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ABSTRACT

Sensors used in protective applications are typically
placed on perimeters or over areas in an evenly distrib-
uted pattern. However, such patterns may actually be sub-
optimal, since environmental factors may make some
forms of attack more or less likely than others. We de-
scribe a protective application of sensors for detecting
underwater threats in an urban estuary environment. We
demonstrate that environmental information, derivedfrom
a computational river current model, can be utilized to
optimize sensor placement, increasing detection rates and
decreasing the number of required sensors. Simulation
results show a significant improvement in detection for a
given number of sensors; alternatively, fewer sensors can
be used while still maintaining the detection rate of a con-
ventional approach.

INTRODUCTION

Detecting and tracking moving objects is difficult.
Sensory data and other information are often sparse or in-
complete and are always associated with a degree of un-
certainty (Heeger 2003) which may, itself, be hard to esti-
mate.

Sometimes it is possible to incorporate additional in-
formation into decision making by combining prior
knowledge of the environment in which the object is mov-
ing with a statistical model of the object's behavior in re-
sponse to that environment. In Musman, Lehner, and El-
saesser (1997) mobility and terrain analysis are used to
predict possible movement plans for targets. Bayesian nets
are used to generate logistical plans for target searches.
The search plans focus on organizing a limited number of
mobile sensor systems to detect targets which are believed
to have specific patterns of behavior and preferred terrains.
Other techniques exist in the literature for designing sensor
networks around environmental obstacles such as walls or
cliffs (Dhillon, Chakrabarty, and Iyengar 2002).

An interesting example is the case of detecting and
tracking intentionally moving objects in a river, since riv-
ers contain distinctive and varying currents which impose
constraints on the objects' motion. Forecast river current
data can be derived from a computational estuarine model
(Blumberg and Bruno 2003).

Our previous work has explored different configura-
tions of both moving (Stolkin and Nickerson 2005) and
stationary (Olariu and Nickerson 2005) sensors. To our
knowledge, no previous work considers the effects of cur-
rent speeds on intentionally moving objects, and in turn
how sensor networks should be designed to take advantage
of those effects.

Our research question is the following: using environ-
mental information, by how much can we improve the de-
tection of intentionally moving underwater entities? We
focus on the detection of a diver swimming in the Hudson
River.

The contribution of this paper is related to the optimal
placement configuration of a group of sensors. We will
show that the use of environmental information, in the
form of a computational estuarine model, can lead to un-
usual-looking sensor patterns that are more effective than
the conventional, equally distributed patterns which are
typically deployed.

We first discuss environmental information derived
from our computational estuarine model for the New York
Hudson River, and then analyze a simple model of diver
behavior in response to this environment. We next present
a simple, probabilistic sensor model and use this to reason
about the detection rates of an arbitrary arrangement of
sensors.

We show how environmental data can be used to op-
timize the positions of a group of sensors, and evaluate the
benefits of this optimization, in terms of reduced numbers
of required sensors and increased detection rates, as com-
pared with conventional configurations.

ENVIRONMENT MODEL

We examine the problem of optimizing sensor place-
ments with respect to environmental data in the form of
current speed forecasts for the Hudson River, derived from
our computational estuarine model, The New York Harbor
Observing and Prediction System (NYHOPS) (Blumberg
and Bruno 2003). In this paper, we look at a simple one
dimensional cross section of the Hudson River. However,
the approach and formulae described in this paper extend
easily to two and three dimensions, which will be the focus
of future research.

1 of 6



We focus on a segment of the Hudson River located
adjacent to New York City. The latitude is approximately
40.8811 degrees north, and the longitude is approximately
73.9383 degrees west, close to where the Harlem River
meets the Hudson River. The current data is from March
15, 2004, 8:30AM. The surface currents in this section of
the river flow north. This may seem counter intuitive;
however the Hudson River is a tidal estuary. Tides in the
Atlantic Ocean will cause water in the Hudson to rise and
fall causing complex currents to occur and making optimal
sensor placement an interesting and dynamic problem.

The computational estuarine model forecasts current
speeds for locations on a grid of cells, spanning the lower
Hudson River and New York harbor. At the time of writ-
ing, a high resolution model is being developed, however
for proof of principle we have generated a curve,
VX= f (x), showing variation of current speed, v, with po-
sition, x, across the river by least-squares fitting a polyno-
mial function to current values from a relatively low reso-
lution forecast for a line of cells across the river (figure 1).
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Figure 1. Current speeds for cross section of Hudson River. Polynomial
interpolation of forecast current speeds from the NYHOPS
computational estuarine model.

DIVER CHARACTERISTICS

We model the diver's interaction with the environ-
ment using a "diver preference" curve, a simple function
of current speed based on advice from our expert divers.
This curve can be viewed as a probability density function,
describing the likelihood of a diver choosing or managing
to swim in water of various current speeds.

We assume that a diver has the intention of moving
forward, will therefore avoid negative currents (i.e. those
moving opposite to the diver's intended direction of mo-
tion) and is unable to sustain progress against negative cur-
rents of greater than 0.5 m/s (approximately 1 mile per
hour).

Since moving with a current requires less effort, we
assume that a diver has a preference for currents which
move in his desired direction of travel (denoted as positive
current speeds). However, for reasons of safety and con-
trol, the diver will also avoid very fast currents (greater

than 4 meters/second). Even if these are in his preferred
direction, moving too fast underwater causes a danger of
entanglement in obstacles, or can disorient a diver reduc-
ing his ability to navigate accurately, especially in turbid
and debris strewn urban waterways.

Diver current speed preference can be conveniently
modeled using a Log-Normal distribution (figure 2), which
is able to represent zero probability of fighting currents
beyond the divers maximum sustained swimming speed
(0.5m/s). In contrast, a conventional Gaussian distribution
is not able to model zero probabilities for these negative
current speeds.

Current speed

Figure 2. Log-Normal diver preference curve.

PROBABILITY OF DETECTION

We consider the case of detecting a diver who crosses

a linear array of sensors stretched across a river. We de-
note the conditional probability that the ith sensor from this
array will detect the diver, given that he crosses the line of

sensors at a particular point, x, by P(Di x). Assuming that
the performance of each sensor is independent of the oth-
ers, it is easy to show that the total probability that a diver,
crossing at point x, be detected by the sensor array is given
by:

P(DT Ix) = 1-P(D T IX) = 1-fj 1-P(DP Ix)

The terms, P(D x), are calculated using a simple
sensor model based on recent work on passive acoustic
diver detection (Stolkin et al., 2006). Stolkin et al. suggest
that divers can be detected by thresholding a feature value,
the "swimmer number", derived from a passive acoustic
hydrophone signal. Their work also experimentally meas-

ures the drop off in this feature value with range to the
diver (figure 3) and compares with feature values obtained
for various levels of background noise. Although probabil-
ity of detection can be shown to fall off with range as a

more complex function, for the purposes of this paper it is
reasonably approximated with a simple model (figure 4) in
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which probability of detection decreases linearly with
range, starting from a maximum value of 95% to reflect
the fact that detection is never guaranteed.
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used to describe a wide variety of different kinds of sen-
sors and is chosen somewhat arbitrarily. Note that the
techniques described in this paper will work equally well
with any function of detection probability versus range and
thus will be useful for reasoning about a wide range of dif-
ferent sensors and sensor models. We demonstrate proof of
principle using the simple linear model in this paper.

We now examine the joint probability that a diver
chooses to cross the sensor array at a particular point, x,
and is detected when he does so. Again, assuming that sen-
sor performance is independent of the diver's decision, we
have:

z;' 50-
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Figure 3 (reproduced from Stolkin et al., 2006). Drop off in log
Swimmer Number value with range. Comparison with Swimmer
Number calculated for various ambient noise conditions. Noise level 1:
River noise with low traffic levels, at nighttime. Noise level 2: River
with ferry and helicopter noise. Noise level 3: Rough surface conditions,
large waves and two helicopters present. Noise level 4: Severe
background noise sources including airplane and helicopter traffic, speed
boat and ferry.

Probability A

of detection

0.95 1

(3)

where p(x) is the probability density function which
describes the likelihood that locations, x, along the array

line will be the site of an attempted crossing by the diver.
The term, p(x), is defined by the "diver preference"

curve (see figure 2) which is a function of current speed,
i.e. p(x) = f (vx), where the river current speed (vx) at

location x, is found from the current profile data output by
our computational estuarine model (see figure 1). The
"diver preference" curve (figure 2) is chosen to be a log-
normal distribution to reflect the fact that it is impossible
for the diver to swim against strong negative currents, and
also that the diver will not wish to travel at very high
speeds in the highly turbid and cluttered river environ-
ment. Hence:

50 Range from diver
to sensor / m

Figure 4. Simple sensor model. Probability of detection decreases
linearly with range.

Hence we can define:

-xi

50 if 0< x-xi <50
p i Ix ~~~~~~~~~~~~(2)P(DiI.x)={(2

0 all other |x - xi

where xi denotes the position of the sensor.

Note that other authors suggest alternative sensor

models, and obviously different sensor models are appro-

priate for different kinds of sensor system. Dhillon et al.
(2002), use a probability of detection function which de-
cays exponentially with range. Their exponential model is

p()I(=l e

(V +O0.5)c-r 2ff

-{ln(v,+0.5)-,u}2/22 (4)

Using our model derived current information (figure
1), it is now possible to construct the curve (figure 5),
p(x) = f (vx), showing the likelihood of a diver choosing
to cross the sensor line at any point x:
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Figure 5. Probability density curve showing likelihood that diver will
choose to cross the sensor line at each point in the river.
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(5)

Equation 1 is useful in that it gives us a measure of
sensor "coverage" at any point across the river. Equation 3
can be thought of as a weighted "coverage" term that has
been adjusted to take into account the different likelihoods
of attack at different locations.

We now seek a single term that describes the effec-
tiveness of a particular arrangement of sensor placements.
This term can then be used to optimize sensor placement
positions. For this term, we seek to evaluate the total prob-
ability that a diver will be detected, should he attempt to
cross the sensor array line. This is readily found by inte-
grating equation 3 over all locations, x, across the river:

x on West-bank

P(DT ) = P(DT I X)p (x).dx
x on East-bank

RESULTS

First we test a conventional, equally distributed ar-
rangement using 35 sensors. Our x axis spans a 1340 meter
cross section of the river, so that each sensor will be lo-
cated every 38.29 meters. This creates a large sensor over-
lap, providing a relatively high probability of detection.
Figure 6 represents this sensor layout.

Figure 6. Equally distributed arrangement of 35 sensors across 1340
meter wide of river. Vertical lines represent shore line. Circles represent
maximum detection range of sensors.

Figure 7 shows the probability of detection at each
point in the river based on this sensor layout given no fur-
ther information, i.e. the probability of detection assuming
(erroneously) that the diver is equally likely to attempt an
attack in any part of the river. Based on Figure 7, the total
probability of detection (found by integrating equation 4
across the river) is estimated to be 0.875.
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Figure 7. An estimate of the probability of detection at any point in the
river, which ignores environmental information.

Figure 8 shows a new estimate of detection probabil-
ity, which does take into account environmental informa-
tion about the current: given that the diver crosses the sen-
sor line, the figure shows the likelihood that he crosses at
any point x and is detected when he does so. Based on
Figure 8, the total probability of detection for a diver trav-
eling south is re-estimated to be the less effective value of
0.869.
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Figure 8. Estimate of the probability of detection at any point in the
river, taking into account environmental information. Note that the
vertical axis readings are probability densities.

We next examine the results of optimizing the place-
ments of all sensors with respect to the additional envi-
ronmental information. It is straightforward to employ a
standard non-linear optimization technique to optimize all
sensor positions by using equation 5 as a fitness function,
i.e. modify sensor positions in order to maximize the total
probability of detection. Note that a variety of well known
non-linear optimization techniques could be used at this
stage, e.g. Press et al. (1992), Nocedal and Wright (1999).
Broadly speaking these different algorithms trade off
speed of convergence against robustness against local min-
ima. The particular choice of algorithm becomes more
critical when the number of sensors is very large or when
the sensors must be reconfigured in real time. In this paper,
for proof of principle, we have used a simple gradient as-
cent technique. Each optimization was repeated several
times, starting from different initial arrangements to pre-
vent local maxima convergence (which does not appear to
cause problems with the functions described here).

Figure 9 represents the layout of sensors when opti-
mized with respect to the prior environmental information.
The total probability of detection for this arrangement is
0.971 (compare 0.869 for un-optimized arrangement, fig-
ure 6).

Figure 9. Optimal arrangement of 35 sensors to maximize total
probability of detection, given prior knowledge of the environment
derived from our computational current model. Vertical lines represent
shore line. Circles represent maximum detection range of sensors.
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Figure 10 shows, for each point across the river, the
probability that the diver crosses at that point and is de-
tected when he does so.
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Figure 10. Estimated probability of detection at any point in the river,
for environmentally optimized sensor positions. Note that the vertical
axis readings are probability densities

Using environmental modeling data to optimize sensor

positions, a 97% probability of detection was obtained.
This high percentage was obtained by clustering the sen-

sors in areas of high diver probability. The lack of sensors

from roughly 800 to 1200 meters may seem counterintui-
tive, however, due to high current speeds, it is nearly im-
possible for a diver to cross the sensor line in this area.

For comparison, we ask how many sensors in a con-

ventional, equally distributed arrangement would be re-

quired in order to obtain the same 97% detection rate and
find the required number to be 58. Hence, our environmen-
tally determined sensor arrangement has saved us 23 sen-

sors; in other words, for the same detection rate, we can

reduce the number of sensors by 40% in this example.
For further comparison, optimization was run from 5

to 60 sensors, in increments of 5 sensors. The optimized
configurations were compared against equally spaced con-

ventional arrangements created using the same number of
sensors.

Figure 11 shows the total probability of detection rates
which were obtained using environmentally determined
arrangements. These results are compared to those ob-
tained using equally distributed arrangements. The in-
crease in coverage tapers off for very high detection rates.

Figure 12 shows the difference in total probability of
detection between an environmentally optimized sensor

arrangement and a conventional, equally distributed ar-

rangement. As in Figure 11, the benefits of the optimiza-
tion taper off with very large numbers of sensors.

Figure 13 illustrates the value of environmental opti-
mization when high probabilities of detection are desired.
The number of sensors that can be saved by our technique
increases rapidly with desired detection rate, and large
numbers of sensors can be saved for high detection rates
by using environmental factors as compared to a conven-

tional equally distributed arrangement.

Figure 11. Variation in total probability of detection with number of
sensors. Top dashed line represents environmental optimization. Bottom
solid line represents conventional equi-spaced arrangement..

5C

c)

Q:L

0.3

D.25

0.2

D.15

0.1

D.05

10 20 30 40
Number Sensors

50 60

Figure 12. Increase in total probability of detection due to environmental
optimization, as compared to a conventional, equally distributed
arrangement using the same number of sensors.
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Figure 13. Number of sensors saved using environmental optimization,
while maintaining same detection rate as conventional arrangement, for
various levels of desired detection rate.

CONCLUSIONS

We have provided a framework for probabilistically
reasoning about the location of a scuba diver, taking into
consideration data from a computational environment
model and a simple model of diver behavior.

5 of 6

50 60



We have shown how this leads to a method for opti-
mizing the placement of sensors. This method substantially
reduces the number of sensors necessary to achieve a
given rate of detection. Alternatively, much greater rates of
detection can be achieved with a given number of sensors.
The benefits of this environmental optimization appear to
decay for very large numbers of sensors but, in contrast,
the benefits (in terms of saved sensors) increase dramati-
cally with the required rates of detection.

FUTURE WORK

The techniques described in this paper extend very
readily to two, three or four (time) dimensional spaces and
this will be a focus of future work. Additional questions
which arise in the case of higher dimensional spaces in-
clude: will hotspots of high diver probability exist? Can
certain areas of high diver probability be ignored if they
are surrounded by areas of low probability? Will concur-
rently optimizing sensor placement for divers traveling in
different directions lead to unusual sensor placement struc-
tures? Can structures be found which will adequately pro-
tect against divers during an entire year, or will different
tidal seasons require separate sensor layouts?

An important alternative use of environmental reason-
ing about diver location is to provide prior probability
terms for Bayesian detection, localization and tracking
algorithms. We hope to incorporate these ideas into ongo-
ing work exploring probabilistic algorithms for tracking
moving targets through distributed arrays of sensors of
various kinds.

In addition, it may be possible to use environmental
information to guide the path of moving sensors in re-
sponse to varying environmental conditions, and future
work may examine control rules for mobile sensors in re-
sponse to varying real time current information.
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