132

CHAPTER 6
SYSTEM DESIGN NOTATION

6.1. INTRODUCTION
The emphasis of this work up to now has been on the representation of smal programming
problems. This chapter looks at problems related to system design.

The system notation used in this chapter is Buhr's design notation. His origind notation, referred
to as Buhr diagrams (1984), is wdll-understood and accepted in the system design community.
His later notation, MachineCharts, (1990), is less wel-known. MachineCharts are designed to
address time-based issues of complex system design, and for that reason contan many
interesting visua conventions for representing sequences and interactions. Buhr's work is most
closdly linked with the programming language Ada, but contains many constructs that don't
map to Ada 83. Ada 9X contains structures anticipated by MachineCharts, but dso contains

concepts that are difficult to express in Buhr notation.

As away of underganding the power of visud techniques in system design, we look a Buhr
notation as it exigts, and attempt to apply it to Ada 9X constructs. In some cases we propose

extensons or changes to the MachineChart notation.

133

6.2. BUHR'SORIGINAL NOTATION
Buhr (1984) created a notation for Ada programming that dlows for the internd and externd
structure of packages and tasks to be represented in graphs. He writes:

Our pictorid notation provides a hardware-like metgphor for systems as collections of
black boxes connected together by plugs and sockets.

Throughout his work there is an emphass on mechanica or dectrica anadogs for computer
programs. He differentiates the black boxes into the Ada language congtructs of tasks and

packages.

package accessed through procedures

—

—

task accessed through entries

=

Figure6.1. Buhr package and task notation.

The notation emphasizes the interface points, the sockets through which data and control flow:

134

Figure 6.2. Socketsin atask.

In the above diagram, nested boxes are used to show the alternate sdections possible by the
server task in response to requests from clients.
Thetext equivaent of figure 6.2 is

sel ect
accept A do ... end
-- other processing
or
accept B do .. end
-- other processing
or
del ay T;

- - DELAY PROCESSI NG
end sel ect;

6.3. BUHR'S M ACHINECHARTS: ROBOTSAND REACTORS
In MachineCharts Buhr (1990) changes his terminology. Black boxes are differentiated into

boxes and robots, instead of packages and tasks.

Buhr makes a distinction between an active robots, called actors, and passive robots, called

reactors. Reactors model objects that provide mutual exclusion. Reactors can serve as glue

135

between actors to dlow for asynchronous communication. And reactors may be implemented

without the overhead of mechanisms such as rendezvous.

/ /[N

box actor robot reactor robot

Figure 6.3. MachineChart distinctions.

577

Figure 6.4. A visit from an engine in an actor robot to the button of an actor robot.

Vidts take place through buttons on black boxes. Procedure calls, RPC cdls, and Ada
rendezvous can al be consdered vidts, Buhr is generdizing his notation so that it can be

applied to any time-based problems implemented in any language.

6.3.1. Buhr'sreactor

The following is an example from Buhr of how reactors can be used:

136

COMTEOL _FLAG

TEZT-EEZULT
FLAG

Figure 6.5. A control flag asareactor.

Essentidly, the trapezoid- shaped box sgnifies that mutud excluson is assured. The
corresponding Ada code for thisis:

type FLAGIYPE is range 0..1

task CONTROL_FLAG i s
entry TAS (TEST_RESULT: out FLAGTYPE);
entry CLR

end CONTROL_FLAG,

task body CONTROL_FLAG is
FLAG: FLAGTYPE;
begin
| oop
sel ect
accept TAS(TEST_RESULT: out FLAGTYPE)
do TEST_RESULT : = FLAG
FLAG : = 1; end;
or
accept CLR
do FLAG : = 0; end;
end sel ect
end | oop
end CONTROL_FLAG

6.3.2. Buhr'stime extensions

137

Buhr has added timing diagrams to his notation system to help visudly present the behavior of

software machines. The following presents an expected vist scenario for the test and set

example above:
CLR
User 1 TAS CLR
fo
Flag
oo o
User 2 ‘ ‘ '

TAS TAS TAS .
Figure 6.6. Expected visit timing diagram for test and set.

Timing diagrams are normd in engineering, but are uncommon in oftware design. Yet the
diagram presents a scenario that is difficult to expresstextualy. The best textua representation

isatable asfollows; note that such a representation makes it very difficult to get a sense of user

overlap:

Scenario I ntended Result
User 1CLR

User 1 TAS Flag=0

User 2 TAS Flag=1

User 2 TAS Flag=1

User 1CLR

User 2 TAS Flag=0

Buhr suggests that atool could be developed that could generate expected visit timing diagrams

as output from interacting with a structure chart.

6.4. MAPPING TO ADA: TASKSAND PROTECTED RECORDS
Buhr's MachineCharts conventions were created prior to the Ada 9X mapping specification.

Neverthdess, the visua conventions surrounding reactors map easily onto the proposd in Ada

138

9X for Protected Records. In Ada 83, the only way to achieve synchronization is through the
overhead of a rendezvous. In order to reduce the overhead for real-time programming,
Protected Records are defined so they can be implemented as efficient conditiond critical
regions. The specification of the record distinguishes between functions, procedures, and
entries that may block. Intermetrics points out that these distinctions are essentid for design and
andyss.

Here is an example of a textud protected record from the Ada 9X Mapping Specification,
followed by avisud representation usng Buhr's MachineCharts.

protected type
COUNTI NG_SEMAPHORE(I NI TI AL_COUNT : INTEGER := 1) is
function COUNT return | NTEGER;
pr ocedur e RELEASE;
entry ACQUI RE;

private record

CURRENT _COUNT : | NTEGER : = | NI TI AL_COUNT;

end COUNTI NG_SEMAPHORE;

protected body COUNTI NG SEMAPHORE i s
function COUNT return I NTEGER i s

begi n

return CURRENT_COUNT;
end COUNT;
procedure RELEASE is
begin

CURRENT_COUNT : = CURRENT_COUNT + 1;
end RELEASE;
entry ACQUI RE when CURRENT_COUNT > 0 is
begi n

CURRENT_COUNT : = CURRENT_COUNT - 1;
end ACQUI RE;

end COUNTI NG_SEMAPHORE;

139

Figure6.7. A counting semaphor.

The Protected Record is represented as a trapezoid, a reactor. Current_count, labeled as
C_count, is shown as a variable that is updated by Release and Acquire. The function Count

returns this number on a query.

The visud representation makes it easy to differentiate between entries, functions, and
procedures. The large dot outside the Acquire button indicates a waiting position in the design;
it is possble requests are queued waiting for the semaphore. In the case of Ada, this indicates
that Acquireis an entry. Dataflows are indicated by samdl arrows with acircle a the tal. It is

easy to determine from these arrows that Count is afunction and Release is a procedure.

The curved lines on the ingde of the diagram indicate synchronization. The open circle line from
Release to Acquire indicates that the action of Release can release Acquire from a waiting
condition. Buhr cdls this event opening. The closed circle line from Acquire to itsdlf indicates
that Acquire's actions may impaose a waiting condition; this is referred to as closing. Buhr
points out that Ada performs opening and closng only through variable changes on guard
expressions. He observes that in the design phase it is cleaner to explicitly draw the open and

close operations.

140

Ada 9X specifies that when a function such as Reease performs its actions, before it releases
its lock it must re-evauate the entry. This re-evauation may cause the entry to execute. The
convention of the open circle from Release to Acquire is a fitting representation for such a

mechanism, as it suggests a more direct action than the changing of the current_count varigble.

6.5. ASYNCHRONOUS TRANSFER OF CONTROL
This section proposes extensons to Buhr's notation to dlow for the representation of

asynchronous transfer of contral.

6.5.1. Definition
Asynchronous trandfer of contral is defined in the Annotated Ada 9X Reference Manud
(1993) in the following way (AARM 9.7.4.2;2.0):

ASYNCHRONOUS SELECT :=
select
TRIGGERING ALTERNATIVE
then abort
ABORTABLE PART
end select;

TRIGGERING_ALTERNATIVE := TRIGGERING STATEMENT
[SEQUENCE_OF STATEMENTS]

TRIGGERING_STATEMENT = ENTRY_CALL_STATEMENT | DELAY STATEMENT

ABORTABLE_PART ::= SEQUENCE OF STATEMENTS

The transfer of control is accomplished through the use of an abortable part . If an entry cdl
is completed while abortable part processing is taking place, the abortable part processng is

aborted and control goesto the triggering dternative.

141

6.5.2. A Textual Example

A user command interpreter can be represented as a loop, in which commands are retrieved
from a usar's input on atermind, and then invoked. At any point the user may wish to abort
the program by pressng escape, Control-C, or some other specid key combination. This can
be written in the following manner (AARM 9.7.4.9;2.0):

loop
select
TERMINAL.WAIT_FOR_INTERRUFPT;
PUT_LINE("Interrupted”);
then abort
PUT_LINE("->");
GET_LINE(COMMAND, LAST);
PROCESS COMMAND(COMMAND(1..LAST));
end select;
end loop;

Note that TERMINAL.WAIT_FOR_INTERRUPT isan entry cdl meaning that the triggering
gatement will wait until some event happens on the termind that allows the accept satement on

the termind to complete.

6.5.3. Creating the Visual Convention

Ealy discusson of asynchronous transfer of control described it as being smilar to an
operating systems fork. More recent discussions have speculated on using a two-thread model
to implement the feature. Therefore we first condgder using Buhr notation features that ded with

the creation and destruction of tasks.

142

install

Figure 6.8. Installing and removing a robot.

Buhr(1984) contained the concept of abort - Buhr(1990) supersedes this with the paired
concepts of ingalation and removd. The convention in the figure above shows a machine being
ingtalled based on a blueprint, represented as a scroll (we omit this scrolled icon from now on).
The second part of the figure shows a machine being removed, which is equivaent conceptudly
to aborting atask.

Triggering
Alternative

Abortable
Part

Figure 6.9. Using abort.

Above, the triggering dternative ingdls the abortable part, then makes an entry cdl (2) and
blocks. (The dot a 2 is a Buhr convention indicating a potentid waiting.) If the entry call
completes, the triggering dternative removes the abortable part (3a). If the abortable part

143

completes first, the abortable part aborts the triggering dternative (Ada 9X cdls for the
triggering statement to be aborted, and the sequence of statements of the triggering dternative
not be executed) (3b).

This diagram makes explicit the two-sded nature of the asynchronous transfer of control -
depending on whether the abortable part or the triggering atement complete first, either may
end up aborting the sequence of statements or the triggering statement of the other.

However, the diagram implies concepts that do not exist in the language construct. In Ada 9X,
thereis no sensein which the triggering dternative creates the abortable part. In amore generd
sense, the triggering dternative is not intended to be an independent task. Also, the abortable
pat can only abort the triggering statement when the abortable part completes - the diagram
implies more symmetry than exigts in the language construct.

As an dternate way to modd asynchronous trandfer of control, Buhr's conventions for

exception-handling can be used.

Buhr (1990) cdls for a hooked line to be used to indicate propagation of exceptions and

dams. Andarm handler is represented as arectangle:

i

Figure 6.10. Using exceptions.

source of
exception

Using this convention, an asynchronous transfer of control can be shown:

144

=LY/

5

A

Figure 6.11. Asynchronoustransfer using exceptions.

In the figure above, both the triggering dternative (1) and the abortable part (4) are shown as
pardldograms indde atask. Fird, the triggering satement of the triggering dternative is made.
In this case, an entry cdl is placed to another task (2). While the triggering statement waits, the
abortable part is running. So when the accept statement completes, a signd is generated (3)
that interrupts the abortable part (4). The abortable part immediately transfers control to the
satements following the triggering statement in the triggering dternative (5). This is where the

handling really takes place - the triggering dternative may make more cals outside the task (6).

This representation isafairly complex and not very accurate portraya of what is happening. A
norma occurrence, the completion of an accept statement, is represented here as an exception,
a5 it is necessary to suggest the interruption in the control of the abortable part. Yet this is

deceptive, as the programmer cannot write a handler for an interrupt in the abortable part.

There is another issue with the above representation. The relation between the find part and the
triggering dternatives is not made clear. There is no way to gather from the diagram that the
two inner paralelograms are part of a single sdlect statement. Nor is there a way to recognize

145

the congtruction as being an asynchronous transfer of control as opposed to a normal exception

propagation.

We propose the following convention:

Triggering
Alternative

Abortable Part

Figure 6.12 Proposed convention.

Note that overlap is used to indicate a form of precedence. The triggering dternative can

interrupt and abort the abortable part. Overlap was chosen asit:

» suggeststhe triggering aternative as interrupting the abortable part

* edablishes an association between the triggering aternative and the abortable part of
the sdlect statement.

e canbedrawn essly.

» does not conflict with other Buhr conventions

The non-terminated vertica line is assumed to connect up to an entry cdl. In figure 6.13, the

different stages of atask usng an abortable part are shown.

146

In a), the triggering dternative places an entry cdl. In Figure b), the entry cal has not returned,
S0 the abortable part begins running. In c), the entry call has returned, and the abortable part is
aborted. Contral has gone to the triggering dternative.

Triggering
Alternative

a)
Triggering
Altemative
Abortable Part
b)
Triggering
Alternative
Abortable Part
c)

Figure 6.13. The sequence.

6.5.4. A Visual Example

Below, atextua and a graphic representation are compared:

147

loop
select
TERMINAL.WAIT_FOR_INTERRUFPT;
PUT_LINE("Interrupted”);
in
PUT_LINE("->");
GET_LINE(COMMAND, LAST);
PROCESS COMMAND(COMMAND(1..LAST));
end select;
end loop;

wait
for
interrupt

main terminal

process
command

Figure 6.14. Shell example.
The triggering dterndive waits for an interrupt from the termind. At the same time, the
abortable part puts and gets the command line to and from the terminal, and processes the
command received. The circular arow indicates that the main task is perastent and will

continue to loop.

The example given in the AARM treats command processing as a procedure. In many multi-
tasking systems, shells spawn tasks or processes to perform the work of the command. In Ada
9X, the textua code and its visud representation might be:

loop

148

select
TERMINAL.WAIT_FOR_INTERRUPT;
PUT_LINE("Interrupted");
in
declare
SHELL: COMMAND_INTERPRETER,;
begin
PUT _LINE("->");
GET_LINE(COMMAND);
SHELL.EXEC(COMMAND);
end
end select
end loop

interrupt

main terminal

create

f exec /

command
interpreter

Figure 6.15. Shell using robots.

Above, note that a command task is created on every loop through the shell. In the event that
the abortable part is interrupted, the command task will be aborted. This happens automatically
as a result of the abort of the sequence of statements in the abortable part. We explicitly

represent thisasaremova arrow originating from the triggering dterndive.

6.5.5. Delays

149

An abortable part can aso be interrupted by a delay statement. This alows for code to be
written that will be interrupted if it exceeds some time boundary, as in the example shown
below (AARM 9.7.4.11;2.0) :

select
delay 5.0
PUT_LINE("Caculation doesn't converge');
then abort
HORRIBLY_COMPLICATED RECURSIVE_FUNC(X,Y);
end select;

The visudization of thisis anaogous to the visudization shown before of an entry cal satement.
Instead of waiting for an accept statement to complete, the triggering satement is waiting for a

timer to expire.

e

5.0

—
e /

Put
Line,

Figure 6.16. Delay visualization.

The clock symbol used here is consgtent with Buhr (1990) notation. When the timer expires,
control will trangfer to the triggering statement, which in this case will put a message out to the

termindl.

150

In sysems with many time-outs, it is easy to imagine a short-hand emerging, in which the
triggering Satement itself contains the clock symbol:

Figure 6.17. Delay shorthand.

The intended meaning is that of figure 6.16: when the timer runs out, if the abortable part is il
running, abort the sequence of statements in the abortable @t and transfer control to the
triggering dternative.

6.5.6. Cascading Transfers

Given this new convention, it is worth consdering how the visud representation of
asynchronous transfer of control can contribute to the system design process. As Buhr (1990)
points out, the visud can sometimes aid in capturing the essence of a problem that may be
otherwise be represented as many lines of disparate code. One point of visua representation is
to alow a concept to be represented in such a way that it can be taken in ingantly. Another
point specific to system design s to dlow the multiple potentia sequences of interaction to be
walked through and discussed. Much of the utility of system design notations come from the
work that a team can do with a shared convention and an interactive visud medium such as a
whiteboard. This kind of conversation often involves using the diagram as a mep, and
sequentidly stepping through an event and its implications on the process it directly touches,
adong with the ripple effect on other dependent or synchronized tasks. In a sense, in early
desgn stages, the diagrams are used as the bads for informa smulations of the working
system. Buhr proposes the use of graphic user interfaces as an dternate way of doing these

smulations. With the proper design tools, and with the design diagrams linked with underlying

151

code, the hope is that time-based systems design can benefit in the same way as other design
fields have benefited from CAD tools.

With this in mind, we condder a more complicated ingance of asynchronous transfer of
control. In the example of figure 6.15, anew task is created by an abortable part. It is certainly
possible that atask that is created may itself include an asynchronous transfer of control. It may
not be immediady obvious in a sysem with many lines of code how deep this cascading of
asynchronous trandfers of control goes. Yet the end effect is a set of tasks that are closdly
linked together - the completion of an accept Satement on any of the blocked entry calls will
affect dl the tasks at a deeper leve of the cascade.

This sort of cascade can be represented in the following way:

152

57
5 /@

|® w3

E/M

Figure 6.18. Cascading transfer of control.

T
>

r

N
/\/\\‘
Y]

r

\
1

r3

T

The firgt robot (rl) creates r2, which in turn creates r3, which in turn creates r4. Each robot
contains an asynchronous transfer of control with a corresponding waiting place (wl, w2, w3,
w4). In the event that any triggering statement completes, the task dependent on the abortable
part will be aborted. Thisis shown through a set of abort arrows from the triggering aternative
to the created tasks.

153

In the event that a task is aborted, al tasks dependent on it are dso aborted. If, say, the
accept completes at w2, then not only will the abortable part of r2 be aborted, but r3 will dso
be aborted. The abort of r3 will in turn cause the abort of r4.

So, from this diagram it becomes clear that, depending on which triggering statement completes
firdt, a chain reaction of abortsis possible. It isaso clear, that no matter what else happens, r2,

r3, and r4 will be aborted when the timer a w1 expires after 5 seconds.

For the system designer, the extension to MachineChart notation shown here makes it possible

to visually trace the ramifications of a design that uses asynchronous transfer of control.

6.6. REQUEUE
While a protected record is a well-understood concept in operating system design, the requeue

of Ada9X isnot 0 universd.

The requeue is dlowed only in a entry body or an accept statement. It can be used to
complete the execution of the entry or accept statement, by redirecting the origind entry cdl to

anew entry.

Thisis very different from cdling another entry from within the body of an entry. Buhr notation
dlows for a button, the equivdent of an entry, to fire off another externdly visible button. The
diagram must show the line coming out of the interior of the task and invoking the entry from

the outsde, asin the following diagram:

154

client

server

Figure6.19. A invokes B and deadlocks.
Note that the client iswaiting on A, and A iswaiting on B. Since, in thisexample, A and B are
part of the same task, a deadlock will occur. This is visudly apparent - there is an obvious
cyclein what amounts to a resource dependency graph.

There exigts no convention for requeue in Buhr notetion, but it is obvious we mugt differentiate
it from the above stuation. Since the cdl from the client is essentialy being redirected, we show
the call bouncing from one entry to another entry. In this case it bounces to another entry in the

same task.

While Buhr's convention cals for lines to be undirected, with flow indicated by additiona
dataflow arrows, we propose that Requeue be shown with a directed arrow to emphasize the
redirection aspect of the command. Requeue either has no parameters or passes through the

exiging parameters, o dataflow arrows are unnecessary.

In andyzing a diagram for resource loops, the Requeue command should, in the example
shown, trandate to the client waiting on B, not A waiting on B. From a resource management
perspective, this is the correct way to look at the problem. From an implementation
perspective, alock may gill be hed on A if B isin another task or another protected record.

155
But A is not waiting on B. Since arequeue is probably part of some conditiona logic, deadlock

detection dgorithms will have to traverse dternate paths from this diagram, one for the case of

anorma execution of A, another for the case of arequeue.

/=7

Figure 6.20. Requeueing from A to B.

server

Requeue can be used to suspend a cdler from within the server task. The following is an Ada
outline from the Map Specification (S9.7.1) which demonstrates the use of requeue to dlocate

print jobs to multiple printers.

package PRINTER PKG i s
task PRI NTER_SERVER i s
entry PRINT(FILE_NAME : STRING ;
end PRI NTER_SERVER;
end PRI NTER_PKG,

package BODY PRI NTER PKG i s
type PRINTER INFO is record ...;
protected type PRINTER is
procedure START(FILE _NAME : STRI NG ;

entry DONE;

procedure I NI TI ALI ZE(I NFO : PRI NTER | NFO);
private

procedur e HANDLE | NTERRUPT;
record

I NFO : PRI NTER I NFQ
PRI NTER _BUSY : BOOLEAN : = FALSE
CURRENT_FI LE : SRI NG 1..MAX FI LE_NAME);
POSI TION I N FILE : NATURAL : = 0;
BUFFER : STRING 1..4096);

end PRI NTER;

type PRINTER ID is range 1..NUM PRI NTERS
PRI NTER_ARRAY : array (PRINTER_ID) of PRI NTER
PRI NTER I NFO : constant array (PRI NTER_I D)
of PRINTER_INFO : =
6.6.1. => ...);
task body PRI NTER _SERVER i s
PRT : PRI NTER_I D

begin
for I in PRINTER ID I oop
PRI NTER_ARRAY(1) .| NTI ALI ZE(PRI NTER_|I NFO(1)) ;
end | oop
| oop
sel ect
for | in PRINTER_ARRAY' RANGE
PRI NTER_ARRAY(|) . DONE
PRT := 1;
end sel ect;
sel ect

accept PRINT(FILE NAMVE : STRING do
PRI NTER_ARRAY(PRT) . START(FI LE_NAME) ;

requeue PRI NTER_ARRAY(PRT). DONE with abort;
end PRI NT

or
term nate

end sel ect;

end | oop;

156

157

end PRI NTER_SERVER;
end PRI NTER_PKG

This can be represented with MachineChart notation extended with the requeue arrow:

Figure 6.21. Requeue as aload baancing mechanismfor aprint server.

158

Firg the dient cdls the only visble routine to him, PRINT. PRINT cdlsthe START procedure
of the protected type of an available printer, and then puts the caller onto DONE queue of the
protected type usng requeue. When the print job is done, the barrier on the DONE entry will

be true, and the client will resume. Requeue in this case is being used to load baance.

Note that the physicd printer can be represented on the diagram. Most probably, the printer
will raise asgna on completion of printer or detection of an error; thisisshown here as alink

from the hardware device to the interrupt handler.

A file name is passed to the protected type PRINTER. The procedure START will be
respongble for reading from the file and formetting the data The file is represented as a

protected record.

The firg reaction to figure 6.21 is one of dishdief a the complexity of it. Yet there is nothing
extraneous on the diagram. By cregting an dternate description of the problem from that of
source code, the hope is that programmers and testers can gain a better understanding of the

intricacies of time-domain problems.

159

6.7. GENERICS
Reuse in Adais accomplished through generics. We look at how generics can be represented

visudly,

Buhr (1990) invents atemplate icon, that is to be thought of as a partidly unrolled blueprint. It
represents a st of building plans. A line from a template to a box represents ingtdlation.
Cugtomization parameters are shown as dataflow arows dong the ingdl arrow. In the
example below, a template STACK is used to construct a stack package. The type of the
element in the stack, ITEM, can be customized, as can the upper limit on the Sze of the stack.

G =D

$ g TEM ‘ ITEM

ATEM .

STACK

size

PUSH POP

stack instance

Figure 6.22. Stack instantiation from a template. The diagram is not
complete; there would normally be exception conditions raised by
PUSH and POP after comparison of an internal stack size counter with
either O or the customized size.

160

Ada9X dlows the ability to passingtantiated packages into generics as parameters. This adds
alot of power to the Generics, and makes the diagramming of Generic relaions more

chdlenging. Here is atextud example from the Ada 9X mapping specification.

generic
type FLOAT_TYPE is digits <>;
package CGENERI C_COVPLEX FUNCTIONS i s
type COWLEX is
record
REAL : FLOAT_TYPE;
| MAG : FLOAT_TYPE;
end record;

function "-" (RIGHT : COVPLEX) return COVPLEX;
function "+" (LEFT, RIGHT : COWPLEX) return COVPLEX;

end GENERI C_COVPLEX_FUNCTI ONS;

generic
wi t h PACKAGE COVPLEX FUNCTIONS is
new GENERI C_COVPLEX_ FUNCTI ONS(<>) ;
package CGENERI C_COVPLEX MATRI X OPERATIONS i s
type COVPLEX MATRI X is
array(positive range <>, positive range <>)
of COVPLEX FUNCTI ONS. COVPLEX;
function "*" (LEFT : COMPLEX_FUNCTI ONS. COVPLEX;
Rl GHT : COWPLEX_MATRI X)
return COVPLEX_MATRI X;
end GENERI C_COWPLEX_MATRI X_OPERATI ONS

package SHORT_COVPLEX PKG i s
NEW GENERI C_COMPLEX_FUNCTI ONS(SHORT_FLOAT)

package SHORT_COVPLEX MATRI X PKG i s
new GENERI C_COVPLEX_MATRI X_OPERATI ONS(SHORT_COWPLEX_PKG) ;

The Matrix package takes a complex function package as a parameter. This means that first
GENERIC_COMPLEX_FUNCTIONS is ingtantiated, and then the Matrix package is built

161

with this as a parameter. Within the Matrix package the types and functions of the package that
has been passed in can be accessed.

In order to visudize this, we go through a few different representations, before sttling on a

notation that is different from Buhr's generic notation.

In the following diagram, Buhr notation is used. Since the typing and binding of parametersin
Buhr diagrams take place in amdl arrows with circular tails, thereis no obvious way to bind the
result of an operation to the formal parameter of another. Shown below is an atempt at this by
drawing an arrow from a package instance of GENERIC_COMPLEX_ FUNCTIONS to the

forma package parameter of generic complex matrix operations.

162

complex
functions

generic
complex
matrix

float type . 3

operation

instance of > o
complex V
functions
complex
functions
A
instance of
complex matrix
operations

Figure 6.23. Generics using existing conventions.
In the following diagram, a convention is set up to explicitly bind actud parameters to formd
parameters by drawing arrows that meet a a diamond-shaped node. The binding arrow is

shown as a dotted line.

163

generic
complex
functions

generic
complex
matrix

operation

float type .

instance of > ‘

complex

functions complex
functions
instance of
complex matrix
operations

Figure 6.24. An alternative way of representing generics.

In looking at the above diagram, it is bothersome that it does not represent the syntax of Ada
In Ada, the generic takes a parameter very much like a function takes a parameter. Then the
generic is indantiated with the new keyword. As one step toward this kind of representation,

we cregte a new convention for instantiation, using an arrow with an unfilled head as below:

instantiates

The next ep is to redraw the previous diagram using the ingtantiation arrow, and feed generic

parametersinto the templates for binding before instantiation:

164

short_float

float type .

generic
complex
functions

-

instance of
complex
functions

complex
functions

generic

instance of
complex matrix
operations

Figure 6.25. A new convention for generics.
The above is more like a data flow diagram than a MachineChart diagram. However, it seems
to mode better what is happening in the Ada language. If this convention is used as part of a

165

Case tool, a series of templates with their corresponding forma parameters might be arranged
as part of a graphic menu. By combining these templates with instances and primitive types, it

would be possible to fully specify a set of ingantiations. Such a menu might look like this:

short float complex complex
B float type functions functions
long_float .
generic generic generic
complex complex complex
functions matrix vector
operation operation

Figure 6.26. | consfor generics.

The following is a continuation of te textuad example above, aso taken from the Ada 9X
Mapping Specification:

generic
type GROUP_ELEMENT is private;
| DENTI TY : CONSTANT GROUP_ELEMENT;
with function OP(LEFT, RIGHT : GROUP_ELEMENT)
return GROUP_ELEMENT,;
with function | NVERSE(RI GHT : GROUP_ELEMENT)
return GROUP_ELEMENT,;
package CGROUP_SI GNATURE i s end;

generic
wi th package GROUP i s new GROUP_SI GNATURE(<>);
function POAER(LEFT : GROUP. GROUP_ELEMENT; RIGHT : | NTEGER)
return GROUP. GROUP_ELENMENT,;

functi on PONER(LEFT : GROUP. GROUP_ELEMENT; RIGHT : | NTEGER)
return GROUP. GROUP_ELEMENT i s
result : GROUP. GROUP_ELEMENT : = | DENTI TY;
begi n
for I in1 .. abs RIGHT |oop
result := GROUP. OP(RESULT, LEFT);
end | oop;
if RIGHT < 0 then
return GROUP. | NVERSE(RESULT) ;

166

el se
return RESULT,
end if;
end POVER;

package SHORT_COVPLEX ADDI TI ON GROUP is

new GROUP_SI GNATURE(SHORT_COWMPLEX_PKG. COMPLEX, | DENTITY =>
(0.0, 0.0),

OP => SHORT_COWPLEX_PKG. " +",

I N\VERSE => SHORT_COWPLEX_PKG. "-");

function COVPLEX MULTI PLI CATION i s
new POWER(SHORT_COVPLEX_ADDI TI ON_GROUP) ;

In order to visualize the above program, it is necessary to create representations for the group

signature package as well asfor the power generic function:

3 |5 |28 |
5 |8 5 B
2| B2
: g

S YVvYYyYyy

group ,(
signature

Figure 6.27. Group signaturerepresentation.

It isaso necessary to show more detail on the contents of the ingtantiation of the short complex
package. We choose to use a notation most smilar to Rumbaugh's (1991) notation, which has
the advantage of making the COMPLEX type visble for connections.

short complex pkg
COMPLEX

[~
[

Figure 6.28. Using an OMT-like convention.

167

The following represents the ingtantiation of the power function:

short_float

0.,0). ’

functions B
g
.
]
short complex pkg _ \
COMPLEX group element
group
signature
+ op
inverse
- >
short complex
addition group
kg T
2
B
o
. '
left :short float complex o> \/
right: integer o> complex
:short float complex <0 multiplication

Figure 6.29. An example with the new convention.

168

6.8. CONCLUSIONS

System design is often done collectively on white boards. The results of this design process are
often logt in the trandation to textud code. Buhr's MachineChart notation is a rigorous way of
capturing system diagrams. It dso has the potentid to be used in generating code from
diagrams. And it certanly hdps in the detection of common sysem problems such as

deadlock, because cycle detection from avisud graph is easer than cycle detection from text.

Buhr's concept of a reactor works as a representation of Protected Records in Ada 9X. A
simple extenson to the notation alows requeueing to be modded. Asynchronous transfer of
control aso can be successfully grafted on to the notation. The 9X extensions to Generics,
however, suggest the possibility Buhr notation for generic instantiation needs a revamp in order
to handle the bindings of packages to generic forma parameters. Or, in a deeper way, it
suggests that perhaps Generics are best represented textudly - that Generics are based on a

naming convention, while most other components of system design ded with places.

System design seems to go with graphic representation. The place-like nature of processes
lends itsdlf to something akin to architecture in atopologica domain. It is something to keep in

mind as we now turn to underganding the limits of the visud.

