

Knowing How To Design Systems

Jeffrey V. Nickerson
Stevens Institute of Technology

jnickerson@stevens.edu

1. Introduction

Teaching design is a baffling activity. Sometimes

students respond quickly to training, and sometimes they
appear to learn nothing. In the context of this workshop
on Multi-Disciplinary Systems Design Knowledge,
teaching design can be thought of as an attempt to impart
knowledge. With this viewpoint, the classroom becomes a
laboratory in which these attempts to impart knowledge,
and the students' attempts to acquire knowledge, can be
observed. I think that classroom research is one way of
getting at design knowledge, and in this paper I suggest
some of the questions that might be answered through this
approach.

Pea has pointed out that learning is a sense making
activity [1]; students are often confused, and they
unconfuse themselves, sometimes in their conversations
with instructors and with each other. Therefore,
understanding how design knowledge is built may call for
understanding a set of connected processes. In classroom
settings, we would like to understand how the students
absorb what the teacher says. And we would like to
understand how the teacher evaluates what the student
does. In addition, we want to understand how the
students, talking to each other, make sense of the
experience. There are other processes; in classes with
teaching assistants, the assistant plays an integrative role.

In industrial settings, systems design is usually taught
through an apprenticeship or mentoring process. This
process may be less formal, but includes some of the
same interpretation and discussion processes.

2. Research Questions from Teaching

I have created a course called Integrating Information

Systems Technologies. The title comes from the ACM
Curriculum of 2000 for a Masters in Information Systems,
[2]. More details on the course, and proper
acknowledgement to all those involved, can be found on
the course website [3].

The techniques used in the class have been inspired by
my previous education in design; I attended UC
Berkeley's College of Environmental Design as an
undergraduate and also Rhode Island School of Design as
a graduate prior to studying computer science. In both

schools, and in all design schools to my knowledge,
design is taught through a series of design crits. Student
work, sometimes as individuals, and sometimes as teams,
toward a deadline. The students produce posters, which
they hang on a wall, and the posters are critiqued by
professors, visitors, and fellow students.

This technique works well in the design disciplines.
Students are motivated to put in effort by the public
nature of the crit; for not only the instructor but their
peers will see the work. Also, peers like to see what their
peers are doing, and pick up techniques from each other.
The discussions let the instructor help students understand
the way designs are judged, and the ways designs can be
improved. The presentation and discussion is similar to
the presentations and discussions students will have later
in their career as they present designs to clients.

Figure 1. Part of a student poster showing a
design for a personal information system

To my knowledge, this technique has not been used

before on system design. However, there are several
reasons to think that it might work. For systems design is
often practiced as a visual activity. Designers often learn
by working on white boards with more expert designers.

In addition, the problems to be solved in systems
design are similar to the problems solved in
environmental design. The clashing priorities of clients,
the tradeoffs of cost and function, the need to realize a
concept with engineering, are all similar.

However, there is a significant difference. Architecture
calls for solutions to be built in three dimensional
Euclidean space, whereas much of systems design is
mapped out on a topological space of components

 1

mailto:jnickerson@stevens.edu

connected through electric signals, in which physical
placement is often less important than logical
connectivity. This difference leads to the following
research question:

Does design knowledge from architecture apply
to systems design?

The question is significant, for our knowledge of

designing the environment has been increasing over
thousands of years, and is greater than our knowledge of
designing systems. On the one hand, we can argue that
architectural design knowledge applies to systems, as the
cognitive process of reflecting on what one has designed
and then modifying it is the same regardless of the
domain. This stance is supported by the analysis of
professional practice [4]. On the other hand, we know
that software projects are much less successfully managed
than building projects. There is a complexity, and
invisibility, to software that is not present in traditional
building. This suggests that perhaps software might call
for a different design process than architecture. These two
differing observations present a paradox for future
research to resolve.

Some of the ideas from architecture may apply, but just
as architects need to understand structural engineering,
systems designers need to understand software
engineering. There are underlying technologies which
serve to integrate components, such as publish and
subscribe mechanisms, as well as more formal analyses of
processes that come from coordination science [5].
Scenario based approaches offer a systematic way of
defining problems and solutions [6]. Software modeling

techniques such as UML describes a set of diagrams, and
systems engineering provides some heuristics [7].

Yet the reading of this material may not necessarily
produce a student knowing how to design systems. There
is a strong experiential aspect to design, and therefore
design courses usually, and rightly, emphasize practice
over reading. This leads to the second question:

How do we know that someone knows how to
design a system?

As instructors a first step is to look at the students'

representations. In this class we can look at posters which
students bring in to the classes, as in figure 1. We also can
look at sketches performed in class as part of short
exercises, as in figure 2.

In the domain of architecture, Suwa and Tversky have
shown that sketches are indicators of overall design
capability [8]. It may be possible to apply their ideas to
systems design. For example, it appears that the student
with a drawing on the right side of figure 2 has a better
grasp on designing systems than the student with a
drawing on the left. The student on the right has
connected things, and has recognized the need to store
certain information.

As students have different cognitive styles, we also ask
students to generate textual scenarios. In our diagnostics,
we have found that students have trouble generating
specific scenarios. All the students can say something
along the lines of "the system is too slow", but many
students have a problem writing a scenario in detail, such
as "when Jane arrived and booted up her machine, it took
twenty minutes before she could run a spreadsheet".

Figure 2. Two students with different designs for the same problem. The students were asked to
design a notification system for the international staff of a large news organization.

2

Some actively resist creating specific scenarios. They

protest that they have been previously trained to
generalize problems, and the idea of making the problem
very specific seems wrong to them.

Sense making approaches to education argue that
previous concepts have to be cleared away before new
ones are inserted. Clearing this particular concept away as
has proved difficult.

Experienced system designers often work bottom up;
this bottom up aesthetic, with appreciation for the
particulars of a problem, is part of hacker culture [9]. Yet
in management schools where information systems design
courses are offered students are often taught to generalize,
and to work top-down. To teach the appreciation of
specifics is to preach a design aesthetic that is sometimes
counter to what has been learned before. This leads to
following question:

Do we effectively teach an aesthetic when we
teach design?

If we do, then we are introducing students to what
Monteiro calls design culture [10], and our job is a large
one. One way of introducing culture is to show many
examples, which leads to the following question:

Does sharing representations of designs help
students design?

When we look at many representations, we see

patterns. In architecture, the perception of patterns was
made popular by Christopher Alexander [11], and these
ideas where taken up in the software community [12]. In
coordination science, we see a similar approach to
cataloguing business processes [13]. In architecture
training, students are expected to look at lots of drawings
– of their classmates, and of accomplished architects.
Does looking at this work help? One can argue it should.
One can also argue that seeing design and being able to
produce it are very different skills.

In getting students to produce, architects focus on
process.

Does a focus on generating and refining
variations produce better systems designers?

It seems logical that a focus on the process of design

may yield results. However, there are two contradictory
sets of evidence. One is that the ability to generate
variation is important in design. The other is that experts
in any field don’t really generate alternatives – instead,
they recognize situations [14].

3. A Position

Design knowledge resides in the minds of designers,

who are part of a larger design culture. One way of
gaining insight into this knowledge in the domain of
systems design is by observing how students learn. By
paying attention to the way students' representations of
problems change over time, we might gain insight into
how designers know.

References

[1] R. D. Pea, "Learning scientific concepts through material

and social activities: Conversational analysis meets
conceptual change," Educational Psychologist, vol. 28,
no. 3, pp. 265-277, 1993.

[2] J. T. Gorgone and P. Gray, "Model Curriculum and
Guidelines for Graduate Degree Programs in Information
Systems: Report of the Joint ACM/AIS task Force on
Graduate IS Curriculum," 2000.

[3] J. V. Nickerson and S. Desai, "Integrating Information
Systems Course Web Site,"
http://www.stevens.edu/integration 2004.

[4] D. A. Schèon, The reflective practitioner : how
professionals think in action. New York: Basic Books,
1983.

[5] K. Crowston, "A Taxonomy of Organizational
Dependencies and Coordination Mechanisms,"
http://ccs.mit.edu/papers/CCSWP174.html 1994.

[6] J. M. Carroll, Scenario-based design : envisioning work
and technology in system development. New York:
Wiley, 1995.

[7] M. Maier and E. Rechtin, The art of systems architecting,
2nd ed. Boca Raton: CRC Press, 2000.

[8] M. Suwa and B. Tversky, " What do architects and
students perceive in their design sketches? A protocol
analysis," Design Studies, vol. 18, no. 4, pp. 385-403,
1997.

[9] D. Crocker, "Making Standards the IETF Way,"
StandardView, vol. 1, no. 1, 1993.

[10] E. Monteiro, "Scaling information infrastructure: the case
of the next generation IP in Internet.," The Information
Society, vol. 14, no. 3, pp. 229-245, 1998.

[11] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern
language : towns, buildings, construction. New York:
Oxford University Press, 1977.

[12] E. Gamma, Design patterns : elements of reusable
object-oriented software. Reading, Mass.: Addison-
Wesley, 1995.

[13] T. W. Malone, K. Crowston, and G. A. Herman,
Organizing business knowledge : the MIT process
handbook. Cambridge, Mass.: MIT Press, 2003.

[14] C. E. Zsambok and G. A. Klein, Naturalistic decision
making. Mahwah, N.J.: L. Erlbaum Associates, 1997.

3

http://www.stevens.edu/integration
http://ccs.mit.edu/papers/CCSWP174.html

	1. Introduction
	2. Research Questions from Teaching
	3. A Position
	References

