
80

 CHAPTER 3
 A SIMPLE VISUAL LANGUAGE

3.1. INTRODUCTION

In the previous chapter we surveyed the field of visual programming. In this chapter we create

a simple visual language and explore some of the problems that are encountered.

3.2. IDEAS BEHIND THE LANGUAGE

3.2.1. Currying and Parameters

In this language every function has at most two parameters, one of which is a function. Data

flows down the vertical axis, and functions or constants stream in from the horizontal axis.

FUNCTIONS

Figure 3.1. Data and function concept.

The flow of data is similar to the concepts used in the Unix operating system at the shell level,

where ASCII text files can be piped into individual applications and piped out into other

applications:

81

who | sort | uniq | head

When a command is entered at the shell level, the shell interpreter creates pipes that handle the

flow between the different programs. All the commands may be executing at once; in effect the

evaluation of the commands is lazy.

Many of the text processing functions of an operating system fall into the category of programs

that can be written as a sequence of interconnected commands. The shell of Unix was built to

make interconnection simple. All files were assumed to be of uniform type - newline-delimited

ASCII, with no headers.

The equivalent diagrammatic program would look like this:

82

who

sort

uniq

head

Figure 3.2. Simple pipes.

Many command functions take parameters. The function head will take a numerical argument.

We consider an argument to be a constant function, and feed it in from the left side of the

function box:

head10

Figure 3.3. Arguments as constant functions.

3.2.2. Visual Typing

PROBLEMS WITH THE SHELL

Some aspects of the shell are quirky:

grep xyz `ls`

will yield a search of all the files in the directory for the pattern xyz.

83

ls | grep xyz

will search the filenames, not the contents of the files, for the pattern xyz. In effect, the first

command is applying the function grep to all of the files. There is no clear way of indicating that

a function can be applied to a string of arguments, nor is there a clear way to use pipes to do

this.

In terms of types, we can conclude that pipes feed streams of characters, while parameters on

the command line will be interpreted as file names. The type of an object can be interpreted by

a command, which expects a certain sort of parameter, but not by a pipe, which expects only a

stream of characters.

In trying to generate shell code from a graphic description of pipes, the problems became

strongly visible. To aid both conceptualizing and coding, some form of typing system is needed.

A SIMPLE TYPE SYSTEM

The implied type expected by Unix text processing utilities is a sequence of lines. Programs that

work on sets of files are working on a sequence of a sequence of lines. Lines are delimited with

a line feed; files are not delimited, but the end-of-file is detected by the operating system.

We consider here a simple type hierarchy:

Type Name Description Example

directory a tree containing directories as

nodes and files as leaves

/usr/jeff/hyper

files a sequence of files hyper.ch1 hyper.ch2

84

file a sequence of lines hyper.ch1

line a sequence of words this is a line

word a sequence of chars this

char a primitive letter t

In the following examples we will only use the first three types - directory, files, file. We add

the type function. We can visually show the types of functions by keying the fill pattern of the

connectors. For example:

file

files

directory

function

cat genfiles

apply-to-all reduce grep

 Figure 3.4. Type system.

Cat is a function that takes a stream of files and produces one file. Genfiles traverses a

directory and generates all files that are the leaves of the tree. Apply-to-all takes files, applies a

function, and produces a single file. Reduce takes a function, applies it to a file, and produces a

file. Grep takes a file, applies a function, and produces a file. We discuss the application of

functions next.

85

3.2.3. Passing functions

In a functional model, the ability to combine functions, to pass them to other functions, is

central. As an example, a sort function is based on comparison; ideally, the comparison

function should be passable to the sort function. Likewise, the combining function apply-to-all

will take a function that operates on a type and apply it to a list of types. Reduce will take a

function and apply it to a list in such a way as to produce a single result. In the diagram model,

the functions would be passed in from the left of the central function:

genfiles

apply-to-allgrepxyz

.

 Figure 3.5. Functions as arguments to functions.

In the top box is a period; this is the Unix symbol for the current working directory. This

directory is fed into the command genfiles, which produces a stream of files for apply-to-all.

Apply-to-all applies the command grep xyz to all of the generated files, outputting those lines

which match the pattern xyz.

86

It is also possible to produce mathematical output using simple functional diagrams. The

following diagram computes the factorial function by generating a list of numbers, then reducing

the list through multiplication:

10

* reduce

APL-like index generator;
yields a sequence (1, 2, ... 10)

Reduce applies multiplication
to the integers fed to it, yielding
(1 * 2 *.. * 10) =10!

ι

Figure 3.6. Factorial representation.

3.2.4. Indexing sequences

In languages such as FP, the simplicity of passing only one parameter trades off against the

clumsiness of indexing into the one parameter, which is often a list of elements. Visual systems

have this problem as well.

In the language AWK, every line is considered a set of fields. The fields can be accessed using

a field number:

awk {print $1, $3}

will print the first and third fields of each line of the file that is input to it. In relational database

terminology, this is a project function. Arbitrary expressions can also be created:

awk {print $1 + $3}

will print the sum of the two fields for every line in the file. This convention of using a sequence

number is simple and powerful; we adopt it here as a convention. A graphic representation of

an awk-like command looks like this:

87

$1 < $2 $1

Figure 3.7. Awk representation.

This means that for every line in the file, we check to see if the first field is less than the second

field. If so, we output the first field. In database terminology, the conditional box is a select,

and the action box is a project.

3.2.5. Recursion

A tail-recursive function on an input stream will look the same as a conditional box. However,

the semantics are different. The input stream supplies the initial condition. The condition box

supplies the test for continuing recursion; if TRUE, then the calculation in the flow box is done

and the function is called again. For example:

Figure 3.8. Recursion.

88

1, 1, for the first two numbers in the sequence. The initial counter starts at 2, as the next

solution will be the third number in the sequence.

Note that neither this nor the previous program handle error generation if the input is undefined,

as in a negative number. They will simply produce the initial values.

$1 + $2 $1 $3 + 1 $4$3 < $4

$11 1 2

5

Figure 3.9. Fibonacci.

Code generation is addressed in section 3.3.2., yet it is instructive to show here the SASL-like

code generated from the above diagram:

89

(set datainput '((1 1 2 5)))
(set action0 (lambda (l)
 (list4 (+ (nth 1 l) (nth 2 l))
 (nth 1 l)
 (+ nth 3 l) 1)
 (nth 4 l))))
set recfunc0 (lambda (l)
 (if (< (nth 3 l) (nth 4 l))
 (recfunc0 (action0 l)) l)))

(set result (mapcar recfunc0 datainput))
(force result)
result

Note that generation of this program is relatively simple; we have a template for a tail-recursive

call, and simply fill in the condition and the actions. As an implementation detail, we default to

taking lists of lists, so the function is invoked with a mapcar. Since evaluation is lazy, we force

it.

3.3. THE PROTOTYPE

3.3.1. User Interface

The interface is mouse driven, with textual and iconic menus. In many cases the drag-and-drop

convention is used - a textual object can be selected and dragged into a function box; the

object is now bound to the function. The filenames shown are objects that can be dropped into

functions, specifically into the input box and output box functions. The bottom part of the

screen will display the output file on completion of processing.

90

generate text clear

. ..
outfile genfiles
nums numgen

zoom box - shows next level up in H-graph

files in current directory

workspace

program output

Figure 3.10. User interface layout.

91

H-GRAPH STRUCTURE

In order to keep every diagram simple, the concept of an H-graph is used. Every function

potentially has a graph underlying it, that can be accessed from a zoom command. The parent

of a graph can be seen through an unzoom command. In terms of the interface, a clue as to the

level in the hierarchy is given by a miniature version of the parent graph in a small box in the

upper left.

Fi
gure 3.11. User interface zoom for H-graphs.

The initial graphic menu contains the boxes shown below:

92

r e c u r a w k ι

Figure 3.12. Graphic menu.

On the top left is the function box; to its right are the output and input boxes. At the far right is

the parameter box. On the bottom row on the far left is the recurrence box; when pressed it

will also generate a recursion condition box to its left. The next box is an awk box; it will also

generate a condition box. Awk is identical to recur except that on success it does not call itself;

it just passes the information on. The box with the ι in it is an index generator. To its right is the

constructor box, which will take a set of parameters and construct a list. On the far right is the

execution button.

The next figure (3.13) shows the two sets of graphic menus available. When the mouse position

is in the gray area as shown in the left screen, outside of any function, then the menu that comes

up is that show in detail in Figure 3.12. This allows new function boxes to be added to the

existing graph. The right screen shows that when the mouse position is inside a function box,

the menu shown is one with the already defined functions of the system. In addition, there are

zoom and unzoom buttons to move to the parent or child of the particular function the mouse is

contained in. The individual functions on the screen are shown with their text names and types

as in Figure 3.4.

93

zoom

unzoom

Fi
gure 3.13. Use of menus.

3.3.2. Code Generation

A central issue in any high-level language design is what code it will generate. The visual

language shown here has at different stages generated different code. The different languages

generated and the problems encountered are detailed below.

BOURNE SHELL

The initial implementation of this system generated only shell commands, which were then

executed using the system command from within the program. This approach has several

advantages. The shell is interpreted, so the execution of the generated program is

instantaneous. Also, the features of the shell are well suited to linking commands together. And

finally, the tools of Unix serve as a good base of functions to interconnect.

94

One of the problems of shell generation has already been discussed; the nonexistent typing

system makes the generation of commands difficult. Also, even though there are many existing

functions needed, new ones will be needed, and the shell language itself is not functional.

Finally, the invocation of shell commands relinquishes monitoring or tracing control; there is no

way of watching the calculations happen as there might be with a built-in interpreter.

AWK

In order to build more complicated filters and achieve simple database power, awk was

generated as a second stage in the code generation. Awk provides a simple way of filtering

fields, and is relatively succinct and powerful. It is also an interpreter. However, like the shell, it

has no typing, and as it is forked off, the parent program has little tracing or control capability.

Additionally, awk is not a functional language. It allows assignment. It also has a concept of pre

and post filtering. Using the keyword BEGIN, one can specify an operation that occurs before

the input is filtered, such as initializing variables. Using the keyword END, one can specify an

operation that occurs after the input is filtered, such as the printing of accumulated data.

Implementing these concepts are difficult in a functional framework.

SASL

The current version of the program outputs a hybrid of shell (to handle files) and SASL (to do

calculations). The version of SASL we use is not full; it uses prefix notation, and does not allow

for ZF notation.

We picked SASL for both theoretical and practical reasons. Theoretically, it is a full functional

language with lazy evaluation. Lazy evaluation is perfect for working with streams, although we

have not taken advantage of laziness in the examples shown. Practically, source for the

95

interpreter is available, and simple enough to modify. As a result the execution of a program

can be traced and graphically shown, and that error conditions can be trapped and responded

to.

3.3.3. Alternate Approaches to Indexing

Sequence numbers have little mnemonic power; for example remembering if field 3 or field 4 in

a list is the cost of an item is sometimes difficult. Relational databases handle this by binding

names rather than numbers to columns. In the case of a visual languages, the underlying tables

can be shown to prevent confusion, and the actual element of a prototype list can be picked to

make the process simpler.

In some visual languages, dataflow diagrams are used to create expressions. This has the

advantage of taking away the indirect component of field numbers or names. However,

planarity problems are often introduced. If an expression is complicated, the result is either a

tangle of lines or the creation of some symbolic convention to overcome the planarity problem.

3.4. IMPLEMENTATION DETAILS

The program is coded in C. The SASL interpreter comes from Kamin. The user interface is

coded in Sunview.

The prototype sometimes adds a level of hierarchy that cannot be shown in the diagrams. As

an example, the recur and awk functions are displayed initially with the words recur and

awk; when zoomed in on the actual actions and conditions can be programmed.

96

condition

infile

recur

(* $1 2) (+ $2 1) $3(< $2 $3)

ZOOM

Figure 3.14. Hierarchy of representation.

3.5. NOTES

Much of the related work was discussed in the survey of the previous chapter. In particular, the

work of Pratt (1971b) is the source of the H-Graph convention. The streams ideas come

mainly from Unix; the Kernighan and Pike text (1984) is clearly describes Unix thinking.

For the functional interpreter, the book by Kamin(1990) was used; corresponding source was

obtained off the Internet and modified for the prototype. Kamin provides a succinct summary

of SASL and the reasons for creating a simple interpreter around it.

