CHAPTER 2
A SURVEY OF VISUAL PROGRAMMING

2.1. INTRODUCTION

The fidd of visud programming has been active snce 1969, and many different systems have
been built to both create and visudize computer programs. Our god in this chapter isto identify
and examine the most important of these systems. It will become clear that dl systems are

drawing on acommon set of visua conventions.

We find that an understanding of diagramming gives ingghts that will be useful in later chapters
when we discuss the limits of graphic representation. Therefore this survey includes many
examples of diagrams from the computer science literature, as well as examples of work in the
field of visud programming. We have aso defined the set of conventions that recur in al

computer science diagrams.

2.1.1. Terminology
Shu (1988) defines Visud Programming as.

The use of meaningful graphic representation in the process of programming.

This definition istoo generd - we suggest:

The use of diagramsin the process of programming



For diagram we start with James Maxwd|'s definition (Encyclopedia Brittanica, 11th edition):

afigure drawn in such a manner that the geometrical relations between the parts of the
figure illustrate rel ations between other objects.

To be more accurate, we change the term geometrical relations to geometrical or
topological relations, asin mos of the diagrams shown here, it is connections rather than

distances that are sgnificant.

We contrast graphic representation with textua representation, which may name relations, but
does not illugtrate them. Other texts make the point that visud programming makes use of two
dimensions, while textua representation makes use of one. Y et the dimensiona distinction does
not communicate what we regard as the main difference - adiagram shows rdations, while a
text names them. In abasic sense it is the difference between a visud mode of expresson and

amode of expression that, of al our senses, is closest to the auditory.

The process of programming includes both the visud creation of programs and the
visuaization of programs executing. These two fields share many of the same problems, such as
how to represent data structures. We believe that the visud creation of programs is the harder

problem of the two, and put much of our concentration on this area.

2.1.2. Major Sources

There are five important source books relating to the topic. The first is Shu (1988), a book-
length survey of the field with many diagrams and illugtrations. The second book is a Springer-
Verlag Lecture Notes in Computer Science, caled Visualization in Programming, edited by
Gorney (1986). The third is a book edited by Chang (1986). Two collections of papers



contain many of the notable artices in the fidd: Visual Programming Environments:
Applications and Issues, and Visual Programming Environments. Paradigms and

Systems, both by Ephraim P. Glinert (1990).

The Ph.D. theses by Raeder (1984), Glinert (1985), Brown (1987), and Curry (1978) dl
contain survey chapters. There is a specia issue of Computer devoted to the topic (August

1985). The Internet news group comp.lang.visua contains announcements and current debate.

In the realm of diagrams, the observations here are influenced by the thinking of Peirce (1934)
and Nadin (1984). Also, the work of Tufte (1983) is an important source for clear thinking

about graphic representation.

2.1.3. Higory

Visud programming, like much ese in computer science, has a reatively short direct higtory.
Yet the visud pat of visud programming owes much to conventions for representing
information that go back much longer. As our later discusson will involve issues of
representation, we now take a short ook at the history of diagrams, then discuss the origination

of visud programming.

2.2.1. HISTORY OF DIAGRAMS

The earliest abdract illugtrations are maps. Maps as navigation tools are rooted in a metric
space, meaning that there is a relationship between the physical distance between two locations
in the world and the physical distance between the representations of the locations on paper.
Yet maps by their nature absiract out detail. Roads are often represented as straight lines,

rather than pairs of curved lines. Coastlines are abbreviated. The concept of mapping extends



to the fidd of medicd illugration, where the terrain of the human body is absracted and
mapped.

Geometric diagrams dso have along history. Manuscripts containing proofs with diagrams of
the Pythagorean theorem exist from the time of the ancient Greeks. These diagrams are dso
based on a concept of metric space, intended to prove theorems concerning distance in
Euclidean space. Descartes Cartesian coordinate system in the 17th century rationdized the
use of grgphs in andytic geometry. And scientific discoveriesin physics and chemistry resulted
inincreasingly abdract diagrams.

The history of topologica diagrams is difficult to trace. Tree hierarchies show up in the middle
ages as a way of documenting lineege. Religion and cosmology of the middle ages and
renaissance made great use of diagrams, including graphs, to show the relaionships between
concepts. Gardener (1982) and Yates (1982) document the combinatorial diagrams of
Raymond Lull in the 13th century. In the Renaissance, the rediscovery of Greek thought
resulted in many diagrams of philosophicd and scientific concepts, as in the following
illugration.

Figure 2.1. Sixteenth century representation of the four basic elements. The qualities the
elements share are labeled in the edges. Opposites are joined by the unlabeled edges. From
Charles de Bouelles, Liber de generatione. Reproduced from Heninger (1977).



In the 19th century, the work of Boole inspired the invention of Venn diagrams. Also in that
period, Charles Peirce proposed extensions to these diagrams and invented his own system
known as exigentid graphs. Notwithstanding the 18th century graph-theoretic discoveries of
Euler, it has been in this century that the explosion of abstract mathematics has resulted in the
proliferation of tree and graph representations. Now, even subway routes are represented as

topologicd diagrams rather than metric maps.

THE ORIGINS OF VISUAL PROGRAMMING

Flowcharts are the first and best known diagrams of software. Goldgtine (1972: 266) clams he
created the first flowchart for computers in 1947, while he was working with VVon Neumann.
Yet these early charts were entirely decoupled from the computer itsdlf. It wasn't until the

creation of graphic display technology in the 1960s that such a coupling became possible.

W. Sutherland, in 1966, created the firs interactive visud programming language:
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Figure 2.2. Sutherland's diagram for calculating a square root. Reproduced from Curry (1978).

L guess

As we will seg, it is notable how much current visua programming systems gill resemble this
firs example of Sutherland's. In 1969, researchers at Rand created a language based on
flowcharts (Ellis 1969).



Starting in the early 1970s, researchers at Xerox Parc crested the first visud programming
environments. Bitmapped graphics, mice, and window systems can  be mainly credited to this
research laboratory. The culmination of the work came in the form of Smalltalk, an operating
systemv/programming  environment/programming language (Goldberg 1983). The present
graphic user interfaces differ little in concept from the Xerox Parc vison. In the 1980s, Apple
Computer, Sun Microsystems, and M.I.T. (X Windows) spread graphic user interfaces to
researchers and consumers; recently, the creation of working windowing systems for PCs
(Microsoft, IBM, NeXT) has created a flurry of systems based on graphic user interfaces. In
the language redm, a commercia verson of PROGRAPH exigts on the Macintosh platform.

THE VISUAL BASIC PHENOMENON

When many think of visud programming languages, the immediate association is to Visud
Basic, aMicrosoft product. By our definition, it is not apurely visud language. Insteed of being
based on diagrammatic representation, its underlying language is an enhanced textud version of
the Basic language. In front of this textua language is a well-thought-out graphic user interface,
which alows the programmer to construct windows and dl their corresponding components
such as buttons, dider bars, and menus, by selecting graphic icons and dragging them onto a
graphic representation of a window. The programmer then writes textua source code
fragments that are essentially event handlers for the different possible mouse and keyboard
events. This code is linked to the graphic representation of the window, so that insteed of
scralling through long files of source, a programmer can access relevant code by clicking on a
physical location. In other words, the interface provides, first of al, away of congructing the
framework of a user interface by manipulating graphic objects, and, second of al, a way of
spatidizing access to the textua code that needs to be written. Part of the success of Visud
Basc is the flainess of the language - many verbs are provided, and many software vendors

have been encouraged to create modules that add more verbs. As we will discussin chapter 7,



the hybrid nature of Visuad Badc, dong with the flainess of the language, are good design
decisions that alow graphic representation to be used in a productive way. But what we are

searching for here is whether amore extreme language that is purely diagrammatic is possble,

Visud basc is one among many emerging graphic user interfaces oriented toward
programmers. Microsoft makes Visud C++, a graphica user interface closely coupled with a
C++ compiler. Borland and PowerSoft dso make products which use visud conventions in a
way smilar to Visud Basc. Computer-Aided Software Engineering (CASE) companies such
as Cadre and IDE have been making visua tools for many years, and are now taking
advantage of the current interest in object-oriented notations to widen the availability of their
products.

2.2.  SOFTWARE DIAGRAMMING TECHNIQUES
In this section we discuss the main type of software diagrams. These types form the basisfor dl

visud programming sysems.

2.2.1. Diagramdigtinctions
Diagrams portray associations. Associations can be made in three different relms metric,
topologica, and symbolic. When we refer to diagrams, we are for the most part referring to

associations made in topologica space. Y et eements of the other realms are often involved.

Associations in metric space can happen by proximity, as when two cities close on a map are
said to somehow be related. In computer systems, above the hardware level, Euclidean space

is usudly unimportant. But metric gpace does not have to Euclidean - we can use other scales,



the only condraint being some quantitative continuity dong a scae. So, as an example, timing
diagrams make use of a time metric dong the X axis. The teds for a diagram with metric
quaities are first, whether there is an implicit scde on ether axis, and second, whether

modifying pogitions without modifying connectivity results in achange in meaning.

Much more common in software diagrams are associations in topological space. In such
diagrams, elements can be imagined joined by rubber bands, and can be dide and stretched
without changing meanings. Within topologica diagrams associations can happen in three ways.
Weillustrate this by showing how nodes A and B can be shown to be associated.

The firs method is adj oinment:

A|B

where A and B are cdlsthat physicaly adjoin - that share aside.

The second method is linkage:

where A and B are nodes that are explicitly linked by an edge. Adjoinment can be seen asa
degenerate case of linkage - the nodes are so close that the edge cannot be drawn. All graphs

and trees are forms of linkage diagrams.

The third method is contai nment:

ALB]




where one node is contained within another. Containment is most often used to indicate set
relationships, as with Venn Diagrams. Containment can be trandated to a linkage graph by
using adirected edge from the contained node to the container node. This edge can be labeled

ispart of, or is contained by.

Besdes the metric and the topologica, association can dso be represented through the

symbalic. Using the partidly visud mechanism of amairix, A and B can be linked:
A B

o

But the most common way and generd way of making an association in the symboalic reelm is
through naming:

link(a, b).
Any graph can be represented symbolicdly as a textua list of nodes and edges. And many

recursive or infinite structures can only be fully represented in the symbolic redm.

Within the topologica redm, it is useful to distinguish between trees, DAGs, graphs, and
bipartite graphs. In mogt grephlike diagrams, nodes may be of different types, often
digtinguished by shape. Nodes are often labeled. Edges may be directed and undirected, and
may aso have type, distinguished by either line weight, dottedness, or termination shapes such
as arrowheads. Edges are often labeled. Armed with these digtinctions, we look at the mgjor

ways diagrams are used to portray software.

2.2.2. Flowcharts
Flowcharts are topological, graph-based condtructions that often are filled in with program text.
The contral logic of the program is shown through smple branches and loops:
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Figure2.3. Flowchart example from Shooman (1983).
In some software methodologies, flowcharts are generated by andysts as a specification to
programmers, who then convert the charts into source code. In other cases, flowcharts are

generated after the fact, either by hand or automaticaly.
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The usefulness of flowcharts has been hotly debated. Fowcharts for large systems tend to get
large and messy, as decisions can have many branches. In order to work around this problem,
extensons to flow charts alow for charts to be terminated and then resumed on different
pages. Y et, since flow charts require loops to show return arrows, a program with many loops

requires return arrows that may span many pages.

2.2.3. Structurediagrams

A dructure diagram is a hierarchica, modular breskdown of a program. Between levels on the
tree, there are links, with symbols to indicate the sort of information that is being passed back
and forth:
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Figure2.4. A structure diagram from Martin (1985).

These structures are represented either as trees or as directed acyclic graphs (DAGS). The

sructure chart is usudly the end result of the activity known as structured andys's, in which the

functions of a system are partitioned in a top-down manner. Note the diagrams are purely

topologicd, with labeled edges and nodes. Note aso the difficulty apparent in labding the

edges of such aDAG, even on an smdl example such as the one shown.
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2.2.4. SoftwarelLeve charts
At a higher levd, the functions of a sysem are often thought of in layers, resulting in the
following type of diagram:

Application

Motif

X-Lib DB APl

Unix APl

Unix Operating System

Figure2.5. Layer diagram.
This diagram represents that, for this system, an gpplication can access Matif, X-Lib, aDB
API, and a Unix API. If a layer adjoins a layer below it, then it is dlowed to access that

adjoining layer.

This sort of diagram will only work on smple access schemes. More complex schemes will
result in a complex graph that cannot be represented with adjoining regions. The problem is

reducible to a planarity problem by consdering regions as nodes and adjoinment as edges,

three gpplications that al can access three libraries is equivaent to a K33 graph, known to be

non-planar.

2.2.5. Structurewith Trees. Warnier-Orr diagrams
Many structured andyss techniques result in trees being generated. An dternate way to

represent trees is shown by Warnier-Orr diagrams.
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Figure 2.6. A tree structure with its corresponding Warnier-Orr Representation. Reproduced from
Martin(1985).

Instead of the root being at the top, as in a norma tree-structure breakdown, the root is
indicated in the far |eft corner, and each succeeding column is a a lower level in the tree. And

the use of boxes and linesis reduced. It is possble to produce a Warnier Orr structure entirely
without lines:

Figure2.7. Simplified Warner-Orr Diagram.

congdtitutes a Warnier-Orr tree representation of the three leftmost subnodes of A in figure 2.6.

Boxes around the nodes and lines between the nodes are understood - the location of the |etter
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in space impliesitslevd in atree sructure. Essentialy, when programmers indent code to show

nesting structure, a Warnier-Orr convention is being used.

2.2.6. Tree-based Variants of Flowcharts

2.2.3. ROTHON DIAGRAMS

Rothon diagrams attempt to resolve the problems of flowcharts. Rothon diagrams treat 1oops
as objects without an arrow back to the top of the loop. Hierarchy is shown by moving left to
right through a refinement of the diagram (Brown 1983).

OOF
CONDITION

LooP

N

Figur e 2.8. Rothon Diagram. From Brown (1983).

2.2.4. DIMENSIONAL FLOWCHARTING
Witty (1977) outlines a flowcharting method very smilar to Rothon diagrams. Sequentiad flow
is shown dong the verticd axis, and parale congructs are shown aong the horizonta axis. In

other words, there is Smultaneous control flow aong horizontd lines.
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Figure 2.9. Dimensiona Flow Chart. From Witty (1977).
Diagond lines are used to show refinement to lower levels of the hierarchy. One feature of the
diagrams is that, on paper, they can be folded up aong refinement lines. When one wants to
see detail, one unfolds around the statement, giving detall. To insert detal into the paper, one

cuts the diagram and insert anew piece.

All flow chart techniques are topologicd, link-based structures. In dmost al cases, they rely on
textua programming language statements for conditions and assgnment statements. The classic
flow chart usudly a farly sparse graph, with most nodes having ether one or two outgoing
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edges. Back edges in the graph are dways from loop statements - a loop is the visud

equivaent of a branch ingruction to an previous program statement. A variety of different node
shapes are used to indicate different forms of computer statement. Each statement in a
language, or at least each statement block, has its own box. For the most part, the charts flow

from top to bottom.

2.2.7. State Trandgtion Diagrams

State trangtion diagrams are well known in computer science as originaing from the study of
finite automata. Trangtion diagrams are used for modeding a variety of event-based computer
science domains, including parsing, user interface design, and circuit design. At the gpplications
level, they are used to represent transaction flows, appliance controls, marketing scripts, etc.
Edges represents trangtions from dtate to State that occur as a result of an input symbol being

read.

Figure 2.10. Finite State Automata. From Johnsonbaugh (1984).
State trangition diagrams tend to look more graph-like than flow charts, meaning that there is
usudly no predefined axis in the diagram. Also, the degrees of nodes can vary widdy,
depending on the gpplication. With the exception of specia symbols for start nodes and
termination nodes, al nodes are the same shape. Nodes and edges are both labeled.
Termination nodes are often indicated by two concentric circles - thisis to be considered a

different type of node, not an instance of containment.
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As date diagrams become large, the chances of the diagram being planar decreases.
Therefore, large state diagrams are unwieldy, with much attention being required to properly
space nodes and edges o that |abels can be read unambiguoudy. Using the convention of H-
graphs (see section 2.3.1), some of this complexity can be handled:

f Transmission push R \

Neutral push N Reverse

push N push F

Forward
stop /7 \__ upshift ™\ _ upshift _
& \First | gownshitt \5€€0Nd] gownshift \ Third

/

This diagram uses a convention devised by Hardl (1987) cdled State Charts, in which a date

o

Figure 2.11. State Chart from Rumbaugh (1991).

such as Forward above, can contain other states, such as First, Second, Third.

2.2.8. Nassi-Shneiderman diagrams
In this sort of diagram, hierarchy is shown using the conventions of enclosure and adjacency.

The figure below shows the Nassi- Schnelderman representation and the equivaent flow chart.
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[ sa] IFi2 S2
TRUE
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s4 I S5
S3
FALSE S8
[55] <L22>
WHILE L2
TRUE
[se] S7
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Figure2.12. Flow Chart vs. Nassi Schneiderman diagram. From Shu (1988).
Decisons are shown by splitting the line into three smdler, pardle boxes. Loops are shown by

enclosing abox in alarger box labeled with the loop condition.

As with other adjoinment-based conventions, there is a limit on what they can represent. The
early termination of loops and multiple conditionas of some languages can be combined in

ways that cannot be represented by these graphs.

2.2.9. Cdlsand arrows
In a combination of adjoinment and link-based conventions, data structures are often showed

as adjacent memory locations linked by pointers:

(@D 3 4)—»5:5———-» nn
1 2 4
v

Figure 2.13. Cell and arrow diagram. From Abelson(1985).
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Mogt often this is used for teaching or for program documentation. In programming the
meanipulation of linked ligs, it is cusomary to think about the manipulaion of pointersin athe

following manner:

G
Figure2.14. Linked list insertion. From Aho (1983).

The accompanying program shows how textua |language represents the problem:

procedure insert(x:elementtype; p: position);
var
tenp: position;
begi n
tenp = p”. next;
new( p~. next);
p~. next ™. el enent : = Xx;
PA. next . next = tenp;
end

For the beginning programmer, the program text is confusing without the corresponding

diagram, yet the diagram itsdf does not contain enough information to execute from.

Variations on box-and-pointer constructs are often used to represent the displays and

activation records of programming languages.
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Figure 2.15. Programming language display. From Ghezzi (1982).
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2.2.10. Traversal Patterns

Inakind of static animation, diagrams are often used to explain tree and graph traversds.

{\ 2\
///’ \\6\\\‘“
77NN\ T
[ 8 / \10/
{ / N
\/ N ~

Figure2.16. Tree Traversal. From Aho (1983).

The arrow that shows the sequence of movement we will refer to as a meta-edge. A meta-

edge indicates something about the underlying graph, and is not part of it.

2.2.11. Recursion portrayal
Recursion is not an easy concept to teach or understand. Visud representations are often

attempted as part of this effort. For the most part, recursion is represented using containment:



fac{(5}

5 x fac(4)

4 x fac(3)

3 x facl2)

2 x fac(1)
1 x fac(0)

[1]

Figure 2.17. Recursion frames. From Bauer (1982).
In some cases, the wdll-known technique of unwinding recursion through a set of varigbles or a

stack is used so that arecursive problem can be represented with flow charts:

fi |-

@ then 1) = (u—1y x o)

goto f

else

v
‘ return ’

Figure 2.18. Recursion with flow charts. From Bauer (1982).

Without performing this unwinding, it is impossble to represent recurson in a flow chart -

recurson isnot avisua concept, it isasymbalic one. The following representation suggeststhe

difficuity:
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stringcopy
if
E] then
stringcopy
-
A [ else
if
stringcopy
B then
[ -
gl
A [] else

fun stringcopy (n,s) = if n=0then "~ else stringcopy (n—1,8) A s

Figure 2.19. Stringcopy using enclosure diagrams. From Reade (1989).
In the top diagram, the inner box, stringcopy, must cdl itsdf. The bottom diagram shows the
only way this can be visudly displayed - by usng a containment convention, inserting a copy of
itself a a andler scde. This process must continue n times - in other words, the physica
diagram itsdlf is dependent on one of the input parameters. In order to avoid this, the top
diagram is most often used - it makes use of the power of the symbolic redm by naming the

inner box the same as the outer box.

This inability of the visud to represent recurson without recourse to the symbolic is a warning
sggn about the limits of the visud. The visud cannot refer to itsdf in the same way as the

symboalic can.



2.2.12. Object-Oriented Analysis

The representation of data is often accomplished using diagrams. The following diagram shows

two different conventions -

Technique (Rumbaugh 1991). ER diagrams are extremdy smple - there are three sorts of
nodes. Entities and Relations form a bipartite graph. Entities and Rdations can both have

associated Attributes. (A smilar convention called conceptud graphs is described in the work

of Sowa (1984)).

Person
T
name
address employee K } employer
sacial security no.
charge-time T
earn-salary job title
A worker-type
| | y
Worker ‘ Manager anages
Works-on Responsible-for
Project
project name
budget
priority

Company
name

Entity-Relationship (Chen 1976) and the Object Modeling

address
phone number
primary product

hire
fire

dept name

Department

Manufactures

Product

product name
cost
weight

Figure 2.20. Entity-Relationship and OMT representation. From Rumbaugh (1991).
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The Object Modeling Technique uses a convention which dlows attributes to be shown

textualy, rather than as nodes. More importantly, different edge types communicate not only

the cardinality of relationships, but also the inheritance characteristics. Note that besides graph

conventions, adjoinment conventions are used to subdivide information in the nodes. Also,

heads and tails of edges are treated as distinct type of nodes with their own labels.

Catalogltem

Maps

K>

model number

Describes

Contains
Item

serial number

Figure 2.21. Homomorphismin OMT. From Rumbaugh (1991).

The Object Modeling Technique alows for meta-edges, as in the above figure, showing the

relationship between two different modds of data. The diagram crossesinto the symbolic redm

through our undergtanding thet this is redly two overlad diagrams showing two different levels

of asociation.
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Figure 2.22. CASE Tool (Software Through Pictures) version of Booch notation. From Fisher
(1991).

This diagram from a CASE tool shows a program represented in Booch notation. In contrast
to many of the other diagrams shown, the comparatively low resolution of screens (75 dots per
inch) to paper (300 - 1200 dots per inch) suggests some of the limits of the amount of
information that can be shown in front of a programmer. Booch notation uses dl three

conventions: linkage, enclosure, and adjoinment.
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2.2.13. Petri Nets

Petri nets are closdy related to data flow graphs. The main distinction is that the graphs are

bipartite, made up of a set of places and trangtions:
D available

Finished Finished
with D and P with D and P

Release Process Release
Dand P D and P

Figure 2.23. Petri net. From Johhsonbaugh (1984).

Each type of node can be further subdivided into subtypes.

——' “annihilator’ ——O “terminal place”
|—— “generator” O—— “initial place”
—=}— trivial transition ——O—— trivial place
—wf “spliting” —=( )<< “branching"
T} “collection” >O—— “junction”

Figure 2.24. Petri Net node types. From Bauer(1982)

2.2.14. Data flow graphs

A daa flow graph is a directed graph conssting of edges, which represent data flow, and
nodes, which represent operations.
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Figure 2.25 from Shu (1988).
Figure 2.26 Roots of a quadratic equation. From
Sharp (1985).
Tokens flow through the graph - when anode has tokens ready on al itsincoming edges it will
execute. When the node has executed, it puts tokens on its output edges. There is no
predetermined sequence to the execution of a data flow graph - the data drives the order of
execution.
Figure 2.27. lllustration of token firing, from Bauer(1982)

On the graph itsdlf, the nodes can be of 4 types (Perrot 1987) :

e computationd (2in, 1 out, or 1in, 1 out),
o control (2in, 2 out),

* merge(2in, 1 out),

e dup(lin, 2out).
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Dataflow graphs are often used in conjunction with dataflow machines, computers built to

process tokensin paralldl.

2.2.15. Dataflow diagrams

Dataflow diagrams are oriented to flow-type operations. Objects of data are shown in
relationship to procedures. No decision logic is show; the diagram is most often used to mode!
the flow of data

SALES CUSTOMER FILE
DEPT

ORDER FILE CUSTOMER RECORD

ORDERS

GET
CUSTOMER
RECORD

NEW CUSTOMER INFORMATION

EXISTING
CUSTOMER CREATE
INFORMATION NEW

CUSTOMER

RECORD NEW CUSTOMER

RECORD

CHECK
CUSTOMER
CREDIT

CUSTOMER FILE
ORDER INFORMATION

ORDER
INFORMATION

COLLECT
ALL ORDERS
FOR

CUSTOMER

INVALID
CUSTOMER

CUSTOMER ORDER RECORDS

Figure 2.28. Simple data flow diagram. From Martin (1983).

A smple example is shown above, a more complex example is shown below.
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MANAGE- Inventory control adjustments

MENT 1 1

SAFETY FACTORS BULK FACTORS

PUBLISHERS

Assemble
requisition

Propare

Past demand-order rate Determine Requisition for inventory Purchase order

reorders
{inventory)

Tnventory
Jevels

publisher

queries P.O. details

IORDER HISTORY INVENTORY

All orders Verity Nonshippable items

BACK ORDERS

ACCTS RECEIVABLE PENDING REQS PURCHASE ORDERS IN PROGRESS

Create

fout of stack or not carried) a1 [ ———
Shippable items requisition items
carried)
Prepaid
orders e
>  Sasty
Generate Remainder of shipment | backcorders, [ verity ) sni
shipping i itles, " ipment
Oders& | & | credit orders e after back orders Pj;‘:;"g shipment 2 PUBLISHERS|
cusTO pre- invoice . quantities| contents
payments | payment Back orders, pending | | “PC fory]
(it Details of
present) sonds

Generate
confirmation
&

received
ACCTS PAYABLE
customer
details

CUSTOMERS ACCTS RECEIVABLE

Prepayment request

! Prepare
Shipping note & Invoice

invoice {with books)

Verify
invoice

_ Apply
Payment of invoice payment Checks for books supplied
0

vendors

C ion of prepaid order aot shippable & paid invoice

Figure 2.29. Complex dataflow diagram. From Gane (1979).
As these diagrams are often complex, an H-graph convention (see section 2.3.1) is often used

in which any particular node can expand into subnodes:

Figure 2.30. Nested dataflow diagrams. From Fisher (1991).

2.2.16. Signal Processing Graphs

The conventions of signa processing are often used to describe streams of computations.
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head
______ S e e e
— * —
tait | filter: sieve
not

divisible?

Figure 2.31. Sieve example. From Abelson (1985).
In this example from Abeson, a dotted line indicates a sngular dement, while a solid line
indicates astream. Both link and containment conventions are used. Also, note the use of

symboalic recurson; seve cdlsitsdf.

Yes Start | N
W= M, » Yes
X AJ M

Figure 2.32. Machine notation from Hopcroft (1979).
In this example from Hopcroft, the sgnal processng convention is used to communicate
drategies for combining abstract machines. Again, both containment and link conventions are
used.

2.3.  VISUAL LANGUAGE FORMALISMS
Diagrams such as flowcharts can represent programs. Programming languages can be
represented by context free grammars. But it is not obvious if diagrams can be generated from

formal languages. This sections outlines the forma methods used to describe diagrams.

2.3.1. H-graphs
H-graphs are graphs whose nodes can be other graphs. This congtruction implicitly underlies
mogt visua programming languages. H-graphs are discussed in Pratt (1971b, 1973).
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The components of an H-graph are atoms, nodes, and graphs. We use A and N to signify the

universe of possible atoms and nodes.

An extended directed graph (or graph) G over N and A isatriple
G=(M, E, s) where

Nodeset M I N,
Edgest EM ~ A ® M,
Initid Nodes, | M.

E ispartid, finite, and M isfinite, nonempty.
E(m, b) = n meansthere is an edge from node m to node n labeled b.

An H-graph isapair H=(M, V) where Nodeset M I N, and isfinite, nonempty.
VduefunctionV: M® A {G|Gisagraphover M and A}

In other words, the value of anode is an aom or another graph. This dlows for a hierarchy of

graphs.

Pratt also defines sub and rooted H-graphs, and defines a selector and arc traversal function.
Rooted H-graphs are used to model arrays, records, sets, sSmple variables, lists, etc. Nodes
represent storage locations, and the root is the point of access to the whole structure. The value
function is the accessng mechaniam. Atoms represent primitive vaues such as numbers and

characters.

Pratt (19718) outlines a method for converting programs back and forth into flowcharts:
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procedure Absmax (a, n, m, y, i, kY;
arrqy a; teger n, w, i, k; real y;
begin integer p, q;
UM 1§
Jor p: Lstep | until n do
Jor q: 1 step | until m do
tf ubs(a[ p, q]) > y then
beginy : - abs(al[p, q)); i ::= p; k: = qend
elsey: y
end

Absmax {a,n,m,y,i,k,);
atidy a; inteqger n,m,i,k; _real y;

{r

i

..

Figure 2.33. Flow chart and language equivalence. From Pratt (1971a).
He points out that compilers and programming language semantics both rely on building a
representation more structured than strings. He notes the smilarity between H-graphs and Web
Grammars (Pfatz 1969).
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Pratt accomplishes the converson between programs and flowcharts by manipulating graph
languages. A graph languageisaset of directed graphs with labeled nodes and arcs. A graph
grammar generates a language of termind grgphs from a single non-termina node. Each
rewriting rule specifies a way of rewriting a node with a nontermina value. A node can be
replaced by a graph. This is done by replacing the incoming edge with an edge leading to the
replacing graph, and replacing the outgoing edge of the node with the outgoing edge of the
graph. This redtricts the grammar rule to having a single input and output node. Stotts (1988)
has extended the H-grgph modd to avisud pardle programming language.

2.3.2. PictureLayout grammars

Galin (1989) points out that programs are usualy developed free-form in text editors. He
recommends that visua programs should be developed free form in graphics editors. In order
to do this, we need visua language grammars and compilers. He cdls the grammars picture
layout grammars. Golin bases his sructure on a grammar modd of his own invention he cadls
an attributed multiset grammar. The right Sde of a multiset grammar is seen as being an
unordered collection rather than a sequence. Each grammar symbol has associated with it a

rectangular extent or two endpoints. Production operators include

over, left_of, tiling, contains, group_of, adjacent_to, touches,
points_to, labels, follow, join, fork, parallel.

A parser, given a picture created with a graphic editor, can recover the underlying structure of

the picture using the picture layout grammar.
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2.3.3. Generating Treesand Graphs

Syntactic pattern recognition is a fidd of study that tries to recognize patterns in images by
using forma language techniques. In most cases, these techniques are meant to be gpplied to
data from scanned images, rather than to the aready computer-generated images of visud
programming. However, the work is often cited in the visud programming literaiure, and is

ussful in discussing the difference between textua and visua representation.

Context-free grammars can be used to generate images if some terminds are assumed to be
line segments, and operators are assumed to be ways of joining the line segments. Then astring
such as ((a+ b) * ) can define three segments joined in a certain way, say into atriangle. This

IS the technique used in Shaw's picture description language (1969).

Figure 2.34. Circuit diagram from agrammar. In Gonzalez (1978).
The above figure can be generated from the string aab, if an a generates a capacitor and a b

generates aresistor.

Figure 2.35. Chromosome from agrammar. In Gonzaez (1978).
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A gtring can be wsed to generate curvilinear figures, as in the above chromosome, from the

dring babcbabdacad. But the generation of a red graph is much more difficult with this

method:
SO
a b c d

(6" + a) » (((/b") + d) + (/b%)) * ((a + b?) * ¢)) defines

b b?

Figure 2.36. Complete 4 node graph. In Gonzalez (1978).

This provokes the thought that textua representation works well with trees, but badly with
graphs. We will return to this question in chapter 7.

All of the above grammars are described in Gonzalez (1978); web grammars were first
defined in Pfaltz (1970). The work of Fu and his students has dealt with many different ways of
representing images, including the grammars described above (Fu 1984).

2.4. PROGRAM VISUALIZATION SYSTEMS

Programs are visudized by portraying ther dgorithms or data structures. Wheress the
software diagramming techniques discussed above are often performed in the initid andyss
and design stages of a project, program visudization is intended for use once an gpplication is
dready built.

2.4.1. Readable Source Code
One typographic convention used in writing code is the indentation of nested code blocks.

Programmers tend to indent differently. Utilities have been created that produce a standard
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indentation modd, clarifying or a least sandardizing the structure of the source code. Baecker

and Marcug(1986) takes this a step further with a system cdled SEE, which typesets the

source:

ul ron derpe ‘programs calcl.e 30 Aug 1149 Revision 1.2 Prinied 30 Aug 83
Program Visualization Project Calculator cakcic caicQ Page 24

Human Computing Resources

Aaron Marcus and Associates

Chapter 1 calcl.c

L N ]

Max size of operand, operator

Signal that number found
Signal that s1ring is too big

Operation type

Buller containing operator
Temporary variable
Converts strings (o floating
point

Pops the stack

Pushes the stack

This reverse Polish desk

adds, itiplies and

divides floating point numbers. 1t aiso allows the commands ‘=" 1o
print the value of the top of the stack and ‘¢’ to clear the stack.

# Include <stdio.h>
# define MAXOP 20
# define NUMBER v
# define TOO0BIG 9
lComrol Module
calco
int type:
char $[{MAXOP];
double op2,
atof (),
pop().
push():

Emg while we can get sn operution mring and type

while ((1ype = getop(s, MAXOP)) 1= EOF)

switch (type)

case NUMBER:
push(atot(s));
bresk ;

case '+"

push(popQ + pop();

break ;
case "

push(pop( ° pop0):

break ;
case '-"
op2 = pop

0:
push(pop( - 0p2);

break ;

case '/
op2 = pop();
il (op2 *=0.0)

push(pop() / op2);
print!(“zero divisor popped\n°);

else

bresk .

Figure 2.37. Typeset source code. From Baecker (1986).

The system uses typographic rules to separate portions of the code, and uses multiple columns

to differentiate comments from program statements. It dso makes use of graphic symbols to

cdl atention to anomdies such as early returns from functions. We dlassfy this sysem as

textud verging on the diagrammdtic.
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24.2. TFPDRAW
TFPDRAW (Matsumura 1986) is more programmeatic than a typesetting system, but is not

quite a programming language by itsdf.
Figure 2.38. TFPDRAW. In Matsumura (1986).

It can be seen from the diagram that program text is still written. However, the text is highly
structured, with sequentid, repetitive, and branching represented with lines ending in rectangles,
semi-circles, and triangles, respectively. Each moduleis required to be less than 50 statements,

so al modules appear on a separate screen or page.

The modules themsalves are displayed in a module-relaion diagram that used the same format
as the design diagram. Modules can be of three types - process, data, or package, and these
types are indicated by shape. The limitation of 50 lines per module is logicdly artificid, but
psychologicaly senshle, asit dlows the programmer to get an immediate understanding of the

module in one glance.

2.4.3. Incense

Incense (Myers 1983) is a system working on top of Mesa It provides a way for a
programmer to define how each data structure will be displayed on the screen. For example,
the system displays box-and-pointer diagrams of pointer structures rather than their numeric

addresses.
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RECORD [int:INTEGER, ARRAY [1..4] OF POINTER with
pl:POINTER TO CARDINAL] two POINTERS referring

to the same value.

(C)

®) \
) weigh?lio

lastName: Savilie
initial: F

Pointer to value inside & record(a) does not get
confused with a pointer to the record itself(b)

==

data: 3
less: —

greater: \é

Deep recursive tree display demonstrates how elements gets
smaller. Overall structure, however, is easily understood

Figure 2.39. Incense. From Meyers (1983).
Incense handles some of the problems of fitting arbitrary structures onto the screen, and
proposes methods for editing of the structures. Arrays, matrices, and any variety of pointer
sructures are dl displayable. Sizeis used as a sort of logicd proximity indicator - the farther

down the ligt, the smaller the dements get. This use of Sze is a metric rather than a topologica

convention.
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24.4. Kaestle, FooScape
Kaestle (Boecker 1986) isin many ways Smilar to Incense. It is built on top of LISP instead

of Mesa. Since the LISP cdl dructure is uniform, the system can automatically generate a

visud representation for any data structure,
toptever
1: |listl
((one 1) (tuo 2))
2: list2

((three 3) (four 4))

3: (append listl list2)

((one 1) (tuwo 2) (three 3) (four 4))
4: (nconc listl list2)

((one 1) (tuo 2) (three 3) (four 4))
S:

append +OoE e

L LA/ Tistan] L LA/ " T ist2”]

three[ J+{3]/] [four] {31/

L 1/1/T"Tisten]
{; N
three| —]-E]Z] [four[3-{a]/]

Figure 2.40. Castle. From Boecker (1986).
Fooscape, also mentioned in Boecker 1986, operates at the function levdl. It is described as a
landscape of functions:
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Figure 2.41. Fooscape. From Boecker (1986).

Its main purpose is debugging. A diagram of functions is displayed. As each function in a
program is fired off, the oval containing the function changes color. Some of the functions can
be marked off as not of interest (without this feeture, a string-converson function might flicker
hundreds of times for each invocation of a higher-level function). It is aso evident from the
above diagrams tha a limited number of functions can be represented on the screen a any

time

Boecker has added an audio dimension to the system by giving a unique entrance and exit tone
to each function. He clams that anorma behavior in a program both looks and sounds

different from normd behavior.

2.4.5. Contour diagrams
Organik (1974) discusses the display of contour diagram snapshots of executing programs as a
teaching tool. The programmer invokes a procedure cal at any point in the program, and a

diagram for the current State is generated.
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012 34567 89
Main
-

1 rbegi n

2 integer nk,R;
BC

( ™
3 integer  procedure  BC(nk} ;

4 value  n k; integer n, k;
5 if K=0Vn=k thenBC: =1

6 else BC:= BC (n-1k}

7 +BC(n-1,k-1) D F G H K L M
8L y

9 read (n, k);

10 R: =BC {n,k}; A
1 print (n, k, R) rr Bj Jl‘j
122 | _end_ ) & —F /(f—T

1BC(3 2} [__] l
/(D;QQ (_: ] [: :
Csc(z 2)) /%BC(Z” - J L J

_____ _J

BC(1 1) (_-0(10) )

S - Main /
(n int | 3 |
k nt 2
LR int n
8¢ Jioroe] Fain By
_ o

n | int 3 2]
k fint| ~2 int | -1
ret | prr }0.10.2 inBy Tet ptr 1 7 7in BC’]

127 =BT )

Figure 2.42. Contour diagrams for a code fragment. From Organick (1974).

This system uses dl three sets of conventions - tree structures are represented both as graphs

and as containment diagrams, and memory is represented with adjoinment conventions.
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24.6. PECAN

Pecan (Reiss 1985) is built on top of Pascd. The programmer sees multiple views of the
program. These include

source
expresson display asatree
flow graph display

NS diagrams

symbol table

datatype definitions

stack

interpreter output for debugging

Both the flowgraph and the source highlight as the program is stepped through. The stack is
displayed as the activation record of the particular part of the program that is executing.
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Figure 2.43. Pecan. From Reiss (1985).
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The contribution of this work is in the strong implementation of multiple views, where a
program can be smultaneoudy seen in a number of different representations. The conventions
used are text, graph-based, and containment based. In a certain sense, dl windows-based
system make use of the containment metaphor, as awindow is a rectangle that is perceived as

containing aviewpoint and sate distinct from dl other windows.

24.7. Balsa

The Bdsa system (Brown 1985, 1987, 1988) was congtructed as a teaching tool. It
elaborately animates algorithms.
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An impressve piece of development, it uses both topologicd and metric conventions in
representing program activity. Many of the outputs of the system are histogram:like in nature,
intending to demondtrate the differences in effectiveness between aternate algorithms. Brown

clams the system has helped computer scientists discover flaws in widely used adgorithms.

In order to accomplish the animations, subroutine cdls are injected into the program that
control the animation. Brown refers to these injection points as interesting events. Freezesin
the animation can be programmed in, so that the viewer is prompted in order to continue
viewing the animation. The tool requires work from the programmer to decide what parts of the

agorithm should be visuaized and how the dgorithm should be seen.

Perhaps the biggest contribution of the work is its demongtration of the power of animation in

teaching how programs work:

Figure 2.45. Balsa animation example of aVornoi diagram agorithm. From Brown (1987).

2.5. PROGRAMMING IN THE LARGE

The term programming in the large refers to the high-level desgn of subsysems and
modules. Techniques and concerns of high-levd design are different from the concerns of
dgorithm design, and it has been argued that high-level design should be done in a language
diginct from that used to creste data structures and dgorithms. In most red-world

environments, the high-level design is done ad hoc or on paper. The following systems not only



47

provide computer-asssted ways of doing high-level design, but dso provide formd output

from the process.

25.1. PV: Software design visualization
G. P. Brown (1985) describes a system cdled PV huilt to visudize the software design

rocess.
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Figure 2.46. Software design visualization. From Brown(1985)

The system cdlsfor linking together awhole range of diagram types.

e system requirements documents
* program function diagrams
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program structure diagrams
communication protocol diagrams
program text

program commentary

flow control

Structured data

persistent data

program in relationship to host environment

Graphic conventions are used to Stuate the programmer in the hierarchy of diagrams being
edited. A smdler overdl diagram is dways shown; this diagram has a region highlighted that
corresponds  to the detail diagram being edited. The system seeks to handle everything from
data flow diagrams to dgorithm animation. The approach is more encompassing and less

rigorous than the Pegasys system described below.

2.5.2. Pegasys
Pegasys (Moriconi 1985) links design diagram to underlying logic. The system uses a form

cdculus. As an example, when a network diagram is created, and an arrow is drawn between
a shape labeled host and a shape labeled line, predicates such as the following would be
generated:

process(Host)
module(Line)
type(Packet)

write(Hogt, Line, Packet)

Active entitiesin this system are:

e subprogram
e process
e module



50

Pictures are drawn through an interactive aditor that enforces the form calculus. The drawing
can be refined a different levels, meaning that a program is defined through a hierarchy of

pictures.
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Every atomic entity, that is, one that is not refined, must be associated with program units.
Passive entities are associated with data objects. The system is built to be tied to Ada, so the
active entities are associated with subprograms, packages, tasks and generics. The diagrams
produced using the system correspond to a set of predicates, and since the editor enforces a
st of rules the predicates are interndly consstent. Pegasys can then, in an automated way,

prove that the design hierarchy is consstent with the code it describes.

25.3. Goguen
Goguen (1985) suggests that semantics be used on large systems by ataching theories to
program units. He suggests thet this processis a visual, diagrammeatic one, and should be made

explicit.

divides

BOOLEAN

BOOLEAN

Figure 2.48. Mapping graphs with meta-edges. From Goguen (1985)
The diagrams he uses are of two sorts. Above, a graph with meta edges shows the mapping
between graphs. Beow, a puzzle-piece convention, an ingance of the adjoinment convention,

is used to illustrate how software modules can be fit together.
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SORT

| Poser LIST
NATURAL ] poser LIST

PTRIV

Figure 2.49. Puzzle piece convention. From Goguen (1985)

2.6.  VISUAL PROGRAMMING L ANGUAGES

We now consider visud languages that can create code. In looking at a broad set of languages,
we find that some concepts are especidly difficult to represent visudly. Repetition, whether
through iteration or recurson, can be hard to communicate. Parameter passing is dso difficult;
the textual subgtitution of a parameter does not lend itself to Smple visud representation. The
representations of repetition or parameters differ according to the underlying language mode!.
We didinguish between imperative and functiond languages, we look & one functiona
language, PROGRAPH, in depth.

2.6.1. Imperative Visual Languages
Many of the visudization tools we discussed in the previous sections are based around

imperative languages. And dl flowchart techniques are diagrammatic descriptions of imperative
languages.

PIcT
PICT isasystem developed by Glinert in his Ph.D. dissertation (1985). He strives for asystem

in which no text will be necessary.
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Figure 2.50. PICT factoria example. From Glinert (1985).
The prototype is very restricted; only four 6-digit nonnegative decimd integers are dlowed in
each module. This essentidly solves the parameter-passing problem. Each of the variables is

assigned a color. The whole language is defined as

<l anguage prinmtive> D= <sys control |
<decl arative op> |
<bool ean op>

<sys control > = "start(entry)’ |
"stop/return’
<decl arative op> = +1 -1 +1] - 1]

set to 1| set to O |
assign a copy |
i nput fromjoystick

<bool ean op> = >| =] <| =0] =1
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Glingt writes.

PICT/D user programs look like flowcharts, adthough some professonds have
guestioned the usefulness of these diagrams, we find much to recommend the flowchart
whenitis the programitsdf rather than merely an aid to documenting it (page 53).

Usng flowchart-like symbals, if and while statements can be constructed.

wlile

<

then else do

Figure 2.51. PICT conditionals and loops. From Glinert (1985).

The physical congruction of the program is done with a joystick, so the loops are drawn by

seering aline around the screen.

BLOX

Blox (Glinert 1986) is a visud programming language made up of puzzle-like pieces that fit
together.
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THEN

Figure 2.52. Blox. From Glinert (1986).
Protrusions are fit into sockets on the pieces, which consist of program language statements
such as while and if datements. Each piece can hide lower level condructs that are
encapsulated within. (This is the H-grgph component of the language) The individud
satements such as assgnments, are typed in at the keyboard. Notable in the language is the

way then and else dauses move off the main verticd line of the contral.

2.6.2. Functional Visual Languages

Functiond languages seem by their nature to lend themsdlves to visud representation. Most
often, they have smple, uniform data Structures. They do not have parameter passing, and they
don't dlow multiple assgnment. This means that the data flow graphs previoudy described can
be used for creating low level expressons. At the higher leve, functiona languages provide a
st of functiond forms, which alow for the combining of dready defined functions. The function

becomes an object that can be manipulated to form a higher-levd function.
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Once a vaue is determined in a functiond system, that vaue flows through the rest of the
system unchanged. This is called the principle of sngle assgnment. In practice, this is very
redrictive, and many languages relax this redriction in order to handle iteration in a
nonrecursve manner. In the textua data flow language Va, one can increment a designated
loop varidble. In textud Sisdl, one dso has mechanism for incrementing a loop varigble. We

see these ideas carry over into visual languages discussed below.

PROGRAPH

PROGRAPH (Matwin 1985) is a data flow-like language. Matwin writes:

... grgphica formulation of programsin PROGRAPH is based on a premise that non-
linear concepts can be better expressed in a two-dimensond pictorid form rather than
in sequentid verba script.

Basics

Hereisasmple PROGRAPH program:

S RN 7 7]

[ souare | [souare |

// DEF SQUARE / /

+

(/L w0 e S )
(LW

Figure 2.53. PROGRAPH square program. From Matwin (1985).

The line coming into the top of the box DEF SQUARE is the function's input. The line coming
out of the box is the result. The branching of the input line feeds two identica vaues into the
binary multiply function. SQUARE is used in the procedure VARIANT, which reads two
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numbers in, computes their squares, and adds the results together for display. Subroutine cals
assume that the calling routine has the same number of input and output wires as the called

routine.

Conditionals

Here are two examples of conditionals.

T Lot Wr LS

l [
e g 777 (e 77 7T 77

Figure 2.54. PROGRAPH conditionals. From Matwin (1985).
In dl cases there is a boolean condition box. If the box tests postive, the THEN box is
executed. In the case of the function ABSOLUTE, a number flows into the function; if the
number is less than O, the number goes through a unary minus function, converting the number
into apogtive number. This number flows out the bottom of the function. If the number is> 0,
the IF condition fails, and the number that flowed into the box flows out unchanged.

In the function MAX, we see the use of another PROGRAPH wiring convention. An input can
be grounded by terminating it with a smal, filled square. If the firgt input is greater than the
second input, the firgt input flows through, the second is terminated. Otherwise, the fird is
terminated, and the second flows through. Note that even though PROGRAPH does not have
named parameters, the order of the wires performs the same function as parameter labeling

doesin textud languages.
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Recursion

Here is a common example from list processng, REVERSE.

//DEF ReverRse L L L L L

( NONEMPTY ) [FIRST REST ]

¢ REVERSE
I APPEND l

e S L

Figure 2.55. PROGRAPH reverse. From Matwin (1985).

FIRST and REST correspond to LISP CAR and CDR, but APPEND is dightly different -
concatenates an element, not a list, on to the back of an input lis. The recurson is
accomplished by labeling a box ingde the function with the name REVERSE. Theingde of this
interior box could be drawn as a smaler copy of the surrounding box. In such a case we
would get a common visud metaphor for recurson, a picture within a picture, regressing dl the

way down to the boundary condition. In textud languages, the function trandates to:

reverse(x)
I f (nonempty(x) is TRUE)
return(append(reverse(rest(x)), first(x)))
el se return(NIL)

Both the visud and the textud versons are fairly smple; however the visua version, through

the crossing lines in the THEN box, draws attention to the basic idea of the agorithm.
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Iteration

Unlike mogt visud functiond languages, PROGRAPH supplies an iteration mechanism. A
logical compartment Sits on top of a transformation compartment. In a flow chart, the lines
would be drawn explicitly. In PROGRAPH, the lines are implied. When the condition in the
logical compartment is flled, data is passed to the transformation compartment. Results are
then transferred back to the logical compartment. Even though lines are not drawn back up, the
effect is very much like that of a flow chart, where a line is drawn explicitly back to the

condition box.

Congtant initidization is introduced in thisfigure:
/DEF'fACTomlL i

1

T

E— WHILE

2

( e )
* i

.
VAN OO,

Figure 2.56. PROGRAPH factoria. From Matwin (1985).

The number 1 over the WHILE box isin effect only on the firg test; from then on, the line has
the vaue of the leftmost output of the DO loop. This line in effect accumulates the result. On
the right sde of the DO loop, the input number is decrement by one. This decremented
number is output from the DO loop, then grounded. This means the number is fed back into the
input line of the WHILE check, but staysinternd to the
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FACTORIAL box.

Psuedocode for this function reads

factorial (x)
result =1
while (x >= 2)
result = result * x
X =x -1
return(result)

Again, both the textud and the visud functions are farly ample. The visud function needs no
temporary variables. However, the introduction of an initidization of a ling, and the implicit
looping of the congtruct, make the representation difficult to decipher in a glance. A more

complicated example is shown in this figure, afunction for merging sorted lids.



"/ OEF MERGE BOTH ST 7]
[
W T T T U HEN
[ T [3
IFFARST ][ FFIRST ] [FIRST mEST ]
STELSE T e e e T e

FIRST REST

AFPPEND

e ot/ LSS

'/ DEF MERGE
( NONEMPTY )C NONEMPTY )
0 e e e
| MERGE BOTH ]
| [ — 1
V" AND EF e 7 J/A
DEF COMCAT REST /
L_-._;;:.'E‘_.‘ _:{: B E [THENI S :‘_:f LSE [:::}
(emeTy ) ICONCAT ] I CONCAT ]
¢ | [ l
END DEF /

// DEF FFmsr/ %

v 7 w0 it 7

Figure 2.57. PROGRAPH merge. From Matwin (1985).
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The function uses three sub-functions, relying at the bottom level on CONCAT, the equivadent

of LISP APPEND. Ancther new convention is introduced; an arrow on an in wire indicates the

wire extends to the bottom. Notice this convention is necessary as a result of two other

conventions - firs, the order the lines exit a function is sgnificant, and second, lines touching

boxes is sgnificant. The THEN box, without the arrow convention, would have needed to

snake the second line around the boxes, and then out the bottom of the function.
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Thefollowing isatextud agorithm for merging, in the SCHEME didect of LISP, from Abelson
(1985). It is recursive, not iterative:
(define (nmerge sl s2)
(cond (( enpty-streanf? sl) s2)
( enpty-streanf? s2) sl1)
el se
let ((hl (head s1))
(h2 (head s2)))
cond ((< hl h2) (cons-streamhl ( nerge (tail sl1) s2)))
((> hl h2) (cons-stream h2 ( merge sl (tail s2))))
(el se

(cons-stream hl
(merge (tail s1) (tail s2)))))))

The typography is visudly digned, making it is easy to see the minor difference in the way the
(< h1 h2) and ( >h1 h2) conditions are handled. As it is, the textua verson seems esser to
understand than the visud PROGRAPH verson.  The problem may be in the way the IF,
THEN and EL SE clauses are stacked in the PROGRAPH version. If they were dl drawn side-
by-sde, and the THEN clause was drawn the same size as the EL SE clause, the visud verson

would be somewhat clearer.

Parallel operations

PROGRAPH includes a convention for handling operations on ligtsin pardld. If an input line
has a horizontd thick bar attached, then the input is consdered multiple. This convention is
used in conjunction with the APPLY TO ALL function.
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Figure 2.58. PROGRAPH matrix multiply. From Matwin (1985).
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Two \ectors are fed in as multiples to the APPLY TO ALL function. The corresponding
elements of each vector are added together, and the resulting list output. In the right-hand
diagram, onelis isfed in normaly, the other as amultiple. Each sublist of the multiple input will
be multiplied by the singlelist fed in on the left input line

Above, matrix multiplication is defined. At the bottom of the second box, a multipleisfed into a
PLUS operation. When single multiples are fed into PLUS, TIMES, AND, OR, theresultisa
reduction. So in this example, the numbers in the list are added together, producing a sngle

number.

Matrices in PROGRAPH as represented as a ligt of ligts. In following the logic of the matrix
multiplication, attention must be paid to which in wires are multiples. Initidly, the left matrix is
treated as a multiple; this means that arow at atime is processed againgt the entire transposed
right matrix. For every one of the left rows, we treat the right matrix as a multiple. This means
that we multiply row 1 by column 1, then row 1 by column 2, etc. The third box performs this
multiply, and the bottom of the second box performs the addition. By the sequence of

multiples, we end up congtructing an output of lists of listsin the correct order.

This does not seem to be an extremdy intuitive way of writing a matrix-multiplication function.

However, it does work without named parameters, subscripts, or temporary variables.
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S UEF H:ESOBT%EE'//{//// e
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Figure 2.59. PROGRAPH find subtree. From Matwin (1985).

In this figure a recursive dgorithm for finding a subtree is shown.

The tree itsdlf is trested as amultiple (it isfed in aslist of nested lists). The tree to be matched
isdsofedin. The APPLY TO ALL function serves to supply the set of subtrees of the list to
the recursive cdl in the THEN dause. A multiple OR at the end catches any successful find.
Matwin notes that the OR can be implemented using lazy evaduation.
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SHOW-AND-TELL

& Flle Edit Goodies Puzzle Answer Drow

Figure 2.60. Show and Tell. From Gillet (1986).
Show-and-Tdl (Gillet 1986) solves theiteration problem by using the conventions of a textud
data flow language, Lucid. In Lucid, a sequence of vaues is kept for each varidble. This
historical sequence can be referenced the same way an array can be referenced. Ambler

(1989) cdlsthis atemporally-dependent iteration construct.

Show-and-Td | spatidizes this idea by unfolding the multiple instances of a variable, accordion
syle. Show-and-Tell contains another interesting characterigtic. If contiguous boxes have
conflicting values, they are consdered inconsstent. However, the inconsstency is isolated to

the containing box.

PROGRAMMING IN PICTURES (PIP)
Raeder, in his Ph.D. dissertation (1984) describes his system, which uses FP asits main mode!.
Raeder writes:

... the drict sequentidity of the imperative modd is not compatible with
pictures, where there is usualy no sequential order imposed on various
picture dements visble in atwo-dimensiond plane (p 104).
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A function is defined by drawing a picture of the functions input data, the functions output data

and the actions on the data. The underlying convention here is the data flow graph. The higher

level of abdraction will be an iconic picture of the function. Then FP-gyle functiond forms are

used to combine functions.
= ]
::: Denmity l lw-sw-aa
-

Canstant
UserDaf

[ £Paxyl :
[4.[31,32]) ¢

Figure 2.61. Programming in Pictures. From Raeder (1984).

A typing mechanism is added; thisis outsde of the FP model.

VISUAL FP

Pagan (1977) describes avisud version of FP.
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Figure 2.62. Visud FP. Pagan (1977)

It is different in gppearance from the other functiona languages we have just looked at. Instead
of usng data flow grgphs as the visud conventions, it uses a modification of Nass-
Shneiderman charts. The box-shapes in Nass-Shneiderman diagrams represent control
dructures, in graphical FP they represent different functiond combining forms. The six
combining forms are:

constant - rectangular box

condruction -  two side by sde, dab above
composition-  one above the other

insat - box within abox, 2 corners connect
aoply todl - box in box, criss-cross
condition - arrow.

The sygem is very smple. As with other Nass-Schneiderman based systems, text ill
predominates much of the representation. However, some of the linear terseness of the

functiona forms of FP seems to have been rdlieved by the 2-dimensiona representation.
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2.6.3. Miscellaneous Visual Languages
Our anaysis has not been exhaugtive; there are many other systems that are documented and

discussed in the literature. We mention briefly some of the systems that often are cited.

VENNLISP
Lakin (1986) describes a LISP system in which expressons have been replaced by graphics
using the convention of enclosure. It isa variaion on a parse tree. The functions themselves are

encoded as different enclosing shapes.

(OR {AMD (EQUAL? X {FIRBT ¥)) ¥}
{NEMBER? X (REST ¥))))

=> (Visp-to-test-graphic-tren
MD-forn)

=> (pretty-layout objatn)

=> {vennlisp-leyout objatn)

Figure 2.63. An enclosure convention for lisp. From Lakin (1986).

GARDEN
Reiss (1987) describes a system for building visud languages. In a sense it is a meta-viud
programming language. The system is shown building an FSA language, a flowchart language,

and a data flow language. The underlying language is LISP. The pictures can be executed.
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Figure 2.64. Garden. From Reiss (1987).
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2.7.  SUMMARY

In the course of this chapter identified a way of spesking about diagrams in terms of metric,
topologicd, and symbolic redms. Within the topologica redm we identified three man
conventions, those of adjoinment, linking, and containment, that when combined can be used to
describe dl topological diagrams. Using these distinctions, we covered the field of software
representation, drawing examples from textbooks and journals on computer science. We
identified and described flow charts, data flow diagrams, sgna processng diagrams, layer
charts, and avariety of other diagramsin forma visud terms.

Also discussed were a variety of systems built to develop and visuadize computer programs.
Each of these systems made use of the diagrammeatic conventions we identified. Mogt of the
systems were based on functional languages, which are more suited to visudization because of
their smpler parameter schemes, their concept of single-assgnment, and their data driven

nature. It isfrom the functiondl sde that we begin in cresting some dternate visud languages.

We noted throughout the discussion some inherent limits in the visua relm. We discussed the
representation of recurson, and pointed out that the visua cannot express this symbolic
concept, and that this is a warning sign about the limits of the visua. We will return to these
limitsin Chapter 7.



