80

CHAPTER 3
A SIMPLE VISUAL LANGUAGE

3.1. INTRODUCTION
In the previous chapter we surveyed the fidd of visud programming. In this chapter we create

asmple visud language and explore some of the problems that are encountered.

3.2. |DEASBEHIND THE LANGUAGE
3.2.1. Currying and Parameters
In this language every function has & most two parameters, one of which is a function. Data

flows down the verticd axis, and functions or constants stream in from the horizonta axis.

:
||
FUNCTIONS
— 1l
| I

Figure 3.1. Data and function concept.
The flow of data is smilar to the concepts used in the Unix operating system &t the shell leve,
where ASCII text files can be piped into individua applications and piped out into other

gpplications

81

who | sort | uniq | head

When acommand is entered a the shell leve, the shell interpreter creates pipes that handle the
flow between the different programs. All the commands may be executing a once; in effect the

evauation of the commandsis|lazy.

Many of the text processing functions of an operating system fdl into the category of programs
that can be written as a sequence of interconnected commands. The shell of Unix was built to
make interconnection smple. All files were assumed to be of uniform type - newline-ddimited

ASCII, with no headers.

The equivdent diagrammeatic program would look like this

82

sort

uniq

head

Figure 3.2. Simple pipes.
Many command functions take parameters. The function head will take a numerica argument.

We congder an argument to be a congtant function, and feed it in from the left sde of the

10 _ head

Figure 3.3. Arguments as constant functions.

function box;

3.2.2. Visua Typing

PROBLEMSWITH THE SHELL
Some aspects of the shell are quirky:
grep xyz 'Is’

will yidd asearch of dl thefilesin the directory for the pattern xyz.

83

s | grep xyz
will search the filenames, not the contents of the files, for the pattern xyz. In effect, the first
commeand is gpplying the function grep to dl of thefiles. Thereis no clear way of indicating thet
a function can be applied to a string of arguments, nor is there a clear way to use pipes to do

this.

In terms of types, we can conclude that pipes feed streams of characters, while parameters on
the command line will be interpreted as file names. The type of an object can be interpreted by
a command, which expects a certain sort of parameter, but not by a pipe, which expects only a

stream of characters.

In trying to generate shell code from a graphic description of pipes, the problems became
srongly visble. To ad both conceptudizing and coding, some form of typing system is needed.

A SIMPLE TYPE SYSTEM
The implied type expected by Unix text processing utilities is a sequence of lines. Programs that
work on sets of files are working on a sequence of a sequence of lines. Lines are ddimited with

alinefeed; filesare not ddimited, but the end-of-file is detected by the operating system.

We consider here asmple type hierarchy:

Type Name Description Example

directory a tree containing directories as | /usr/jeff/hyper

nodes and files as |eaves

files a seguence of files hyper.chl hyper.ch2

84

file a sequence of lines hyper.chl
line a sequence of words thisisaline
word a sequence of chars this

char aprimitive letter t

In the following examples we will only use the firg three types - directory, files, file. We add

the type function. We can visudly show the types of functions by keying the fill pattern of the

connectors. For example:

cat

‘ apply-to-all

Figure 3.4. Type system.

genfiles

‘ reduce

o
B fies
B diecoy
. function

‘ grep

Cat is a function that takes a stream of files and produces one file. Genfiles traverses a

directory and generates dl files that are the leaves of the tree. Apply-to-all takesfiles, gppliesa

function, and produces a sngle file. Reduce takes a function, gppliesit to afile, and produces a

file Grep takes a file, gpplies a function, and produces a file. We discuss the gpplication of

functions next.

85

3.2.3. Passngfunctions

In a functiona modd, the ability to combine functions, to pass them to other functions, is
centrd. As an example, a sort function is based on comparison; idedly, the comparison
function should be passable to the sort function. Likewise, the combining function apply-to-all
will take a function that operates on atype and gpply it to a list of types. Reduce will teke a
function and gpply it to alist in such away as to produce a single result. In the diagram modd,
the functions would be passed in from the left of the centrd function:

genfiles

Xyz i grep ‘ apply-to-all

Figure 3.5. Functions as argumentsto functions.

In the top box is a period; this is the Unix symbol for the current working directory. This
directory is fed into the command genfiles, which produces a stream of files for apply-to-all.
Apply-to-all applies the command grep xyz to dl of the generated files, outputting those lines
which match the pattern xyz.

86

It is ds0 possble to produce mathematicd output usng smple functiond diagrams. The
following diagram computes the factorid function by generating alist of numbers, then reducing
the lig through multiplication:

. APL-like index generator;
10 | yields a sequence (1, 2, ... 10)
Reduce applies multiplication
* reduce to the integers fed to it, yielding
(1*2*.*10)=10!

Figure 3.6. Factorial representation.

3.2.4. Indexing sequences
In languages such as FP, the smplicity of passng only one parameter trades off againg the
clumsiness of indexing into the one parameter, which is often alist of dements. Visud sysems

have this problem as well.

In the language AWK, every lineis considered a st of fields. The fields can be accessed using
afidd number:

awk {print $1, $3}
will print the first and third fields of each line of thefile that is input to it. In relaiona database
terminology, thisis aproject function. Arbitrary expressons can aso be created:

awk {print $1 + $3}
will print the sum of the two fieds for every linein the file. This convention of usng a sequence
number is smple and powerful; we adopt it here as a convention. A graphic representation of

an awk-like command looks like this:

87

$1<$2 _‘ $1

Figure 3.7. Awk representation.

This means that for every linein the file, we check to seeif the fird field is less than the second
fidd. If so, we output the firgt field. In database terminology, the conditiona box is a select,

and the action box isaproject.

3.25. Recursion

A tal-recursve function on an input stream will look the same as a conditiona box. However,
the semantics are different. The input stream supplies the initid condition. The condition box
supplies the test for continuing recursion; if TRUE, then the caculation in the flow box is done
and the function is called again. For example:

Figure 3.8. Recursion.

88

1, 1, for the first two numbers in the sequence. The initid counter starts a 2, as the next

solution will be the third number in the sequence.

Note that neither this nor the previous program handle error generation if the input is undefined,

asin anegdive number. They will Smply produce the initid vaues.

$3<$4 “ $1+$2 $1 $3+1 $4

Code generation is addressed in section 3.3.2,, yet it isingtructive to show here the SASL-like

Figure 3.9. Fibonacci.

code generated from the above diagram:

89

(set datainput '"((1 1 2 5)))
(set actionO (lanbda (I)
(listd (+ (nth 2 1) (nth 2 1))

(nth 1 1)
(+ nth 3 1) 1)
(nth 4 1))))

set recfuncO (lanmbda (1)
(if (< (nth 3 1) (nth 41))
(recfuncO (action0 1)) 1)))

(set result (mapcar recfuncO datai nput))
(force result)
result

Note that generation of this program is relatively smple; we have atemplate for atail-recursive
cdl, and smply fill in the condition and the actions. As an implementation detail, we default to
taking ligs of ligs, so the function is invoked with a mapcar. Since evduation is lazy, we force

it.

3.3. THEPROTOTYPE

3.3.1. User Interface

The interface is mouse driven, with textua and iconic menus. In many cases the drag-and-drop
convention is used - a textua object can be sdected and dragged into a function box; the
object is now bound to the function. The filenames shown are objects that can be dropped into
functions, spedificdly into the input box and output box functions. The bottom part of the

screen will display the output file on completion of processing.

90

@enerate text) (clear)

zoom box - shows next level up in H-graph

outfile genfiles
nums numgen

files in current directory

workspace

program output

Figure 3.10. User interface layout.

91

H-GRAPH STRUCTURE

In order to keep every diagram smple, the concept of an Hgraph is used. Every function
potentialy has a graph underlying it, that can be accessed from a zoom command. The parent
of agraph can be seen through an unzoom command. In terms of the interface, aclue asto the

levd in the hierarchy is given by a miniature verson of the parent graph in a smdl box in the

upper left.
— — - -]
[Y R

1]

| o | |

JUL

Fi

gure 3.11. User interface zoom for H-graphs.

Theinitid graphic menu contains the boxes shown below:

92

- n .
. .

Figure 3.12. Graphic menu.

On the top left is the function box; to its right are the output and input boxes. At the far right is
the parameter box. On the bottom row on the far Ieft is the recurrence box; when pressed it
will also generate a recursion condition box to its left. The next box is an awk box; it will aso
generate a condition box. Awk isidentical to recur except that on success it does not cal itsdlf;
it just passes the information on. The box with thei initisanindex generator. Toitsright isthe
congtructor box, which will teke a set of parameters and congruct a list. On the far right is the

execution button.

The next figure (3.13) shows the two sets of graphic menus available. When the mouse position
isin the gray area as shown in the left screen, outside of any function, then the menu that comes
up is that show in detall in Figure 3.12. This dlows new function boxes to be added to the
exiging graph. The right screen shows that when the mouse postion is ingde a function box,
the menu shown is one with the aready defined functions of the system. In addition, there are
zoom and unzoom buttons to move to the parent or child of the particular function the mouseis
contained in. Theindividud functions on the screen are shown with their text names and types

asin Figure 34.

93

< oSO

zoom | [&

unzoom r ‘

[

Fi

gure 3.13. Use of menus.

3.3.2. Code Generation
A centrd issue in any high-leve language design is what code it will generate. The visud
language shown here has at different stages generated different code. The different languages

generated and the problems encountered are detailed below.

BOURNE SHELL

The initid implementation of this sysem generated only shel commands, which were then
executed usng the system command from within the program. This gpproach has severd
advantages. The shell is interpreted, so the execution of the generated program is
indantaneous. Also, the features of the shell are wdl suited to linking commands together. And
findly, the tools of Unix serve as agood base of functions to interconnect.

94

One of the problems of shell generation has dready been discussed; the nonexistent typing
sysem makes the generation of commands difficult. Also, even though there are many existing
functions needed, new ones will be needed, and the shdl language itsdlf is not functiond.
Findly, the invocation of shell commands relinquishes monitoring or tracing control; there is no
way of watching the calculations hgppen as there might be with a built-in interpreter.

AWK

In order to build more complicated filters and achieve smple database power, awk was
generated as a second stage in the code generation. Awk provides a smple way of filtering
fidds, and is rdatively succinct and powerful. It isaso an interpreter. However, like the shdl, it
has no typing, and asit isforked off, the parent program haslittle tracing or control capability.

Additiondly, awk is not afunctiona language. It dlows assgnment. It aso has a concept of pre
and pog filtering. Using the keyword BEG N, one can specify an operation that occurs before
the input is filtered, such as initidizing variables. Using the keyword END, one can specify an
operation that occurs after the input is filtered, such as the printing of accumulated data

Implementing these concepts are difficult in afunctiond framework.

SASL
The current version of the program outputs a hybrid of shell (to handle files) and SASL (to do
cdculaions). Theverson of SASL we useisnot full; it uses prefix notation, and does not alow

for ZF notation.

We picked SASL for both theoreticd and practicd reasons. Theoreticdly, it isafull functiond
language with lazy evduation. Lazy evduation is perfect for working with streams, dthough we

have not taken advantage of laziness in the examples shown. Practicdly, source for the

95

interpreter is available, and ample enough to modify. As a result the execution of a program
can be traced and graphicaly shown, and that error conditions can be trapped and responded

to.

3.3.3. Alternate Approachesto Indexing

Sequence numbers have little mnemonic power; for example remembering if fidd 3 or fidd 4 in
alig is the cogt of an item is sometimes difficult. Rdaiond databases handle this by binding
names rather than numbers to columns. In the case of a visud languages, the underlying tables
can be shown to prevent confusion, and the actua eement of a prototype list can be picked to

make the process smpler.

In some visud languages, dataflow diagrams are used to create expressons. This has the
advantage of taking away the indirect component of fiedd numbers or names. However,
planarity problems are often introduced. If an expresson is complicated, the result is ether a

tangle of lines or the creation of some symbolic convention to overcome the planarity problem.

3.4. IMPLEMENTATION DETAILS
The program is coded in C. The SASL interpreter comes from Kamin. The user interface is
coded in Sunview.

The prototype sometimes adds a level of hierarchy that cannot be shown in the diagrams. As
an example, the recur and awk functions are displayed initidly with the words r ecur and

awk ; when zoomed in on the actual actions and conditions can be programmed.

96

infile

condition .‘ recur

ZOOM

(<$2%$3) .‘ *$12) (+$21) $3

Figure 3.14. Hierar chy of representation.

3.5. NOTES

Much of the related work was discussed in the survey of the previous chapter. In particular, the
work of Pratt (1971b) is the source of the HGraph convention. The streams ideas come
mainly from Unix; the Kernighan and Pike text (1984) is dearly describes Unix thinking.

For the functiona interpreter, the book by Kamin(1990) was used; corresponding source was
obtained off the Internet and modified for the prototype. Kamin provides a succinct summary

of SASL and the reasons for creating asimple interpreter around it.

