CHAPTER 4
VISUAL APL

4.1. INTRODUCTION
In the previous chapter we created a Smple visud language. In this chapter we use some of the
idess of the ample visud language to create a visud verson of APL. We begin with asmple

example of thelanguage in use.

4.2. FACTORIAL EXAMPLE

[generate text] [clear]

||r“|:|Lus: B2345cols:r P2345

inds

| = |
* lﬁ:ﬁ% reduce 5B40

o]l

u: QEER

Figure4.1. Factorial calculation.

We read the diagram verticaly, in three stages. In the first sage a variable x isset to 7. The
number 7 is typed in, and can be edited. In the second stage, the value of x is passed to the
index function, resulting in a vector 1..x, which is displayed as an intermediate result. In the
third gtate, this vector is reduced by the multiplication operator, with the find result displayed.

We can compare this to the factorid caculation in the previous chapter, figure 3.6. The vishble
difference is the cregtion of intermediate results of the caculation. We have dso dropped the
convention of indicating types with the fill patterns of the box connectors. Instead, we can

perceive the difference between a scaar, vector, or array by looking at the intermediate results.

APL operators take ether one or two parameters; this dlows us to use the smple graphic

representation of the last chapter. Later we will discuss the ordering of parameters for binary

operators.

4.3. THEM AIN M ENU

-

-

Bxp

1 | ¥ |

Figure4.2. Main menu.

The above figure represents the menu for the objects in the language. The first box is the

primary input box. The second icon represents an array, which can be attached to the initia

box so vaues can be plugged into it. The third is an output file box. On the second row, the
first icon represents an expresson box. The next icon represents execution; when this icon is

pressed the program will execute. The find icon is a parameter box.

The normd process of program creation would start by dicking on the first icon, which would
cregte the initid input variable. The next icon to be pressed would be the array icon; before
doing that it may be necessary to change the default shape of the array. This is done with the
ample control pand at the top of the gpplication:

rows: 1 B 3 4 5cols: 128465

Figure 4.3. Row and column panel.
This pand sets the gze of the input matrix for the initid vaue of the function. When the array
icon is sdected, a corresponding blank array will be shown with the number of rows and

columns shown in inverted video above:

Figure4.4. Blank input array.
Thisisablank 2 by 3 aray. We can fill in the array with numbers by moving the mouse into
corresponding boxes. If we add a function box below the input box, we then can invoke the

function menu from indde the box:

4.4, THE FUNCTION M ENU

" 1 11 15
24 16
reduce COmpress ravel
restruct cat Tndx
| + *
- s < be
= and or mnax
min not <» =
*1 sqr avqg mod

set use suitch_params

Figure 4.5. Function menu.

This st of functions includes a set of APL primitives with some additions. If one of the
primitives, such as reduce, is known to take two arguments, a Sdeways parameter box will be
invoked.

In this case we pick the transpose operator, and execute the program:

v 1 11 15
g 2 16
trans 1 g
11 2
15 16

Figure 4.6. Transpose.
The user creates and fillsin the 2 by 3 aray. The 3 by 2 array is generated automaticaly as
part of the execution.

45. PARAMETER ORDERING
With two- parameter non-commutative functions, it isimportant to be able to specify order. The

parameter on the left is assumed to be the first parameter. For example:

pos_prime

2 %\E&ﬁ— =3

Figure4.7. Parameter ordering example (2 - 7).
Thisis equivdent to (2 - 7). If we need (7 - 2), weinvoke the function switch_params, which

will reversethe order. A 2 appears under the link to the parameter box:

7

pos_prime

? %ﬁ— E
5

Figure 4.8. Parameter ordering example (7 - 2).

4.6. OVERLOADING
In visual APL, asin APL, we can use an operator such as * on combinations of scaars,

vectors, and arrays, with sengble results. We show here (3 * 4):

4 %ﬁ* 12

Figure 4.9. Scalar * scalar.

If we change x to avector 3 4 5 6 the function returns a vector:

4 &-\\‘»@ * 1% 16 (28 |24
|

Figure 4.10. Scalar * vector.
As amore complicated example, operations on arrays often produce vectors. Reducing a two-

dimensiond array with multiplication resultsin a vector of results, one for each row in the array:

* rﬁm reduce 24 | 1686
e

Figure4.11. Thereduction of a two-dimensional array.

4.7. SETANDUSE

Sometimes it is necessary to set adde a cdculation and bring it back later. In order to
accomplish thisin alanguage that is modeled after alinear string, we need to be adle to bresk
the flow and use aprevioudy cdculated varigble to start a new stream:

. 14 |16 |15 |21 |13
shape 5

) %\% 4
avg 15

sqr

+ i&\‘% reduce 42

denaom ;@;ﬁtﬁ ; 18

Figure 4.12. A variance calculation showing the setting and later use of avariable.

4.8. TESTING FOR PRIMES
Kamin includes as an example a smple APL-like way of testing for primes. Weinclude it here

as a good example of how avisud front-end can meke some of the concepts of APL clearer.

In order to test a prime, we generate the set of dl possble divisors, take the mod of this vector
with respect to the number being tested, and then determine if anything divided evenly. We

present an example where the number is prime, followed by an example where the number is

not prime.
pos_prime 7
| :

Z %}"‘E\E‘\.\:\“x\f - | 5

inds | 1 2 3 4 5

+1 2 3 4 g G
pus_primeéﬁmud 1 1 3 o 1
] %\w N 1 , 1 1 :
and %{ﬁ r‘edun:: 1

10

Figure 4.13. Primality test on the number 7.

pos_prime

o lf%i»%“%%— B

inds

1 2 |3 |4 |5 |8 |7

pns_prime%ﬁﬁﬁlnud g 2 d 3 2 1
|
A F‘C‘\:"{\'\\'\.’;“ﬁ:{} H 1 H 1 1 1
and %ﬁﬁﬁ reduce H
=

Figure 4.14. Primality test on the number 8.

4.9. PRACTICAL USE
It is probably the case that an experienced APL programmer would not use this interface to
produce code. The experienced programmer gains from the compactness of the APL symbolic

representation. However, even experienced APL users have problems in reading code not

11

written by themsdlves; it is possible that a representation such as the one suggested here would
ad in undergtanding cryptic one-liner. An APL text representation can be expanded into a
visud APL diagram.

As ateaching tool for novice APL programmers or for sudents of programming languages, the
work shown here illustrates severd concepts in a clear way. The functiond bias of APL is
shown by the verticd stream convention of the overal graph. The concept of functionds is
shown by the feeding of functions into functions as parameters. And the origami-like
trandformations of scaars, vectors, and arrays are illustrated through the display of intermediate

results.

4.10. CODE GENERATION
For the purposes of interface to an interpreter, every statement resultsin avariable caled input
being sat. Code generation for the primdity test follows.

(set input (set pos _prine '(8)))
(set input (- input 2))

(set input (indx input))

(set input (+1 input))

(set input (nmod pos_prinme input))
(set input (<> 0 input))

(set input (and/ input))

12

It isdso possble to generate asingle APL function:

(and/ (<> 0 (nod n (+1 (indx (-n 2))))))

Logidticdly, the former code generation alows a smple interface into the interpreter that will

return aseries of partid results usable in the display.

4.11. |IMPLEMENTATION DETAILS

The program is coded in C. The user interface is coded in Sunview. The APL interpreter
comes from Kamin (1990). The APL interpreter was modified in the following ways - it was
modified into a subroutine rather than a main program, and traps were put in to capture results
in avector of arraysthat are returned to the cdling program. This vector is used to generate the

data traces which are part of the visud display.

4.12. RELATED WORK

APL itsdf has a farly visud, immediate fed. APL2 (J. A. Brown 1988) incorporates some
visudization ideas s0 that nested data structures can be viewed and understood. Spreadsheets
inspired the concept of editable array cdlls, an article by Ambler (1990) discusses extending
Spreadsheets to amore abstract level.

