
Binding Now or Binding Later : The Per formance of UDDI Registr ies

M. Brian Blake
Georgetown University

Washington, DC, USA
mb7@georgetown.edu

Amy Lynn Sliva
University of Maryland
College Park, MD, USA
asliva@umiacs.umd.edu

Michael zur Muehlen
and Jeffrey V. Nickerson

Stevens Institute of
Technology

Hoboken, NJ, USA
{mzurmuehlen,jnickerson}

@stevens.edu

Abstract

In service-oriented environments, the fluidity of the
marketplace introduces changes in service offerings
and subsequent connection failures for users still
bound to outdated services. One focus of web services
research is the real-time acquisition of new
capabilities via service discovery using Universal
Description, Discovery, and Integration (UDDI)
registries. Another equally valuable usage of UDDI
registries, as addressed in this paper, is the real-time
assurance of service responsiveness. UDDI registries
can be incorporated into business process execution
routines to assure that the underlying services are
active at operations time. In this paper, several UDDI
modes of operation are evaluated through
performance tests of different UDDI implementations.
The results of the investigations can be applied as a
decision aid for organizations to choose the most
efficient utilization of UDDI for the management of
responsiveness in their own service-oriented
processes.

1. Introduction

Emerging web services standards are intended to
speed the expansion of electronic marketplaces [6]
[11]. These standards are promising because they will
provide a way to increase the automation of
contracting and purchasing. Their promise also brings
about a new set of technical challenges. In order to
automate the composition of varied services, the style
of a program in a services environment needs to be
different from a program in a conservative
environment. Researchers have pointed out that
programs need to bind late, or just-in-time [2][3]. Late
binding is a technical necessity for simple business
reasons; contracts will need to be filled in short
amounts of time, and the openness of the marketplace
will make it difficult to predict far ahead of time who
will be able to best fulfill a particular request.

While late binding has been implemented within
programming languages, it is more complex to
implement in service environments, as performance is
more likely to vary, transactions are more likely to be
long, and the search criteria for services discovery are
likely to be complex. In situations where services are
not very reliable, or if their location changes
frequently, late binding may be more desirable than in
situations where the services are somewhat reliable and
their location is fixed. Therefore, when late binding is
significantly expensive, organizations must trade-off
against the alternative: binding early, which helps
mitigate the risk of poor performance at operations
time.

In this paper, the major contribution is a method for
evaluating operational modes, using UDDI
technologies, to assure the validity of pre-existing
service bindings at run-time. When new job requests
are received, the organization can reaffirm the validity
of all services prior to initiating the business process
(pre-process validation) or the organization can
choose to only acquire new service information only
after a connection failure occurs (connection-time
validation). We acknowledge that there are numerous
variations to these operational modes, but these two
modes represent two general notions, thus they are the
focus of the following studies. Considering the
overhead associated with concurrently accessing the
UDDI registry and the fact that not all services will
need new bindings, the studies in this paper suggest
that an informed choice of operational mode can be
made through an analysis of the local domain
characteristics.

The paper proceeds in the following way. First we
discuss related work in the area of UDDI. Then we
describe the benchmarking experiments used to
characterize the behavior of current UDDI
implementations. In section four, we present the results
of simulation-based experiments and discuss a decision
support aid for configuring reliable business process
execution systems.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

1©1530-1605/07 $20.00 2007 IEEE
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

2. Background and Related Work

Version 3 of the UDDI specification supports web
services: its implementations are distributed on-line
databases of web services descriptions [9].
Specifically, UDDI registries support the management
of meta-information that describes particular web
services. This meta-information is generally
represented in the Web Service Description Language
(WSDL) [21]. Service-oriented computing [16]
supports the development of new business processes
through the automatic or semi-automatic discovery and
composition of web services (also referred to as
services orchestration). UDDI can be viewed as the
proposed discovery mechanism, the directory, for web
services. Semantic web researchers point out that
UDDI does not fully solve the semantic issues, and
suggest ways of incorporating semantic description
into UDDI [12][13].

Although researchers have investigated technologies
that directly support the composition of web services
(e.g. [7][5][17]) and there are a large number of studies
that evaluate general database performance, there are
far fewer that consider UDDI-specific registries. Miles
et al. [15] measured the responsiveness of a UDDI
registry with respect to developing personalized grid
services. Metso [14] also conducted experiments that
directly assess UDDI performance. Metso focuses on
the performance as the UDDI repository stores an
increasing number of web service descriptions. He
discovered that the UDDI registry degrades
considerably as the number of entries increase. Our
study considers the degradation that occurs as the
number of concurrent requests increases. In our work,
this degradation is further used as a factor in
determining the best integration of UDDI registries in
business process management frameworks.

 Adams, Gisolfi, Snell and Varadan [1] and
Domanski [10] also see the UDDI registry as a
potential source of performance problems, particularly
those problems associated with message transmission
and parsing. They suggest that web service
applications cache information from UDDI registries
to minimize UDDI requests. Such caching software
can use the HTTP 200 error as a trigger to dynamically
search for new information when web services
information changes. This solution helps to minimize
unnecessary traffic but does not investigate how the
registry should be utilized for reliability. Chen, Liang-
Tien, and Bu Sung [8] introduce a supporting
architecture and implementation to UDDI frameworks.
This architecture stores historical measurements on

web services performance and combines them with
UDDI functionality to predict and suggest the most
efficient services as new external requests come in.
This work complicates the UDDI implementation
effort, but helps find the underlying services that
perform better.

In another related study, just one UDDI
implementation was evaluated [18]. The results were
incorporated into a simulation to predict UDDI’s
scalability. In this paper, we extend the breadth and
depth of the earlier studies by considering multiple
concurrent UDDI registry implementations. In
addition, these studies are used as decision support
aids for organizations planning to develop systems that
incorporate UDDI directory services to assure
reliability.

3. Understanding UDDI Per formance: A
Prerequisite for System Analysis

In order to evaluate the usage of UDDI reliability
scenarios, it is first important to understand the unique
nature of these technologies. We experimented with
two open source registries, jUDDI and Java Web
Services Development Pack (JWSDP). jUDDI is a
Java-based implementation of UDDI that was created
to integrate effectively with the Tomcat web server [4].
JWSDP integrates with Tomcat as well but follows
more closely Sun Microsystems’ Java-based suite of
tools [20]. jUDDI uses an underlying MySQL
database, while JWSDP uses a Java proprietary
database.

 The purpose of the experimentation was to
determine how UDDI implementations perform under
regular conditions and under conditions of heavy
concurrent requests. Ultimately, we incorporate the
real measures of performance into simulation software
that we used to evaluate modes of UDDI operation in
Section 4. We focused on the most common functions,
inquiry (read) and publication (publish). There were
two experiments performed on a 1.5 Gigahertz,
Pentium 4, Dell workstation with 1 Gigabyte of RAM.
The first experiment was designed to determine the
baseline performance of the UDDI frameworks by
measuring the speed of common registry tasks,
specifically the inquiry and publication functions, in an
optimal environment (i.e., with no other registry
traffic). The second experiment determined the
performance of UDDI implementations under
conditions of concurrent traffic.

 In the first experiment, the publication and inquiry
functions were measured under normal operations
without additional traffic. The registry was populated

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

with approximately 100 entries. The inquiry (read)
function was executed 10 times sequentially and the
average service time was recorded. Likewise, the
average service time over 10 runs was recorded for the
publication function. jUDDI’s inquiry function
executed at an average of 40 ms over 10 invocations,
and JWSDP at 156 ms over 10 invocations (For
JWSDP the first measure was not included considering
the significant connection overhead on the first
request. The publication function has an average
service time of 453 ms for jUDDI and 247 ms for
JWSDP over 10 invocations. In all tests, variance was
less than 10% of the respective mean. We anticipated
that the publication function would require more time
based on the underlying database commit that must
take place. These baseline measures for jUDDI inquiry
and publication are displayed in Figure 1 and 2; Figure

3 and 4 contain the data for JWSDP inquiry and
publish.

The second experiment examined the performance
of the UDDI frameworks with an increasing
concurrency of processes (i.e., large numbers of
requests, large numbers of concurrent service changes,
etc.). The same performance tests were run, this time
with additional Java programs simulating concurrent
registry operations. The purpose of these tests was to
determine the relative performance of the registry
functions in conditions of varying traffic. Specifically,
the inquiry and publication functions were evaluated
with other concurrent publication and inquiry traffic.
There were 4 cases of concurrent traffic, 1
inquiry/second, 1 publication/second, 1 inquiry/second
and 1 publication/second, and 2 inquiry/second and 2
publication/second.

jUDDI Read

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Services

S
ec

o
n

d
s

no traffic

traffic: 1 publish/s

traffic: 1 read/s

traffic: 1 publish/s; 1
read/s
traffic: 2 publish/s; 2
read/s

Figure 1. jUDDI Inquiry Benchmarks Figure 2. jUDDI Publish Benchmarks

WSDP Read

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Services

S
ec

o
n

d
s

no traffic

traffic: 1 publish/s

traffic: 1 read/s

traffic: 1 publish/s; 1
read/s
traffic: 2 publish/s; 2
read/s

Figure 3. JWSDP Inquiry Benchmarks Figure 4. JWSDP Publish Benchmarks

jUDDI Publish

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Services

S
ec

o
n

d
s

no traffic

traffic: 1 publish/s

traffic: 1 read/s

traffic: 1 publish/s; 1
read/s
traffic: 2 publish/s; 2
read/s

WSDP Publish

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1 2 3 4 5 6 7 8 9 10

Services

S
ec

o
n

d
s

no traffic

traffic: 1 publish/s

traffic: 1 read/s

traffic: 1 publish/s; 1
read/s

traffic: 2 publish/s; 2
read/s

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

3
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

The specific performance results are shown in
Figures 1, 2, 3, and 4. Several trends and variations
were determined from the initial experimentation.
Trends across multiple UDDI registries are helpful in
determining standard operational modes that may
increase the general performance of any registry.
Variations in multiple registries help to determine
attributes that can be determined and used only for
certain registries in certain domains. Table 1
summarizes anticipated results while Table 2 and 3
summarize the findings useful to our optimization
framework.

Table 1. Anticipated Results in UDDI Operations.

All registries perform significantly worse as more
concurrent requests are delivered.
Performance fluctuates more severely as concurrent
traffic increases.

Table 2. Findings: Trends Common to all Operations.

Concurrent heterogeneous traffic is more expensive
than concurrent homogeneous traffic.
At certain times in the operation, heavier loads may
perform better than lighter loads.

Table 3. Findings: Variations in the UDDI Operations.
A significant connection delay is associated with the
first request in the JWSDP registry but not seen in the
jUDDI registry.
Overall, jUDDI handles inquiries more efficiently
than publications and JWSDP handles publications
more efficiently than inquiries.
Publication traffic directed toward the jUDDI registry
causes the registry to degrade as the number of
requests continue over time at the maximum rate for
one client. All other operations for both registries
tend to perform consistently with no upward trend.

The most important result is the last one: the
degradation of inquiry/publication service times as
concurrent requests are executed.

4. Exper imentation with Business
Process Reliability Routines

We experimented with two general operational
modes for incorporating UDDI into service-oriented
business process management systems for reliability.
The subsequent sections describe both operational
modes in detail.

 4.1 Pre-Process Validation and Connection-
Time Validation

 The first general model of operation for assuring
reliability in business process management systems
using UDDI is to configure the system to check all of
the underlying services once a new job is received
(pre-process validation). For this configuration, the
system follows steps 1, 1a, and 2 (Figure 5). In step 1,
a consumer requests a new job, the provider captures
the job and starts a new business process. In step 1a,
the provider confirms that all current services for the
instantiated business process are still viable. This
confirmation is based on the assumption that a service
listed and valid in the provider’s UDDI at the
beginning of the job remains valid until the service is
actually requested. The purpose of this step is not the
discovery of new services, but just the validation of
pre-established services. Finally, step 2 is the
enactment of the services.

The second general model of operation is based on
internal failure triggers during service invocation,
rather than a preemptive viability check of all services.
The operational mode for connection-time validation
accesses the UDDI registry for services that have
problems (i.e., after a connection error). This approach
minimizes the need to search for the address of every
service, but causes searches only for services that have
changed locations. However, the service time for an
individual service is increased because the new service
time must include the time required to determine that a
connection error has occurred. The process for
connection-time validation is also illustrated in Figure
5, as the sequence of steps 1, 2, and 2a.

Figure 5. Two Modes of Operation with UDDI.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

4
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

 Figure 6. State Diagrams of Validation Modes.

4.2 Defining Service Times for Two UDDI
Operational Modes

In evaluating multiple operational modes, this study
is concerned with the service time specific to the
UDDI operations. As such, we define the service time
for a specific service inquiry request as STR. We have
developed a specialized UDDI service time function
that was created running performance evaluations on
the UDDI implementation (which is discussed in
Section 3). Therefore, at time, t, the UDDI function,
Ut, generates the service time, STR , considering the
sum of incoming UDDI requests, it, and the sum of
active jobs, qt, being processed concurrently on a
specific UDDI registry. The service time assigns
service times to the new requests while active requests
are considered part of the working queue. The service
time modules uses the behavior discovered based on
concurrency for new requests and baseline operational
performance measures for active jobs (Section 3).
The service time for the operation model for pre-
process validation is defined as

),(tttR qiUST
The service time for the operation mode for

connection-time validation is similar to the service
time for pre-process validation. The only difference is
that the service time for a connection failure, CF, must
also be added to the total UDDI operation time.
Therefore the new service time, ST’R , can be defined
as

CFqiUST tttR),(
The operations of the business process management

system can be generally modeled in a Unified Model
Language (UML) statechart diagram. Figure 6 contains

two statechart diagrams illustrating both modes of
operations annotated with the expressions defined in
the above relations.

4.3 Exper imentation
 Several experiments were executed using a service-

oriented simulation framework created by the authors,
and described in detail in [19]. The simulation
software consists of three components. A traffic
generation component which generates service-
oriented process requests in various distributions. The
simulation component processes the results used for
decision support. The simulation component has an
internal service time module, as described in Section
4.2, that calculates service time as a result of
concurrent requests. The simulation component is
configured with a variable amount of UDDI emulator
components. These UDDI emulators are similar to
queues, but their responsiveness are configured based
on benchmarks from the UDDI performance
experimentation.

Figure 7. Overview of the Simulation Software.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

5
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Experiments were executed to demonstrate
situations where one operational model is generally
more efficient than the other. In evaluating the
aforementioned operational modes, each of the modes
was exercised by varying three different aspects:
traffic composition, percentage of service changes, and
connection failure time. In the experiments, we
considered a finite number of job requests (i.e., 100
job requests) independent of the traffic composition.
The traffic composition was varied such that the first
traffic scheme was consistently light and steady. In this
scheme, 1 job request is transmitted for each time
cycle. Another traffic scheme had a relatively high
level of concurrency. Ten requests were transmitted at
once regularly throughout the simulation. The final
traffic was delivered using a Poisson distribution.

 The percentage of service changes were varied
independently. The overall percentages of services that
change throughout the entire simulation were varied at
33%, 66%, and 100%. At 100%, all services change
each time. Finally, the connection failure time was also
varied relative to the UDDI service time. The
connection time was varied to be 25%, 50% and 100%
of the UDDI service time.

 Considering the variations, both operational modes
were simulated in five sets of experiments. In this
paper, we do not present all of the numerical findings
considering the fact that the actual numbers would
vary depending on machine and process schema.
However, in Figure 8, we display the findings
generally comparing the merits of both operational
modes. The non-shaded cells represent that the
connection-time validation mode has the lowest
average service time per business process. The pre-
process validation mode has the lowest average service

time in the shaded cells. Mixed cells are borderline
cases.

5. Discussion

As anticipated, the factor that has the most impact
on the choice of modes is the percentage of service
changes. In all tests, when the percentage of service
changes was less than 59%, the connection-time
validation was most efficient. Although the exact
percentage varied, typically, when the service changes
were between 59% and 70% of all services, the pre-
process validation mode was most efficient in
completing business processes. In all experimental
cases, the pre-process validation mode was more
efficient when the percentage of changes were greater
than 70%.

The experimentation also suggests that the
connection-time validation mode performs better when
the traffic is steady. Steady traffic is more beneficial to
the connection-time mode than highly concurrent and
Poisson-distributed traffic. With steady traffic, the
connection-time mode has reduced concurrency across
processes. Steady or concurrent traffic does not
significantly improve the pre-process validation mode
because, in this mode, the service requests are sent in
concurrently regardless of the traffic composition.
Finally, when the connection failure time is high, the
percentage of service changes required to make the
pre-process validation mode more efficient than the
connection-time validation mode is reduced.

Figure 8. Decision Matrix (Shaded quadrants represent areas where pre-process validation should be instituted)

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

6. Conclusion

In this paper, we present a method for evaluating
modes of operation in a service-oriented computing
environment. In this approach, we benchmarked
current UDDI implementations and incorporated the
resulting performance measures into software
simulation. Using this simulation, we evaluated, side-
by-side, two modes of operation that support the use of
UDDI to assure the reliability of services in a business
process enactment scenario. Results show that
understanding the amount of requests, the overhead
associated with connection failures, and the nature of
the traffic can define the strategy that organizations
might take when using UDDI registries in this fashion.
An innovation in this work is the methodology for
combining these factors to make operational decisions.

Acknowledgements

 The investigations in this paper were supported by
the Computing Research Association’s (CRA)
Collaborative Research Experience for Women
(CREW) in Undergraduate Computer Science and
Engineering fellowship. In addition, the authors wish
to acknowledge the support by the National Science
Foundation under grant number 0326309.

References

[1] Adams, H., Gisolfi, D., Snell, J., & Varadan, R. (2004).
Best Practices for Web services. IBM. Accessed (2006)
http://www-
106.ibm.com/developerworks/webservices/library/ws-
best1/

[2] Andrade, L., & Fiadeiro, J. (in print). Composition
Contracts for Service Interaction. Journal of Universal
Computer Science.

[3] Andrade, L., Fiadeiro, J., Gouveia, J., Koutsouko, G., &
Wermelinger, M. “Coordination for Orchestration”.
Proceedings of the 5th International Conference on
Coordination Languages and Models. 2002

[4] Apache. (2004). jUDDI,
http://ws.apache.org/juddi/jUDDI, Apache Project.

[5] Blake, M.B. “Coordinating Multiple Agents for
Workflow-Oriented Process Orchestration”. Information
Systems and E-Business Management, 1(2).

[6] Benatallah, B., Dumas, M., Sheng, Q. Z., & Ngu, A. H.
H. “Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services”. Proc of the

IEEE 18th International Conference on Data
Engineering. 2002

[7] Benatallah, B., Sheng, Q., & Dumas, M. “The Self-
Serv Environment for Web Services Composition”.
IEEE Internet Computing, 7(1), 40-48. 2003

[8] Chen, Z., Liang-Tien, C., & Bu-Sung, L. QoS-Aware
and Federated Enhancement for UDDI. Int. Journal of
Web Service Research, 1(2), 58-85. 2004

[9] Clement, L., Hately, A., Riegen, C. v., & Rogers, T.
(2004). UDDI Version 3.0.2 (Technical Committee
Draft, Dated 20041019).
http://uddi.org/pubs/uddi_v3.htm

[10] Domanski, B. (2003). An Introduction to Web Services
and Performance Issues. zJournal, December.

[11] Leymann, F., & Roller, D. (2002, 01 August 2002).
Business processes in a Web services world. A quick
overview of BPEL4WS. Retrieved 02-28, 2005, from
http://www-106.ibm.com/developerworks/webservices/

[12] Massimo, P., Takahiro, K., Terry, R. P., & Sycara, K.
“Importing the Semantic Web in UDDI”. In C. Bussler
& R. Hull & S. McIlraith & M. E. Orlowska & B.
Pernici & J. Yang (Eds.), Lecture Notes in Computer
Science (Vol. 2512). 2002

[13] Medjahed, B., Bouguettaya, A., & Elmagarmid, A. K.
(2003). Composing Webservices on the Semantic Web.
VLDB Journal., 12(4), 333-351. 2002

[14] Metso, J. Suitability of UDDI Registry for web-Pilarcos
Architecture-Performance Measurements, Report C-
2003-72: University of Helsinki, Finland. 2003

[15] Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K.,
Payne, T., & Moreau, L. Personalized Grid Service
Discovery. Proceedings of the Nineteenth Annual UK
Performance Engineering Workshop (UKPEW'03),
University of Warwick, Conventry, England.2003

[16] Papazoglou, M. P., & Georgakopoulos, D. Service
Oriented Computing. Communications of the ACM,
46(10). 2003

[17] Peltz, C. Web Services Orchestration and
Choreography. IEEE Computer, 36(10), 46-52. October
2003

[18] Saez, G., Sliva, A.L. & Blake, M.B. “Web Services-
Based Data Management: Evaluating the Performance
of UDDI Registries”. Proceedings of the International
Conference on Web Services, (ICWS 2004), San Diego,
CA. 2004

[19] Sliva, A.L. (2005). “Characterizing Data Management
Approaches for Service-Oriented Computing”,
Undergraduate Thesis, Department of Computer
Science, Georgetown University

[20] Sun. (2006). Web Services Developer Pack (JWSDP).
http://java.sun.com/webservices/jwsdp/index.jspRetriev
ed, from the World Wide Web:

[21] W3C. (2006). Web Services Description Working
Group. http://www.www.org/2002/ws/desc/

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

7
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

