is aborted, all tasks dependent on it are also aborted.  If, say, the 

accept completes at w2, then not only will the abortable part of r2 be aborted, but r3 will also 

be aborted. The abort of r3 will in turn cause the abort of r4.  

 

So, from this diagram it becomes clear that, depending on which triggering statement completes 

first, a chain reaction of aborts is possible. It is also clear, that no matter what else happens, r2, 

r3, and r4 will be aborted when the timer at w1 expires after 5 seconds. 

 

For the system designer, the extension to MachineChart notation shown here makes it possible 

to visually trace the ramifications of a design that uses asynchronous transfer of control. 

 

6.6. REQUEUE 

While a protected record is a well-understood concept in operating system design, the requeue 

of Ada 9X is not so universal. 

 

The requeue is allowed only in an entry body or an accept statement. It can be used to 

complete the execution of the entry or accept statement, by redirecting the original entry call to 

a new entry. 

 

This is very different from calling another entry from within the body of an entry. Buhr notation 

allows for a button, the equivalent of an entry, to fire off another externally visible button. The 

diagram must show the line coming out of the interior of the task and invoking the entry from 

the outside, as in the following diagram: 
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client

A 

B 

server

 
 
Figure 6.19. A invokes B and deadlocks. 

Note that the client is waiting on A, and A is waiting on B. Since, in this example, A and B are 

part of the same task, a deadlock will occur. This is visually apparent - there is an obvious 

cycle in what amounts to a resource dependency graph. 

 

There exists no convention for requeue in Buhr notation, but it is obvious we must differentiate 

it from the above situation. Since the call from the client is essentially being redirected, we show 

the call bouncing from one entry to another entry. In this case it bounces to another entry in the 

same task. 

 

While Buhr's convention calls for lines to be undirected, with flow indicated by additional 

dataflow arrows, we propose that Requeue be shown with a directed arrow to emphasize the 

redirection aspect of the command. Requeue either has no parameters or passes through the 

existing parameters, so dataflow arrows are unnecessary. 

 

In analyzing a diagram for resource loops, the Requeue command should, in the example 

shown, translate to the client waiting on B, not A waiting on B. From a resource management 

perspective, this is the correct way to look at the problem. From an implementation 

perspective, a lock may still be held on A if B is in another task or another protected record. 
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But A is not waiting on B. Since a requeue is probably part of some conditional logic, deadlock 

detection algorithms will have to traverse alternate paths from this diagram, one for the case of 

a normal execution of A, another for the case of a requeue. 

 

 

client

A 

B 

server

 
 
Figure 6.20. Requeueing from A to B. 

 

Requeue can be used to suspend a caller from within the server task. The following is an Ada 

outline from the Map Specification (S9.7.1) which demonstrates the use of requeue to allocate 

print jobs to multiple printers.  
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package PRINTER_PKG is 
 task PRINTER_SERVER is 
  entry PRINT(FILE_NAME : STRING); 
 end PRINTER_SERVER; 
end PRINTER_PKG; 
 
package BODY PRINTER_PKG is 
 type PRINTER_INFO is record ...; 
 protected type PRINTER is 
  procedure START(FILE_NAME : STRING); 
  entry DONE; 
  procedure INITIALIZE(INFO : PRINTER_INFO); 
 private 
  procedure HANDLE_INTERRUPT; 
 record 
  INFO : PRINTER_INFO; 
  PRINTER_BUSY : BOOLEAN := FALSE; 
  CURRENT_FILE : SRING(1..MAX_FILE_NAME); 
  POSITION_IN_FILE : NATURAL := 0; 
  BUFFER : STRING(1..4096); 
 end PRINTER; 
 
 type PRINTER_ID is range 1..NUM_PRINTERS; 
 PRINTER_ARRAY : array (PRINTER_ID) of PRINTER; 
 PRINTER_INFO : constant array (PRINTER_ID) 
  of PRINTER_INFO := 
   6.6.1. => ...); 
 task body PRINTER_SERVER is 
  PRT : PRINTER_ID; 
 begin 
  for I in PRINTER_ID loop 
   PRINTER_ARRAY(I).INTIALIZE(PRINTER_INFO(I)); 
  end loop 
  loop 
   select 
    for I in PRINTER_ARRAY'RANGE 
     PRINTER_ARRAY(I).DONE; 
     PRT := 1; 
   end select; 
   select 
    accept PRINT(FILE_NAME : STRING) do 
     PRINTER_ARRAY(PRT).START(FILE_NAME); 
    requeue PRINTER_ARRAY(PRT).DONE with abort; 
    end PRINT 
   or 
    terminate 
   end select; 
  end loop; 
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 end PRINTER_SERVER; 
end PRINTER_PKG; 

This can be represented with MachineChart notation extended with the requeue arrow: 

Figure 6.21. Requeue as a load balancing mechanism for a print server. 
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First the client calls the only visible routine to him, PRINT. PRINT calls the START procedure 

of the protected type of an available printer, and then puts the caller onto DONE queue of the 

protected type using requeue. When the print job is done, the barrier on the DONE entry will 

be true, and the client will resume. Requeue in this case is being used to load balance. 

 

Note that the physical printer can be represented on the diagram. Most probably, the printer 

will raise a signal on completion of printer or detection of an error; this is shown here as  a link 

from the hardware device to the interrupt handler.  

 

A file name is passed to the protected type PRINTER. The procedure START will be 

responsible for reading from the file and formatting the data. The file is represented as a 

protected record. 

 

The first reaction to figure 6.21 is one of disbelief at the complexity of it. Yet there is nothing 

extraneous on the diagram. By creating an alternate description of the problem from that of 

source code, the hope is that programmers and testers can gain a better understanding of the 

intricacies of time-domain problems. 
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6.7. GENERICS 

Reuse in Ada is accomplished through generics. We look at how generics can be represented 

visually,  

 

Buhr  (1990) invents a template icon, that is to be thought of as a partially unrolled blueprint. It 

represents a set of building plans. A line from a template to a box represents installation. 

Customization parameters are shown as dataflow arrows along the install arrow. In the 

example below, a template STACK is used to construct a stack package. The type of the 

element in the stack, ITEM, can be customized, as can the upper limit on the size of the stack. 

 

:ITEM 

size

STACK 

stack instance

PUSH POP 

:ITEM 

:ITEM 

:ITEM 
:ITEM 

 
 
Figure 6.22. Stack instantiation from a template. The diagram is not 
complete; there would normally be exception conditions raised by 
PUSH and POP after comparison of an internal stack size counter with 
either 0 or the customized size. 
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Ada 9X allows the ability to pass instantiated packages into generics as parameters. This adds 

a lot of power to the Generics, and makes the diagramming of Generic relations more 

challenging. Here is a textual example from the Ada 9X mapping specification. 

 
generic 
 type FLOAT_TYPE is digits <>; 
package GENERIC_COMPLEX_FUNCTIONS is 
 type COMPLEX is 
  record 
   REAL : FLOAT_TYPE; 
   IMAG : FLOAT_TYPE; 
  end record; 
 
 function "-" (RIGHT : COMPLEX) return COMPLEX; 
 function "+" (LEFT, RIGHT : COMPLEX) return COMPLEX; 
 ... 
end GENERIC_COMPLEX_FUNCTIONS; 
 
generic  
 with PACKAGE COMPLEX FUNCTIONS is 
  new GENERIC_COMPLEX_FUNCTIONS(<>); 
package GENERIC_COMPLEX_MATRIX_OPERATIONS is 
 type COMPLEX_MATRIX is 
  array(positive range <>, positive range <>) 
   of COMPLEX FUNCTIONS.COMPLEX; 
 function "*" (LEFT : COMPLEX_FUNCTIONS.COMPLEX; 
       RIGHT : COMPLEX_MATRIX) 
   return COMPLEX_MATRIX; 
end GENERIC_COMPLEX_MATRIX_OPERATIONS; 
 
package SHORT_COMPLEX_PKG is 
 NEW GENERIC_COMPLEX_FUNCTIONS(SHORT_FLOAT); 
... 
package SHORT_COMPLEX_MATRIX_PKG is 
 new GENERIC_COMPLEX_MATRIX_OPERATIONS(SHORT_COMPLEX_PKG); 

 

The Matrix package takes a complex function package as a parameter. This means that first 

GENERIC_COMPLEX_FUNCTIONS is instantiated, and then the Matrix package is built 
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with this as a parameter. Within the Matrix package the types and functions of the package that 

has been passed in can be accessed. 

 

In order to visualize this, we go through a few different representations, before settling on a 

notation that is different from Buhr's generic notation. 

 

In the following diagram, Buhr notation is used. Since the typing and binding of parameters in 

Buhr diagrams take place in small arrows with circular tails, there is no obvious way to bind the 

result of an operation to the formal parameter of another. Shown below is an attempt at this by 

drawing an arrow from a package instance of GENERIC_COMPLEX_FUNCTIONS to the 

formal package parameter of generic complex matrix operations. 
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generic 
complex 
functions 

instance of 
complex 
functions 

float type

complex 
functions 

generic 
complex 
matrix
operations

instance of 
complex matrix
operations

 
Figure 6.23. Generics using existing conventions. 

In the following diagram, a convention is set up to explicitly bind actual parameters to formal 

parameters by drawing arrows that meet at a diamond-shaped node. The binding arrow is 

shown as a dotted line. 
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Figure 6.24. An alternative way of representing generics. 

In looking at the above diagram, it is bothersome that it does not represent the syntax of Ada. 

In Ada, the generic takes a parameter very much like a function takes a parameter. Then the 

generic is instantiated with the new keyword. As one step toward this kind of representation, 

we create a new convention for instantiation, using an arrow with an unfilled head as below: 

 

instantiates

 

The next step is to redraw the previous diagram using the instantiation arrow, and feed generic 

parameters into the templates for binding before instantiation: 
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Figure 6.25. A new convention for generics. 

The above is more like a data flow diagram than a MachineChart diagram. However, it seems 

to model better what is happening in the Ada language. If this convention is used as part of a 
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Case tool, a series of templates with their corresponding formal parameters might be arranged 

as part of a graphic menu. By combining these templates with instances and primitive types, it 

would be possible to fully specify a set of instantiations. Such a menu might look like this: 
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Figure 6.26. Icons for generics. 

The following is a continuation of the textual example above, also taken from the Ada 9X 

Mapping Specification: 
 
generic  
 type GROUP_ELEMENT is private; 
 IDENTITY : CONSTANT GROUP_ELEMENT; 
 with function OP(LEFT, RIGHT : GROUP_ELEMENT) 
  return GROUP_ELEMENT; 
 with function INVERSE(RIGHT : GROUP_ELEMENT) 
  return GROUP_ELEMENT; 
package GROUP_SIGNATURE is end; 
 
generic  
 with package GROUP is new GROUP_SIGNATURE(<>); 
function POWER(LEFT : GROUP.GROUP_ELEMENT; RIGHT : INTEGER) 
 return GROUP.GROUP_ELEMENT; 
 
function POWER(LEFT : GROUP. GROUP_ELEMENT; RIGHT : INTEGER) 
 return GROUP.GROUP_ELEMENT is 
 result : GROUP.GROUP_ELEMENT := IDENTITY; 
begin 
 for I in 1 .. abs RIGHT loop 
  result := GROUP.OP(RESULT, LEFT); 
 end loop; 
 if RIGHT < 0 then 
  return GROUP.INVERSE(RESULT); 
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 else 
  return RESULT; 
 end if; 
end POWER; 
 
package SHORT_COMPLEX_ADDITION_GROUP is  
 new GROUP_SIGNATURE(SHORT_COMPLEX_PKG.COMPLEX,  IDENTITY => 
(0.0, 0.0), 
 OP => SHORT_COMPLEX_PKG."+", 
 INVERSE => SHORT_COMPLEX_PKG."-"); 
 
function COMPLEX_MULTIPLICATION is  
 new POWER(SHORT_COMPLEX_ADDITION_GROUP);  

In order to visualize the above program, it is necessary to create representations for the group 

signature package as well as for the power generic function: 

 

group 
signature power 

 
Figure 6.27. Group signature representation. 

It is also necessary to show more detail on the contents of the instantiation of the short complex 

package. We choose to use a notation most similar to Rumbaugh's (1991) notation, which has 

the advantage of making the COMPLEX type visible for connections. 
 

 

short complex pkg 

COMPLEX 

  + 

- 

 
Figure 6.28. Using an OMT-like convention. 
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The following represents the instantiation of the power function: 
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Figure 6.29. An example with the new convention. 
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6.8. CONCLUSIONS 

System design is often done collectively on white boards. The results of this design process are 

often lost in the translation to textual code. Buhr's MachineChart notation is a rigorous way of 

capturing system diagrams. It also has the potential to be used in generating code from 

diagrams. And it certainly helps in the detection of common system problems such as 

deadlock, because cycle detection from a visual graph is easier than cycle detection from text.  

 

Buhr's concept of  a reactor works as a representation of Protected Records in Ada 9X. A 

simple extension to the notation allows requeueing to be modeled. Asynchronous transfer of 

control also can be successfully grafted on to the notation. The 9X extensions to Generics, 

however, suggest the possibility Buhr notation for generic instantiation needs a revamp in order 

to handle the bindings of packages to generic formal parameters. Or, in a deeper way, it 

suggests that perhaps Generics are best represented textually - that Generics are based on a 

naming convention, while most other components of system design deal with places. 

 

System design seems to go with graphic representation. The place-like nature of processes 

lends itself to something akin to architecture in a topological domain. It is something to keep in 

mind as we now turn to understanding the limits of the visual. 
 


