
1

 CHAPTER 4
 VISUAL APL

4.1. INTRODUCTION

In the previous chapter we created a simple visual language. In this chapter we use some of the

ideas of the simple visual language to create a visual version of APL. We begin with a simple

example of the language in use.

4.2. FACTORIAL EXAMPLE

Figure 4.1. Factorial calculation.

2

We read the diagram vertically, in three stages. In the first stage a variable x is set to 7. The

number 7 is typed in, and can be edited. In the second stage, the value of x is passed to the

index function, resulting in a vector 1..x, which is displayed as an intermediate result. In the

third state, this vector is reduced by the multiplication operator, with the final result displayed.

We can compare this to the factorial calculation in the previous chapter, figure 3.6. The visible

difference is the creation of intermediate results of the calculation. We have also dropped the

convention of indicating types with the fill patterns of the box connectors. Instead, we can

perceive the difference between a scalar, vector, or array by looking at the intermediate results.

APL operators take either one or two parameters; this allows us to use the simple graphic

representation of the last chapter. Later we will discuss the ordering of parameters for binary

operators.

4.3. THE MAIN MENU

Figure 4.2. Main menu.

The above figure represents the menu for the objects in the language. The first box is the

primary input box. The second icon represents an array, which can be attached to the initial

3

box so values can be plugged into it. The third is an output file box. On the second row, the

first icon represents an expression box. The next icon represents execution; when this icon is

pressed the program will execute. The final icon is a parameter box.

The normal process of program creation would start by clicking on the first icon, which would

create the initial input variable. The next icon to be pressed would be the array icon; before

doing that it may be necessary to change the default shape of the array. This is done with the

simple control panel at the top of the application:

Figure 4.3. Row and column panel.

This panel sets the size of the input matrix for the initial value of the function. When the array

icon is selected, a corresponding blank array will be shown with the number of rows and

columns shown in inverted video above:

Figure 4.4. Blank input array.

This is a blank 2 by 3 array. We can fill in the array with numbers by moving the mouse into

corresponding boxes. If we add a function box below the input box, we then can invoke the

function menu from inside the box:

4

4.4. THE FUNCTION MENU

Figure 4.5. Function menu.

This set of functions includes a set of APL primitives with some additions. If one of the

primitives, such as reduce, is known to take two arguments, a sideways parameter box will be

invoked.

In this case we pick the transpose operator, and execute the program:

Figure 4.6. Transpose.

The user creates and fills in the 2 by 3 array. The 3 by 2 array is generated automatically as

part of the execution.

5

4.5. PARAMETER ORDERING

With two-parameter non-commutative functions, it is important to be able to specify order. The

parameter on the left is assumed to be the first parameter. For example:

Figure 4.7. Parameter ordering example (2 - 7).

This is equivalent to (2 - 7). If we need (7 - 2), we invoke the function switch_params, which

will reverse the order. A 2 appears under the link to the parameter box:

Figure 4.8. Parameter ordering example (7 - 2).

4.6. OVERLOADING

In visual APL, as in APL, we can use an operator such as * on combinations of scalars,

vectors, and arrays, with sensible results. We show here (3 * 4):

6

Figure 4.9. Scalar * scalar.

If we change x to a vector 3 4 5 6 the function returns a vector:

Figure 4.10. Scalar * vector.

As a more complicated example, operations on arrays often produce vectors. Reducing a two-

dimensional array with multiplication results in a vector of results, one for each row in the array:

 Figure 4.11. The reduction of a two-dimensional array.

7

4.7. SET AND USE

Sometimes it is necessary to set aside a calculation and bring it back later. In order to

accomplish this in a language that is modeled after a linear string, we need to be able to break

the flow and use a previously calculated variable to start a new stream:

8

Figure 4.12. A variance calculation showing the setting and later use of a variable.

4.8. TESTING FOR PRIMES

Kamin includes as an example a simple APL-like way of testing for primes. We include it here

as a good example of how a visual front-end can make some of the concepts of APL clearer.

9

In order to test a prime, we generate the set of all possible divisors, take the mod of this vector

with respect to the number being tested, and then determine if anything divided evenly. We

present an example where the number is prime, followed by an example where the number is

not prime.

10

Figure 4.13. Primality test on the number 7.

Figure 4.14. Primality test on the number 8.

4.9. PRACTICAL USE

It is probably the case that an experienced APL programmer would not use this interface to

produce code. The experienced programmer gains from the compactness of the APL symbolic

representation. However, even experienced APL users have problems in reading code not

11

written by themselves; it is possible that a representation such as the one suggested here would

aid in understanding cryptic one-liner. An APL text representation can be expanded into a

visual APL diagram.

As a teaching tool for novice APL programmers or for students of programming languages, the

work shown here illustrates several concepts in a clear way. The functional bias of APL is

shown by the vertical stream convention of the overall graph. The concept of functionals is

shown by the feeding of functions into functions as parameters. And the origami-like

transformations of scalars, vectors, and arrays are illustrated through the display of intermediate

results.

4.10. CODE GENERATION

For the purposes of interface to an interpreter, every statement results in a variable called input

being set. Code generation for the primality test follows:

(set input (set pos_prime '(8)))

(set input (- input 2))

(set input (indx input))

(set input (+1 input))

(set input (mod pos_prime input))

(set input (<> 0 input))

(set input (and/ input))

12

It is also possible to generate a single APL function:

(and/ (<> 0 (mod n (+1 (indx (-n 2))))))

Logistically, the former code generation allows a simple interface into the interpreter that will

return a series of partial results usable in the display.

4.11. IMPLEMENTATION DETAILS

The program is coded in C. The user interface is coded in Sunview. The APL interpreter

comes from Kamin (1990). The APL interpreter was modified in the following ways - it was

modified into a subroutine rather than a main program, and traps were put in to capture results

in a vector of arrays that are returned to the calling program. This vector is used to generate the

data traces which are part of the visual display.

4.12. RELATED WORK

APL itself has a fairly visual, immediate feel. APL2 (J. A. Brown 1988) incorporates some

visualization ideas so that nested data structures can be viewed and understood. Spreadsheets

inspired the concept of editable array cells; an article by Ambler (1990) discusses extending

spreadsheets to a more abstract level.

