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Abstract- Probabilities of physical attack are often determined behaviors. The interactions of individual agents give rise to
by various environmental factors. As the environment changes, the emergent group-level behavior, without leaders ordering
the probability of attack associated with an area changes. In the organization.
such dynamic environments, autonomous sensors are potentially
useful to optimally cover regions that have high probabilities of We examined two sets of rules in the current simulations. In
attack. We present results from agent-based simulations, in which one condition, all agents moved toward the region with a high
autonomous sensors "forage" a space to find areas with high attack probability as quickly as possible. In the other condition,
attack probabilities. Simple heuristics often resulted in optimal the agent closest to the area with high attack probability moved
coverage of the attack regions, without a centralized control. toward the area more quickly than the other agents.
By varying how quickly sensors respond to a threat, we can
encourage some sensors to cover some areas, and others to hang A. Drawbacks of All Sensors Moving Quickly
back and defend different areas, allowing them to distribute
optimally as a team. The idea of making team members hang The strategy to move all sensors to the attack region as
back may seem counterintuitive. In fact, people often converge quickly as possible seems intuitive. Rather than having sensors
all at once to respond to an immediate threat. Our results show in areas where attacks are highly unlikely, we want to move
that it is useful to have some agents remain behind, in case the . .

environmentchanges. ~~~~more sensors to the region that has high probabilities of
attacks. People do tend to converge all at once to respond

I. INTRODUCTION to an immediate threat.
Probabilities of physical attacks are often determined by However, significant problems can arise when everyone in

various environmental factors. For example, divers cannot a team responds to a threat at the same speed. One problem
swim against strong currents, and thus the probability of is that responding to a new threat can be quite difficult. For
such an attack is low. Furthermore, the probability of attack example, if all team members responded to an alert in area
associated with an area changes as the environment changes. X, it may take a while for everyone to respond to a new alert
For instance, the time of day and the weather conditions can in area Y. Another problem is that attending to two threats at
affect the strength of currents. the same time will be impossible if all team members move

There is another reason to pay attention to the environment. together. These issues are important because an attack is often
In many security situations, the probability of an attack at any followed by more attacks and simultaneous attacks are not
particular instant is small, and the time between attacks is uncommon.
long. Sensors, then, are rarely detecting target signals. But
the environment is changing. The sensors can monitor the B Benefits of Some Team Members Hanging Back
environment and learn how to respond to it. Learning about the By making the agent closest to the attack area move toward
always-surrounding environment is a useful proxy for learning the area more quickly than the other agents, we can encourage
about the rarely-appearing target. some sensors to cover some areas, and others to hang back

In dynamic environments, autonomous sensors are poten- and defend different areas. This hold-back strategy deals with
tially useful for optimally covering regions that have high the shortcomings of all team members moving at the same
probabilities of attack. A problem faced by mobile agents is speed; it allows the agents to be ready for new situations and
how to search the environment for resources (e.g., potential provides more coverage when there are multiple areas that are
attack regions). When the environment consists of other agents likely to be attacked. As an example, imagine children playing
that are also searching for resources, the optimal strategy for soccer. Children all run to the ball and congregate around the
an agent is no longer a simple function of the distribution of ball, analogous to all team members responding to a threat
resources but is also a function of the strategies adopted by together. When the ball escapes the crowd, it may take a while
other agents. for everyone to run to the ball again. If some children remain

In the current work, we present initial results from agent- behind, the escaped ball may fall in front of them, allowing a
based simulations, in which autonomous agents or sensors quick recovery of the ball.
"forage" a space to find areas that have high probabilities Although people often do not hang back in emergency
of attacks. Instead of following a centralized control, the responding, they do in other situations. For example, in
agents all obey the same simple heuristics that control their addition to using their knowledge of resource density to
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move to profitable regions, people use their knowledge of the the sensor moved. We assumed that the sensors were able to
locations of other foragers to distance themselves from the determine the directions of the signal source (e.g., by way
crowd [1]. By hanging back, agents have the opportunities to of triangulation). In this simulation, each autonomous sensor
discover new areas, allowing them to distribute optimally as a selected one of 8 possible directions at a given time that
team. Researchers covering the domain of inquiry, neurons reduced its distance to the signal source: North, North East,
specializing for certain information, and ants foraging for East, South East, South, South West, West, or North West.
food are some examples of group-level, or social, behaviors
that emerge from some agents remaining behind [2]. One
reason why people tend to converge all at once in emergency The simple heuristics proposed in the current work often
situations, instead of some people hanging back, may be that led to optimal coverage of the attack regions. By changing
time pressure and emotional factors associated with crises speed, we could encourage some sensors to cover some areas,
interfere with people's cognitive abilities, such as quickly but and others to hang back and defend different areas.

carefully analyzing the situations and thinking ahead. Each box in Fig. 1 displays a snapshot of a continu-

II. SIMULATION ous simulation at a different time, after the sensor move-

In ur imuatin, achautnomus ensr ws rndoly
ments became stable under each condition. The same pat-

Inuourusimulation, each autonomous sensor waswrandomly.
assigned a location on the 370 pixels by 320 pixels grid regions (i.e., green patches) changed shapes and positions
world. We used three mobile sensors. In Fig. 1, sensors are from time to time or moved continuously (i.e., target chas-
represented by black dots and regions of potential attacks are ing). These simulations (Java Applets) can be found at
represented by green patches. For example, static sensors can http://personal.stevens.edu/-'-wysakamot/.
be distributed across a river that transmit signals based on 1) All Sensors Moving Quickly: In the top part of Fig. 1, the
environmental data. For instance, the static sensors can send closest sensor and the other sensors moved at the same speed,
stronger signals when the current is weaker. Green patches resulting in every sensor going to the same place. The sensors
represent the signals from these static sensors, where a larger converged all at once. This strategy led to a quick coverage
green patch indicates stronger signals, and hence a higher of an attack region when there was a single region to cover or
probability of attack. Thus, we want to have more mobile when one region had a higher probability of an attack than the
sensors in larger green patches. Moreover, we want to have all other. However, the sensors failed to cover each region when
green patches covered when there are enough mobile sensors there were multiple regions to cover. As can be seen in the
to cover all of the patches. rightmost condition in the top part of Fig. 1, the team became
A. Simple Rules Governing Sensor Behavior stuck in the middle of the two regions when the two regions

In our proposed scheme, the following three simple steps had the same probability of attacks.
determined the behavior of the autonomous sensors. 2) Closest Moving Faster: In the bottom part of Fig. 1, the

1. One green pixel (i.e., signal) was randomly selected from closest sensor moved faster than all the other sensors. This

all the green pixels present. Thus, when the probability parameter setting allowed the sensors to become specialized to

of attack was higher, the signal was more likely to be certain regions and as a group optimally cover a set of regions;
selected. We assumed that all the mobile sensors received each region was covered and more sensors were allocated to

a signal from the same source at a given time, which can larger regions. When there were three autonomous sensors and

be achieved by making the static sensors send signals two regions with the same attack probability, the extra sensor

asynchronously. stayed in the middle of the regions, as can be seen in the
leftmost box in the bottom part of Fig. 1. This behavior could

2.ihel mobledsenordthaws closest toxl wthe s nele green, be useful when communication distance is limited; the middlepixel moved toward the green pixel with one speed,
determined by the value of the slider labeled Closest Rate sensor can serve as a bridge.
in Fig. 1. We assumed that the distance was related to 111. CONCLUSIONS AND FUTURE RESEARCH
the strength of a signal received by a sensor and that

In many security situations, the probablity of an attack atthe sensors were able to communicate with one another any scuritstatis , theprobabityoan attacka
to dterinewhowascloestto te sleced ixe (ie.,any particular instant is small, and the time between attacks

' is long. Sensors, then, are rarely detecting target signals. Butwho received the strongest signal). the environment is changing, and the probability of a physical3. All of the other sensors moved toward the selected green attack associated with a region changes as the environment
pixel with another speed, determined by the value of the g g
slider~laee o lss aei i. 1. changes. The sensors can monitor the environment and learn

how to respond to it. Learning about the always-surroundingEach autonomous sensor, i, updated its position, Posi, ac- environment is a useful proxy for learning about the rarely-
cording to

A\Posi Speedy x Directioni (1) aprIn tagt
In changing environments, autonomous sensors can be

where Speed determined how fast the sensor moved as de- useful for optimally covering the potential attack regions.
scribed above and Direction determined to which direction In our simulations, the sensors followed simple heuristics
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Fig. 1. Black dots are autonomous sensors and green patches are regions of potential attack. Larger green patches have higher probability of attack. In the
top part, the sensor closest to a selected pixel and the other sensors moved at the same speed, leading to all sensors converging at once. With this parameter
setting, all team members migrated to a region that had higher probability of attack and they became stuck in the middle of the two regions that had the same
probability of attack. In the bottom part, the closest sensor moved faster than all the other sensors. This parameter setting allowed the sensors to become
specialized to certain regions and as a team optimally cover the areas; each region was covered and more sensors were allocated to larger regions.

and adapted to varying environments by themselves. The region and scare away others, leading to under-matching [10].
interactions of sensors resulting from the simple heuristics We are experimenting with how these possibilities might affect
often led to social structures in which sensors are allocated the behavior of learning sensors.
optimally, without a centralized instruction set. By varying
how quickly sensors respond to a threat, we can encourage B. Incorporating Imitation
some sensors to cover some areas, and others to hang back and The hanging back of our learning sensors is analogous
defend different areas, allowing them to distribute optimallY to people distancing themselves from the crowds. However,
as a team. The idea of making some team members hang back humans also exhibit "bandwagon" behavior, in which they
is important to stress because people often do converge all at use the appearance of others as evidence that a region might
once to attend to an immediate threat. It can be useful to make be lucrative [1]. This type of social learning is useful when
some agents remain behind, in case the environment changes. resources are invisible but other agents are visible.

A. ExploringUnder-Matching
~~Imitating others is one of the most powerful methods for

A. ExploringUnder-Matching ~~quick and effective learning [3] by allowing people to display
Foraging behavior is often compared with the ideal free "no-trial learning" and perform behaviors that they would not

distribution model [5], [6], which predicts that a team of have otherwise considered [4]. We assumed in the current sim-
foragers will allocate themselves to areas in proportion to ulation that sensors have all the information. However, this is
the relative resources available at each area. Our learning unlikely to be the case in the real environments. Incorporating
sensors' emergent behavior was consistent with this prediction. the capacity for imitation in learning sensors is potentially
However, experiments on foraging behavior on humans [1] useful when there are uncertainties in the environment (e.g.,
and other animals [7], [8] often report systematical under- created by signal loss).
matching, in which fewer than expected foragers go to the

CFrhrEtnin

more profitable region and more than expected foragers go to C.FrhrEtnis
the less profitable region. Our approach using agent-based models is designed to
One possibility is that organisms have a tendency to sample be general. The same principles that we have used in the

pools approximately evenly, leading to under-matching, which current simulations can be applied to target chasing [II], [12],
may be a useful strategy in an environment in which resource in which multiple autonomous sensors attempt to optimally
ouitputs mnayi varyi withtl tirme [9]. Anothe-r posbliyi that, AAchas multiple movNXingy t-arge-ts. Simu11atio1n 1resul_ts- for t-arge--t

unikour lernn sesos whc l a h aeaiiis hsn r poiig lhuhw aiuae h pe
oransmdffr nthircopeitveailtis,an.cmpt- .f.ovmet.ssmngtht.hesesosknw hih1irctotielfite oraim a oiaersore tterce omve ecnmk h esrslanwihdrcint| l w ~~~~~192E



move by error-correction and manipulate the learning rate [4] A. Bandura, "Behavioral modification through modeling procedures," in
rather than movement speed; the agent closest to the target (or Research in behavior modification: New development and implications,

L. Krasner and L. P. Ulmann, Eds. New York: Rinehart and Winston,
attack region) learns the direction more quickly than the others. 1965, pp. 310-340.
Manipulating the learning rate leads to the same patterns of [5] S. D. Fretwell and H. L. Lucas, "On territorial behavior and other factors
results as manipulating the speed for the simulations of both influencing habitat distribution in birds," Acta Biotheoretica, vol. 19, pp.
covering the attack regions and chasing targets. [6 16-36, 1970.[6] A. K. Seth, "Modeling group foraging: Individual suboptimality, inter-

Another extension of the current work is to use the distance ference, and a kind of matching," Adaptive Behavior, vol. 9, pp. 67-91,
between the sensor and the signal source to determine the 2001.

[7] W. Baum and J. R. Kraft, "Group choice: Competition, travel, and
speed at which the sensor moves. This method will allow the ideal free distribution," Journal of the Experimental Analysis of
sensors to distribute optimally when they lose their ability to Behavior, vol. 69, pp. 227-245, 1998.
communicate and cannot determine who is closest to the target. [8] M. Kennedy and R. D. Gray, "Can ecological theory predict the

distribution of foraging animals? A critical analysis of experiments on
Furthermore, the current work can be extended to incorporate the ideal free distribution," Oikos, vol. 68, pp. 158-166, 1993.
memory capacity so that the agents can make predictions [9] K. E. Bell and W. M. Baum, "Group foraging sensitivity to predictable
about the environment [13] and intercept the targets rather and unpredictable changes in food distribution: Past experience or
than simply chasing them. present circumstances?" Journal of the Experimental Analysis of Be-

havior, vol. 78, pp. 179-194, 2002.
[10] A. I. Houston and J. M. McNamara, "The ideal free distribution when
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