%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Scientific Word Wrap/Unwrap Version 2.5 % % Scientific Word Wrap/Unwrap Version 3.0 % % % % If you are separating the files in this message by hand, you will % % need to identify the file type and place it in the appropriate % % directory. The possible types are: Document, DocAssoc, Other, % % Macro, Style, Graphic, PastedPict, and PlotPict. Extract files % % tagged as Document, DocAssoc, or Other into your TeX source file % % directory. Macro files go into your TeX macros directory. Style % % files are used by Scientific Word and do not need to be extracted. % % Graphic, PastedPict, and PlotPict files should be placed in a % % graphics directory. % % % % Graphic files need to be converted from the text format (this is % % done for e-mail compatability) to the original 8-bit binary format. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Files included: % % % % "/document/exam2Sol_99f.tex", Document, 11048, 10/19/1999, 14:06:42, ""% % "/document/two.jpg", ImportPict, 5661, 10/15/1999, 14:10:06, "" % % "/document/graphics/five.jpg", ImportPict, 6004, 10/15/1999, 7:32:38, ""% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% Start /document/exam2Sol_99f.tex %%%%%%%%%%%%%%%%%% %\newtheorem{theorem}{Theorem} %\newtheorem{axiom}[theorem]{Axiom} %\newtheorem{conjecture}[theorem]{Conjecture} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{definition}[theorem]{Definition} %\newtheorem{example}[theorem]{Example} %\newtheorem{exercise}[theorem]{Exercise} %\newtheorem{lemma}[theorem]{Lemma} %\newtheorem{proposition}[theorem]{Proposition} %\newtheorem{remark}[theorem]{Remark} \documentclass{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{graphicx} \usepackage{amsmath} %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Created=Sunday, May 16, 1999 12:00:37} %TCIDATA{LastRevised=Tuesday, October 19, 1999 10:06:40} %TCIDATA{} %TCIDATA{Language=American English} %TCIDATA{CSTFile=webmath.cst} %TCIDATA{PageSetup=72,72,72,72,0} %TCIDATA{AllPages= %F=36,\PARA{038
\hfill \thepage} %} \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][P roof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \input{tcilatex} \begin{document} \section{ Ma 115 \qquad \qquad Exam II Solutions\qquad \qquad 10/14/99} \subsection{Name:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \ \ IDN:\_\_\_\_\_\_\_\_\_\_\_\_\_ E-Mail:\_\_\_\_\_\_\_\_\_\_\_\_} \subsection{\protect\small I pledge my honor that I have abided by the Stevens Honor System. \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_% \_} {\Large You may not use a calculator on this exam. You must show all of your work.} \begin{description} \item[1 a (25 points)] Find the equation of the tangent line to the curve \end{description} \vspace{1pt} \begin{equation*} x^{3}+y^{3}=\dfrac{9xy}{2} \end{equation*} at the point $(2,1)$. \vspace{1pt} First, use implicit differentiation to find the derivative: \begin{equation*} 3x^{2}+3y^{2}y^{\prime }=\frac{9}{2}\left( y+xy^{\prime }\right) \end{equation*} \begin{equation*} y^{\prime }\left( 3y^{2}-\frac{9x}{2}\right) =\frac{9y}{2}-3x^{2} \end{equation*} \ \ \begin{equation*} \text{or \ \ }y^{\prime }=\frac{9y-6x^{2}}{6y^{2}-9x} \end{equation*} \vspace{1pt} at the point $\left( 2,1\right) $ \ $\ \ \ y^{\prime }=\frac{5}{4}$ \ which is the slope of the tangent line at that point. Thus the equation of the tangent line is: \begin{equation*} \text{\ }\ \ y-1=\frac{5}{4}\vspace{1pt}\left( x-2\right) \end{equation*} \vspace{1pt} \begin{description} \item[2 a (10 points)] Let $y=\sec t$ and $x=\tan t.$ Find $\dfrac{dy}{dx}$ at $x=1.$ \end{description} \vspace{1pt}Solution $1:$ \vspace{1pt}Use parametric differentiation: \ \ \ \begin{equation*} \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \end{equation*} \begin{equation*} \frac{dy}{dt}=\sec t\tan t \end{equation*} \begin{equation*} \frac{dx}{dt}=\sec ^{2}t \end{equation*} thus: \ \begin{equation*} \frac{dy}{dx}=\frac{\sec t\tan t}{\sec ^{2}t}=\frac{\tan t}{\sec t}=\sin t \end{equation*} when \ \ $x=1$ \ then we know that $\tan t=1$ \ \ (which means that \ $\sin t=\cos t$ ) \ so \ \ $t=\dfrac{\pi }{4}$ \qquad Thus \begin{equation*} \left. \frac{dy}{dx}\right| _{x=1}=\sin \frac{\pi }{4}=\frac{1}{\sqrt{2}} \end{equation*} Solution $2:$ Rather that use parametric differentiation one write $y$ in terms of $x$ and then differentiate. Since $x=\tan t,$ we have the diagram below: \begin{center} \FRAME{dtbpF}{3.3797in}{3.0545in}{0pt}{}{}{two.jpg}{\special{language "Scientific Word";type "GRAPHIC";maintain-aspect-ratio TRUE;display "USEDEF";valid_file "F";width 3.3797in;height 3.0545in;depth 0pt;original-width 3.333in;original-height 3.0104in;cropleft "0";croptop "1";cropright "1";cropbottom "0";filename 'two.jpg';file-properties "XNPEU";}% } \vspace{1pt} \end{center} Thus $y=\sec t=\sqrt{1+x^{2}},$ so $y^{\prime }=\left( \dfrac{1}{2}\right) \left( 1+x^{2}\right) ^{-\frac{1}{2}}\left( 2x\right) .$ Setting $x=1,$ we again get $y^{\prime }=\dfrac{1}{\sqrt{2}}$ \begin{description} \item[2 b $\left( 10\text{ points}\right) $] \vspace{1pt}Find the derivative of$\ \ y=\sqrt[4]{x^{3}+\left( \dfrac{x+1}{x-1}\right) ^{6}}.$ Do \textsl{not% } simplify your result. \end{description} \vspace{1pt}Think of this as \ $\left( x^{3}+\left( \dfrac{x+1}{x-1}\right) ^{6}\right) ^{\frac{1}{4}}$ and use the chain rule where \ $u=x^{3}+\left( \dfrac{x+1}{x-1}\right) ^{6}$ \vspace{1pt}then $\ \ y=\left( x^{3}+\left( \dfrac{x+1}{x-1}\right) ^{6}\right) ^{\frac{1}{4}}=u^{\frac{1}{4}}$ \ and \ $y^{\prime }=\frac{1}{4}% u^{-\frac{3}{4}}\cdot u^{\prime }.$ But \ \ $u^{\prime }$ \ can be found by using the sum rule and another application of the power and chain rule and use of the quotient rule: \vspace{1pt}$u^{\prime }=3x^{2}+6\left( \dfrac{x+1}{x-1}\right) ^{5}\cdot \left( \dfrac{1\cdot \left( x-1\right) -\left( x+1\right) \cdot 1}{\left( x-1\right) ^{2}}\right) $ Thus \begin{equation*} y^{\prime }=\frac{1}{4}\left( x^{3}+\left( \dfrac{x+1}{x-1}\right) ^{6}\right) ^{-\frac{3}{4}}\left[ 3x^{2}+6\left( \dfrac{x+1}{x-1}\right) ^{5}\cdot \left( \dfrac{1\cdot \left( x-1\right) -\left( x+1\right) \cdot 1}{% \left( x-1\right) ^{2}}\right) \right] \end{equation*} \begin{description} \item[3] Find the derivatives of the following functions. You need not simplify your results. \item[3 a (7 points)] $\dfrac{e}{\sqrt{x^{3}+2x}}$ \end{description} \vspace{1pt} Think \ \begin{equation*} \frac{d}{dx}\left( e\left( x^{3}+2x\right) ^{-\frac{1}{2}}\right) =e\left[ \frac{-1}{2}\left( x^{3}+2x\right) ^{-\frac{3}{2}}\left( 3x^{2}+2\right) % \right] \end{equation*} (Note: \ $e$ is a constant not a variable and not a function in the same way as $\pi $ is a constant: \ \ $e\approx \allowbreak 2.\,\allowbreak 718\,281\,828.$\ ) \vspace{1pt} \begin{description} \item[3 b (7 points)] $\dfrac{\sin ^{2}\left( t^{3}+t\right) }{t^{3}+t}$ \end{description} \vspace{1pt} This is a quotient rule with a chain rule with a power rule with a sum rule ... \vspace{1pt} \begin{equation*} \frac{d}{dx}\left( \dfrac{\sin ^{2}\left( t^{3}+t\right) }{t^{3}+t}\right) =% \frac{2\sin \left( t^{3}+t\right) \cdot \cos \left( t^{3}+t\right) \cdot \left( 3t^{2}+1\right) \left( t^{3}+t\right) -\sin ^{2}\left( t^{3}+t\right) \left( 3t^{2}+1\right) }{\left( t^{3}+t\right) ^{2}} \end{equation*} \begin{description} \item[3 c (11 points)] $\left( \tan \left( x^{2}+2\right) \right) \cos \left( \dfrac{e}{\sqrt{x^{3}+2x}}\right) $ \end{description} \vspace{1pt}Product rule, chain rule ... \vspace{1pt} \begin{equation*} \frac{d}{dx}\left[ \left( \tan \left( x^{2}+2\right) \right) \cos \left( \dfrac{e}{\sqrt{x^{3}+2x}}\right) \right] =\sec ^{2}\left( x^{2}+2\right) \cdot 2x\left( \cos \left( \dfrac{e}{\sqrt{x^{3}+2x}}\right) \right) +\left( \tan \left( x^{2}+2\right) \right) \left[ -\sin \left( \dfrac{e}{\sqrt{% x^{3}+2x}}\right) \cdot \left\{ \frac{-e}{2}\left( x^{3}+2x\right) ^{-\frac{3% }{2}}\left( 3x^{2}+2\right) \right\} \right] \end{equation*} \begin{description} \item[4 a (10 points)] Show that $(fgh)^{\prime }=f^{\prime }gh+fg^{\prime }h+fgh^{\prime }$. \end{description} \vspace{1pt} \vspace{1pt}Start by applying the product rule to \ $\left[ \left( fg\right) h\right] ^{\prime }=\left( fg\right) ^{\prime }h+\left( fg\right) h^{\prime } $ But then since $\left( fg\right) ^{\prime }=f^{\prime }g+fg^{\prime },$ we have \begin{equation*} \left[ \left( fg\right) h\right] ^{\prime }=\left( f^{\prime }g+fg^{\prime }\right) h+\left( fg\right) h^{\prime }=f^{\prime }gh+fg^{\prime }h+fgh^{\prime } \end{equation*} \ as desired. \begin{description} \item[4 b (10 points)] Find the equation of the line tangent to $y=\sqrt{% x^{2}+1}\left( \dfrac{1}{2x-1}\right) ^{2}\left( x+4\right) ^{3}$ at $% (0,64). $ \end{description} \vspace{1pt} \vspace{1pt}First apply the above rule to find \ \begin{equation*} y^{\prime }=\left[ \frac{1}{2}\left( x^{2}+1\right) ^{-\frac{1}{2}}\cdot 2x% \right] \left( \dfrac{1}{2x-1}\right) ^{2}\left( x+4\right) ^{3}+\sqrt{% x^{2}+1}\left[ 2\left( \dfrac{1}{2x-1}\right) \cdot \left( -1\right) \left( 2x-1\right) ^{-2}\cdot 2\right] \left( x+4\right) ^{3}+\sqrt{x^{2}+1}\left( \dfrac{1}{2x-1}\right) ^{2}\left[ 3\left( x+4\right) ^{2}\cdot 1\right] \end{equation*} When \ \ $x=0$ ,\ \ \ \ $y^{\prime }=\left[ \frac{1}{2}\left( 1\right) \cdot 2\left( 0\right) \right] \left( -1\right) \left( 4\right) ^{3}+\left( 1\right) \left[ 2\left( -1\right) \cdot \left( -1\right) \left( 1\right) \cdot 2\right] \left( 4\right) ^{3}+\left( 1\right) \left( 1\right) \left[ 3\left( 4\right) ^{2}\right] =\allowbreak 304$ \ is the slope of the tangent line. Thus at the point \ $\left( 0,64\right) $ \ the equation of the tangent line is \ \begin{equation*} \ y-64=304\left( x-0\right) \end{equation*} \begin{description} \item[5 $\left( 10\text{ points}\right) $] Find the derivative of $y=$ $% e^{\cos \left( \arctan 2x^{2}\right) }$. \end{description} Hint: You may want to simplify the exponent before differentiating. \vspace{1pt} If $\theta =\arctan 2x^{2},$ then $\tan \theta =2x^{2}.$ Thus if you draw a right triangle and call one acute angle $\theta ,$ then the side opposite $% \theta $ has length $2x^{2},$ and the side adjacent to $\theta $ has length $% 1.$ Thus the hypotenuse has length $\sqrt{1+4x^{4}}.$ \begin{center} $\vspace{1pt}\FRAME{itbpF}{3.3797in}{3.0545in}{0in}{}{}{five.jpg}{\special% {language "Scientific Word";type "GRAPHIC";maintain-aspect-ratio TRUE;display "USEDEF";valid_file "F";width 3.3797in;height 3.0545in;depth 0in;original-width 3.333in;original-height 3.0104in;cropleft "0";croptop "1";cropright "1";cropbottom "0";filename '/document/graphics/five.jpg';file-properties "XNPEU";}}$ \end{center} \QTP{Body Math} $\vspace{1pt}$ Therefore \QTP{Body Math} $\vspace{1pt}$ \QTP{Body Math} \begin{equation*} \cos \left( \arctan 2x^{2}\right) =\dfrac{1}{\sqrt{1+4x^{4}}} \end{equation*} \QTP{Body Math} $\vspace{1pt}$ and \begin{equation*} y=e^{\cos \left( \arctan 2x^{2}\right) }=e^{\left( 1+4x^{4}\right) ^{-\frac{1% }{2}}} \end{equation*} \QTP{Body Math} $\vspace{1pt}$ Thus \QTP{Body Math} \begin{equation*} y^{\prime }=e^{\left( 1+4x^{4}\right) ^{-\frac{1}{2}}}\left( -\dfrac{1}{2}% \right) \left( 1+4x^{4}\right) ^{-\frac{3}{2}}\left( 16x^{3}\right) \end{equation*} \end{document} %%%%%%%%%%%%%%%%%%%% End /document/exam2Sol_99f.tex %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%% Start /document/two.jpg %%%%%%%%%%%%%%%%%%%%%%% c}`C@DJYTRFAP@ADP@lD@K@@p[CpP@``AF\`AE`pAG\PBI``BLPQCLlpBLdaDS|@E]hqG^ta F\pAHdxrI`HBKcpAGh\SJl@SLtPCM_\RN}`cL|xrLtHs[CpPAdPBIppBL`QCM`aLapQHrHcLrH cLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHs@CPDHDPHA@t@A HB@BDQ@CDQ@SL@_@@@ATP@ADP@AD@@@@@@@@@@@D`@CPPAF\@BIhpBSL@uBA@BDp@CH@ACTPA DP@@@DP_AHp@@PPDEHQHqDdASDUXGHR\THS`QFJBcHTlAWaTQCOIsHf\Bf`BV\AFYhQIf\BJihB MuXsMxdcNCQTQF]DRIitTTUeUWaUVZMFYeYvYhefZsQW]v]G^yiw`DVhaGbXbJJydTVieWbYfZJ zhdVjigbZjjJ{ltVkmwb[nzJ|pDWlqGc\rJK}tTWmuWc]vZGnxcS^yf_Nzik^|rOO}u[}xgo~ SL@_D@@CDP@ADP@ADP@A@@@@@@@@D`@CPPAF\@BIhpBSL@uFA@BD`@DPp@D\PADP@@AHp]@D`@ CDAAEDRLFHQPQ]PXqMaHrDHBTHTdaF[pILrLRA_EbIWtJXAItD^Iq_AFYhaIg`RJjTcMw`SNzLD QEYtQHedRSQUUV]EVYiuXdUfYgaVZjMG]uYw]xeg^BNHaEZxaHfhbRNIeUZyeXfifbNJieZzihf jjrNKmuZ{mxfknBOLqE[|qHglrROMuU[}uXgmvbONye[~yhgnzrOO}u[}xgo~kM@LLP@@HPDC DA@@p}zcbh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh @j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ `J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbB hBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@jPiuuWZbAv~]qmE~ swjDxC]ArSr[xnhgoJG\DPrkV[x^oRunrTb@Ck[qsecfE~ermSwNERxWwfp_o@CB{qHxfPtHq eg|HnC}AxF]QT@PTEQA@QUDE@DUQT@PTEQA@QUDE@DUQT@PTEQA@QUDE@DUQT@PTEQA@QUDE@DU QT@PTEQA@QUDE@DUQT@PTEQA@QUDE@DUQsyWJqGAtlZqJXy_umzm{GvdlUq}Y[vARHS|ZCocDB| J_QBICUqw\awaXyQBRSnH{`Hfk_W\hXglvVfx~xWTdpKjNkdk[eFFb|HqK`BMMoCpvYQly[g}^ SrtagxMSTKExDudIC|@mRgwV@_zPsjF[ejOUwjwmoiT}ZFwgmYGA@Lqkilh@JpklMIghx_sWr_ X_}XCplP_@hQUDE@DUQT@PTEQA@QUDE@DUQT@PTEQA@QUDE@DUQT@PTEQA@QUDE@DUQT@PTEQA @QUDE@DUQT@PTEQA@QUDE@DUQT@PTEQQ@KAuowNMmkoyzirwn{afgi}UZ{DUPl@WNx@@}nNdpV^ cGaX}CMVKRH{hxehQIdrZGlvZfyMycTftKLDgdkVHwFAt`R}O@J~O@DOOZHFChh]W\IaZRw[m` w`pXWwPZpQFCPf{ZCsozukC@jp|C`bM_Ia}uc}O@s^MhW}IS}O@YnbFo{G}{I`}H`bh@j@ JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBdKAq{` i~dRsagZQkbUgcloQf`UfeYu|DmWVwBqpo{AEuM`mO}EWorHW|E|q~O@aobQ_Xr{_`}emOJ_ W^{]{yLOoOv{\wnA^F{gZ@hNjbjH@hHjb@lrcq[Vo{UPsO^H}F\uuu]pGv|}Ll[UvD_ISgJxEb ZHHspQCXkR]uvn_GOlfaykoiapYQLDAkx[Ve{fEhL}j{xq`j{D@dTF^HdowfX}oCAkragg}GC\ JomdZwBqer[WURAXPf@wYWrfCBdF^sAtlp{L`fMzzKGrmtBUj~V[LSldLSl~VRR|A~L@NlbYJbB @o~C~g~O@r\UMZwO{wc^Edw@T|OyKyoloVlCPvhO@thHjb@`bhJB@JbjH@hHjb@`bhJB@Jbj H@hHjb@`bhJB@JbjH@hHjb@`bhJB@JbjH@hHzh^Zda^geTY\B]BmLEeMTNCx^cDs`g\BYOHAZBh xzK@]MU]bcorObwpNMaeEHUPq]JMnF{JJa\lHyLhs@IkAE`_aC~yes^pHS`TF`RufVVWDl Zba[NYSR|XDU^Yd\aRigspPW{YeYZOW|O@P_wPCPpt|MUju}RPC\IQb]r{drEZINJ[h\Gt} FHfQOy@b^QreeGzJ~ar[EzZvka\@[kPzg@}vWiuedVVVdSFT[`\U`HHopMO\pOh]xte^DZE{z riwev\yHWUmwjfElP`A[UdIgssyxNNcoIcpEsscH]gEA@EQquAJZzfEkGu^WPlUB^``fU}{aOff cqRqIpXArB`r}qco\rC\B@Bt[v@Px~_MXqrpg[DKwzVDm|f}JTnVlzFqIHb_Pb\XKT^tksj o}VCmRkUpKDdAKAaNRCTjjhA@@@\@paXmBU@EQATAxu_qdd}z~Zp~_vkG}JL@hx_sWr_X_} XCplP_@hQUDE@DUQT@PTEQA@QUDE@DUQT@PTEQA@QUDE@DUQT@PTEQA@QUDEA`L~kbee]\FPps oLKs`~}r\fVZQ@RcqTLOIABfSx{qqDNjvwMn\q`wi\fgbyBnW_~HNZdJhYMViuf@RyHqcGj]ybt dgYUs{Ooj}pt\oF}lleJBRFZfqdKOI@QJiOVUOxckitq[sd{}JZWhYS]roMqVb`kYVmqxw{VfJ ACT]COGuSRO}@pLtuU~lpcagS}VQekgkwT`ZcD[gjkYoerBWDshPdTNKWwynvPR`{DG{JZzFC n{M|_uphTLOOVKQ`\HOfT[wAdFe]NxHE^Isq@WqLdzMzzT`gSfw_M\NvbcTHVnrXOx^uBaJX]I KwuQP_}XvttopFkt`GI[URS]DQKeEIoaYEIJJCqAhSFGvt\POhIT[{Taf^}XLiV_s]iJpExuVEZ IthiBPd\Vwz_jtiaO@PDlxmFP}]|A]khrCblEbC{jxAJ[U[AIk[ce[GHGLNCcZ]meRxrYwOUZW EMVj\UDGoTGIm@c|PgK@fT_FFXDy^pO}U|IxOopOCB^opZX}eIMy\n\YjAkl[VdXIuD{lUN\DO r~`K@P`wQB{kHp{hwysjb]{KnWgrssIMyhAsDsW^gQ@l@wjtfBxn@MLTDp\F_}Mz}GaoWwJiT VRtc_c`c@pyIXLyVi|HhMUQp_nBhkRgsW[oUGjxyu}LIkaY]BucXcZcAEQbATU]JKPJPadERrT D`]Vw_m]YpwPMMyHy_vlM{v|FkeUy}nTJ[yIqAcL~Hjl~ABxOFqZyphwysjb[{kmWgrssINyhA sDsW^gQ@l@wjtfBxn@MLTDptiiG_ZyTde]ZP~kjtH@NSCP]T`REtEhBhhJVFz_o]ZZW_suReo ]vGMOR{ktvIj`XAn\pEPz@aa_pDOK^qtRtcN^oSsvUO]ZCqSfIycOGGtQDWsJAP@@fldkQma WCEG^gvlU]yJiznk^xnn[dFPSEO|x{uNG``C@h@N@zpydEF~Bk|HD^}O@B_FkGeyi\SGZYDhEv ydAVkmLVdvAnd}XLzBUemFo`J`bh@j@JbBhBp{@H~g|g|WvWCvC@{uc^EgO@T|O@fkt@Dkk GO@gAzC@Ijbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hj bh@`hJbB@bjHJ@|JOy~O@KNhxvMKSwZHMK]{bPixTrk~EHFPDlA^~qqQLmHn`uFXwl`rX}Kdl Kmp{Ycnt|UVihPwkVRZtGnXdFrSa[LNcm~B|O@DGs`JJZVkgAKVFiX[rr[aDaIAY@lUgY@CPly PrxRfDhMhEJbBhBhHJ`J`bh@jp|C`bM_Ia}uc}O@s^MhW}IS}O@YnbFo{G}{I`}H`bi\PP @m@Pice~jH]}Y`|FO}TznW^oUJD[[VBYtUr@wUpJMX}bPKknG~osZh{]gYhYZAQlTXBRIcLlF@ G^PhY@ZbhJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@@koH A^B~QChMkZSxR~VmvZgzNn_z[uCGh@HIsxANGriw@[U{y^~qsOVwlboGcME~zyDWh@MJRVdrI SWz]Oh@qz^pQMYmIeL@XC_GzN]h{^]]vu}kiqWZshtV@RJzjDT@ER[cQIwQfedKi\qT]tEA@E QUD@TDUQ@PQTEAPEgO@T|O@fkt@DkkGO@g}JPo~C~g~O@r\UMZwO{wC@zU@Hiw\KTD@qxO} pZ|ibtfE]GmuMsbYrdLIoEWrUDPkJcjLXFHtJwtUnFdWGN\rkVdh[OTke@joMJ@RVKyLFaOF\_ cJQ~iSqmnVtBU@EQATATDEPEPQT@U@EQATATDEPEPQT@U@EQATATDEPEPQT@U@EQATATDEPEPQU lL~wR|lhYe}vhY[|^gVVWJ\mpJXrYgactBKAzw[i\@sEGD{xxLPF\dbflYq~PrbA[eDIwAkh]i^ dc~qi]KIAnVee{eWgVyNALB\d\uZo}VCmRkUpKDdAKAaNRCTjjhA@@@\@paXrrSJacKoiDZQfVJ qWNweiyjkeCPRsMCg|zh^R~t@dpI@I`SstQC@QUDE@DUQT@PTEQA@QUDE@\ug|Ou@dyJ~[|n_t og}J@oC`x_r_r_Y_MXO@lS_@hSQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@ PQTEA@EQUD@TDUQ@PQTEA`Yjk[i^^hi\ifN]j|VYmmiyWb[J~Sfd@N@yPB`rtt\^x`toV{BwGoc ~VInF[_oYO^laHpqVkCYMVOYc]xYoIASP[AAWaU\q_PqWUu\~Yop{zbiHhyVd_QfCJcI\dWorp XG\@Zg]|wC|xP`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBp{@H~g|g|WvWCvC@{uc^EgO@T|O@fk t@DkkGO@gAzC@Ijbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@b jHJ@xzHFk[iuw\q_RHMKeYKuvXUYxm|s|Il[grFeCVNEdKQ{CZl{kLPm~VExKyKJ`fTjt[ep]y VoqVHahD\q|yIhaCdNYr@_B@PzPLPawRCOEZV]uzUIqwieueBg[o]JPvYxHKPQY~~VJGh\hIzN ^NC`A~FYiYafnuY{ffn]KuVinlateb~hyIeCI^fDI\NiV@Hfe[FR\[`QuYA|NCYS@}HK\qeoF@H uLKquWBNDjyIpsfFvfJEAxFYYF^dgxB{|dnAVwebT`bBcV`lFxdNWeFPEPQT@U@EQATATDEPE PQT@UP^CPqdodr~Zq~O@YoNtk|li|O@LWy@LVWOzs@yQ`EQATATDEPEPQT@U@EQATATDE PEPQT@U@EQATATDEPEPQT@U@EQATATDEPEPUnyRHuZkebggdXHbTrcD{UDEPISbg@L@gUkz|_|a zSqEiyEGVRkt}mBj[q{eT}rJGfdeOZw~~MsNGABhM[g{FXYOLIm@bF^veAoc}zqcwaQiHrlrf WhPGfvSQgKBT{tgq@SCVhU@hBc`KiF{j^ymrX`o{VxuJxq[r`TDAJHM~RhWUT@AL@F@L@qiXl CPB_SxOhoFtC@|c}p@TAP]tPEOgpwE~CzkA}pOFCO@EGu@dpwD~CzkA}@@XO|O@U@dD xMepVzwCR{|fgrmwKYVGZbbkdpPHElXE\E`qXqIg^fwIB\{Z^~O@D~np_P_MhG~q\x@hxh~Oq oH|GtWGz@@nq_xoJ@jcFkxy@Px{BA}u`~_xGsaC`bczDbp_P_]hC@xFaj@hNZlbgC @aoK|GtWCza_LG~O@JNjS|KBA}ua~O@`[|G~kB`zhqJ^~O@D~np_P_MhG~q\x@hxh~OqoH |GtWGz@@nq_xoJ@jcFkxy@Px{BA}u`~_xGsaC`bczDbp_P_]hC@xFaj@hNZL@hx_ sWr_X_}XCplVO@|_b_P|O@a~zPCPpL~CUEgWDoEErzS`o__ohutoZzWSduNGuF]RBKWxfl BIYLRY\OEAhNuQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@Tqeib fVNU[yiVZV]cNqwounEi{NCccCGNN_pSAiEeP]POC@BgPxOhSEtC@|]}p@LqQ|CbgP|O@a NuPCPpt}CMQGMP]POC@BgPxOhSEtC@|]}p@LqQ|CbgP|O@aNuPCPpt}CMQGMP]POC@B gPxOhSEtC@|]}p@LqQ|CbgP|O@aNuPCPpt}CMQGMP]POC@BgPxOhSEtC@|]}p@LqQ|Cb gP|O@aNuPCPpt}CMiU|NdjMMBzwjAyvGEg}kdgK^\BeGg[TK@ABV]Nct}nSPWwHmbw_MUM__^ R{VGKWyoumly]`v^~@xx|LABDECPxD@a}k`f_xBa~O@bcv@PxDBA}j`v_x{raCPbnZhb@ \~oaS@|GvoBZ~aKDz@HNZC@aSH|GtkBZaoKG~O@IzjaJBpyFNAp_XJhyG~oPhC`xh}O@ DNap_PoJh}G~n\x@dhkFjH@g[xD@a}k`f_xBa~O@bkvRd@~{udnNz~p@I]{nLjsICzlN^C WBz@FLph`GM~VtBU@EQATATDEPEPQT@U@EQATATDEPEPQT@U@EQATATDEPEPQT@U@EQATATDEPE PQT@U@EQATATDEPEPQT@uAkL^rJbIYEXKnznY{JkfVcQkmPZgZ^Tc@bLPpucs@TOyQA^NKbwIF EX{nvnitJkaVcfkmSZ`VRTcAAL\rtcqAUOxWWUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQT EA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDU Q@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQU D@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTE A@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ @PQTEA@EQUD@TDUQ@PQTEA@EQUD@TDUQ@PQTEA@EQUD@}_v %%%%%%%%%%%%%%%%%%%%%%%% End /document/two.jpg %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%% Start /document/graphics/five.jpg %%%%%%%%%%%%%%%%%% c}`C@DJYTRFAP@ADP@lD@K@@p[CpP@``AF\`AE`pAG\PBI``BLPQCLlpBLdaDS|@E]hqG^ta F\pAHdxrI`HBKcpAGh\SJl@SLtPCM_\RN}`cL|xrLtHs[CpPAdPBIppBL`QCM`aLapQHrHcLrH cLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHcLrHs@CPDHDPHA@t@A HB@BDQ@CDQ@SL@_@@@ATP@ADP@AD@@@@@@@@@@@D`@CPPAF\@BIhpBSL@uBA@BDp@CH@ACTPA DP@@@DP_AHp@@PPDEHQHqDdASDUXGHR\THS`QFJBcHTlAWaTQCOIsHf\Bf`BV\AFYhQIf\BJihB MuXsMxdcNCQTQF]DRIitTTUeUWaUVZMFYeYvYhefZsQW]v]G^yiw`DVhaGbXbJJydTVieWbYfZJ zhdVjigbZjjJ{ltVkmwb[nzJ|pDWlqGc\rJK}tTWmuWc]vZGnxcS^yf_Nzik^|rOO}u[}xgo~ SL@_D@@CDP@ADP@ADP@A@@@@@@@@D`@CPPAF\@BIhpBSL@uFA@BD`@DPp@D\PADP@@AHp]@D`@ CDAAEDRLFHQPQ]PXqMaHrDHBTHTdaF[pILrLRA_EbIWtJXAItD^Iq_AFYhaIg`RJjTcMw`SNzLD QEYtQHedRSQUUV]EVYiuXdUfYgaVZjMG]uYw]xeg^BNHaEZxaHfhbRNIeUZyeXfifbNJieZzihf jjrNKmuZ{mxfknBOLqE[|qHglrROMuU[}uXgmvbONye[~yhgnzrOO}u[}xgo~kM@LLP@@HPDC DA@@p}zcbh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh @j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ `J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbB hBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@jpku}wYcQ^_rz~B ySUB~aN@yIYM^_TsUmcN@@yUkH|CpEk]cglDCEV{bgIOo}Tfx{vgOQGtImK[Ksm@NLLFiDKB \{DWRzS{@lWaTDEPEPQT@U@EQATATDEPEPQT@U@EQATATDEPEPQT@U@EQATATDEPEPQT@U@EQAT ATDEPEPQT@U@EQATATDEPEPQT@U@EQATAT\uOblDAVZKWAgifuo_{PfbejngfyGKeLqhA|NS L`k~MIdMpGE_yu^HbuW@l~Laicb[bNesmR]pZkYbwc_RYRohrLRnjeZ[DBOcbc}fiiy]@pN{cK W[mq{RgLdBn]bZhBshgNAPGkaJ|_Zx@@KMf[i|OU{ZwmmYT^fwRs|cAJNXtX^TAE@Uunds}L S}O@YnbFo{G}{I`}H`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbB hBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`jp}w[m~fuy\ewIWnvZSt|Lm_bZhTbcG\B@^T yqx{dqcSlVCcwxV}XD\SthCQ[eCV[es~bLqI_beDncrTE\{bHrUTKxckWhliPO]ypZWAwRifD} UoxN@\vvATF_hA@e}NvrxK^JP`J@oC`x_r_r_Y_MXO@lWOzU\~@Pq@XnRCPln^|@\Fh O@dhJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjH J@xjSDaZCINo^cAeZYcgt}W{XdiXeUyVMGQ{fq}POpK^QQmCYwSYr}O@pohWIlrC@asnoSO\ r~lOlGY{p[o[Ooyy}y^esvMr{XTC@uQQTEA@EQUD@UdL~~eowb[lp_aZZsuu^rGv|}Ll [SvD_ISgJxEbZHHspQCXkb]uto_GOl^[}uwtRxEQLDAkx{VInUaJRczN_LhzOI`I`aL@}KmFY} C`DlHG^bv_Lri|vRZ]KDWJo]UIE`AYB\g]I[NHP[xAGPsB_mD~~}\QSYUPijVqSq\{LRltLShN VSZ|A|@@NmjDJ`J@oC`x_r_r_Y_MXO@lWOzU\~@Pq@XnRCPln^|@\FhO@dhJbB@bjHJ@H jbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bb{@`A~_{_DmnEPR wZk~E]]jjFD[aDy|[Yt|Fx]vxp]px@DtmCGsC{`XCUA{QNoRz\QpzIBnxhMIqcITyeQrEJe^NC C]mgU~h}`q_P_wPCPpt|MUnudHC}vKkrPdxNbYIFch^FH}EMnANytR^PjU\LzZ|O@JRZ|UO @Gr_PgfvjBd}Bh{BMfWiuedVVVdRFT[`\U`HHopMO\pOh]Xtf^TZE{zRjwev\~H_UmwffElP`A[ UdIgssyxNNcoI@M[aVyXL@TDJaglXYoS`\AF@v@Nyg_R`NRfh@j@Jn~Pqsvlxm[vW@dn|ISPCn ]kFMsOSsQPIxFXL@[IPy|pqWNyaNC@Az]B\}BDAK^j~|GCX{^WbhmW|m_aruJ^WuHnAStCRfC[ apc~E\DAPh}vEv[T@WpRP`cxPmJbFH`@pA@G`Qjh@`hJbB@o~C~g~O@r\UMZwO{wc^Edw@T| OyKyoloVlCPvhO@thHjb@`bhJB@JbjH@hHjb@`bhJB@JbjH@hHjb@`bhJB@JbjH@hHjb@TNO[q zRNL[x_{pvMqrDk_cLniiEAHMFSq|dDHXNaoGGSxhZ_{xRGC^WvI^FgKx^}ycxhQj`fuXeV[BHe cDO^hviKRW^fYMO}H~JXUfgc[TnrEMQafYhYrSnpdPFcT~[^yPNm~BEi_anCpaoQsf{`O[~f}D AScl[gqovi\UBBxzF^^jgdNzAdYxC@DG]Fx_q@wj}cvWMSwiAyNIu@ewsVseGbXfScXI\RNnq[ }AcJ_sLNVosIe~\\^DjOgVBar|Sfgnl@\qDryb@{BZsrRxgTxeLGCleOVH}Kt}`CYg~MWBow}{ HIBfaXvBcmSeJFVpvm\LTGMmue~^`ttpUBk{[GVsRY}B]}gcHXYURYnQLaVdXPyjSRwWniCDGW SH_SezVhyeLUWC^oWWVtto_jOQCXrPtEkaqqhqlOPi\qqY}|HyZqBuIrBoUQjIi^JibVm}lgfM |g]Qc]_R{Wjb_XdQ]@sSsD~oF~I|Gffn\{QGTKJmyRm{|SmgK]FeAA`sHKTfFI~n[^Nrg\wHAje wN@Oe^`cr[lw~gB]weYisNkElwjZX\~[XJ]LqU_GraWz@QASAxOE_I}Wjz]u]vNiIgW\oO]Q |vfIOtfHPbBX\yB}XLFEnmurS[q]WXaoRRY\Zc`{tc^C`c@@IQtHsMBYPRAzcec\EP[uAMvf{o rIYZVAqrmZphYIsdZHpHRJLkmHE`PR~DyyHB`tprkC`mtlP_C}Tdcl_Yj~l[r[\VWig{Rm\e dHgLrxchy~NBx_Eq^}Aun]^u|mUq~v\~^DaiGKpF[vJ{OLHexXEvUHOEhmAB@hN]mrSKbTtlSK vPmv[]l[YzozhDe~J\KPEPQU{mz}McSy~KoSn\mufhyYZduRaDGOpd@~`R@L\|_fhYp[oeQf neq{}zWLyi[KA\~|I[`yxbJbdLgD@AHxrPjvqErWMOXHMyvfubotj{nza|zknpQAw\ysM~FmpC @h@NBp@ifLN~yPlxF_CgsoIZs]^ZN^\QCbYDdUvxlqVha\VdrqneyHLyFUenJN`J`bh@j@JbBhB sO@J~w|e|GvWOv@L{u`^ug|Ou@dyJ~[|n_tog@vc@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j @JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@|zy~{rIJjQr~|vBh]u[VDJE^ GT|BDBK^vAKcXxI~Ve[OpZA`KZxm\V|Ji|SKlFcdo^~~JEEz^pddf}`GviaxDxGosXhop@@aqO DThh[m_^@M{tnHAYoVZRP\f@XqqVqF@KLadNeCIZB@tbjHJ@Hjbh@`hJbB@o~C~g~O@r\UMZwO {wc^Edw@T|OyKyoloVlCPvhO@thHJnOcxTxyyrFiKutwbVW{tmSwfWneM\ktueDdOWqcJPjc cIABCsATG]fw@P\GctuoVfM}HqwZmfWj}gYXoMnJJPhcNOYxbqXb`ZrdD^^DiPV~vwoxsDktl ^CGxoDFtfOC`UHUiHrSF]S`SFObgTcRpxRjcYijvgOpFcoFbuv}SMYi}[aHDGSrewDax|TFPM M|Y\M~@RfTFf@xNj`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhB hHJ`J\\|`X[|OShMcJS~rvwjw^[Tuy}S]k~xBE@IYFOpyPN}DPkJN@|p_EC|uOhh[vWxKgS \`BtwhHYQJg\]b\GX@sz^pREYmKe\@YCO[D~zMJsJ}nvUmy_HVsWnuJAhjPTUpAihBZDvAornd\ KISFicbjHJ@Hjbh@`hJbB@bjHJ@|zOx_z@HsU}wh]l_OzUP^CPqdodr~Zq~O@Yc~@Pordq {zgbwLRXU\xvJmEXTz|n]eTyYSsOj[aQetv\^cw\@hNfikrhL@aqTa|Gdx_gpPaj~XLMGMMUBy qsTtUrYYcbU`IB{fBfzXswvsS]MjpSo^tjSGljcvYoH~PRRcgMBMoEXcCKWjYP_{kkE]PEPQT@U @EQATATDEPEPQT@U@EQATATDEPEPQT@U@EQATATDEPEPQT@U@EQATATTEMcoDOKZvXoMZVGowi euiBWKluBw]FJbKoDH_mirAM_LPmgCs@Y@OJ^jfGYIJF|EQhlGefDex}npqh][JGRVdiWUUnzy MElR\c@E]GDAuPk|Ze}q_DCQ@BRcwhPjbBF@D@p@DgbGCeFFJ|g^hxSKexKe{rt^}URBHIyfis ^]TOI]R`RzD@DpiYwbB@bjHJ@Hjbh@`hJbB@bjHJ@|zOx_z@HsU}wh]l_OzUP^CPqdodr~ Zq~O@Yc~@PcbhJB@JbjH@hHjb@`bhJB@JbjH@hHjb@`bhJB@JbjH@hHjb@`bhJB@JbjH@hHjb@` bhJBpijjnmzxqeqejzwEsvYmmiyWf_J~Sfd@N@yPB`rtd\~s`toV{BWGkHvBiuZ}kmzsMDIxX i}AlDkglsN\lwl`Ihm@`khiCP|pqVu]vIosWIbjDXyVhoQmGjcHPTWozpXD\pZgQ|wC|xPcB@ bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@pk`iC`LWu_cv}s~}hWAy}O@ES~R~K{kE{@dMzC@MJbjH @hHjb@`bhJB@JbjH@hHjb@`bhJB@JbjH@hHjb@`bhJB@JbjH@hHjb@`bhJBpJKFoqkvw\q]Fxm[ `yKuvXWYt]}~xgpnUJ[TNXyTPnDmOhqnor@uzcV`oe_h@^~uURmS~n\j{pk]VDBlTf\F~HAQmdy aCA`KQ@FkroDrSMvLx[}]Gj\_T]mjveFhnaG`vXpHKQYY~|RzGjXxIyNNN@laFVUyXafn]z[Vf muQm]jK[JRBzcfodNetIRftIdPm^F_{ihYSZueJWyESrjDDFTefGYaQxQEQPgMFz`zYBhw@ZWmI ImTqqG`n[A^aDkFDB{ezRHwBybg|leeIfuRvLT{luHagOBnGDwhkkg]}Zv}Zuvq]ra\|JaAFu hxQzTF]`aAFyAcAPnGDZUay}{ptr{cG{gOY]f`{Eu]mmrhpdUMGWy_lcZnCFINw|@DSNAcCxW QJTATDEPEPQT@U@EQATATDEPE`WES~Svk{kA{Yo^tkp|C`bM_Ia}uc}O@sB}A`FUQT@PT EQA@QUDE@DUQT@PTEQA@QUDE@DUQT@PTEQA@QUDE@DUQT@PTEQA@TMwsMtJow^aDGsPDadGIQJh jhdAISBL@siid|~lxNtZLq{XdawzYPQkt|WRj[q{eW}RLFndeOZw~MCNDEbhN[g{EPiONI]@aF NnfDeHNR|^NJEQfUv|@M~~uPiwHDxkteMpQLrxTEXB`jsIDrj|zj[OhA^fXmwklw_R`o_XHBPQ ^\G|kBj`BF@C@F@xT\RCPB_Ox@`~ZPO@pOvCCPE@uQAWyKlsRM{dO{otJh{Vst[FbGqHbMH LfJx`Cx_J\|@Px{AO@tWCza_LG~O@JNjS|{AC@tWGz@@nq_xoJ@ZCKlqB}KcC{lwBHtV{ c{Db`qhaKI]bBxdAI_ZLkW}s@dpwC~O@hoFtC@|c}p@TqQ|_b_O|O@a~zPCPpL~CUA@]T\ uOCPB_Ox@`~ZPO@pOvCCPEGqI~}p@DzkC}O@AsxO|WE@tQqU|O@I|}`C@zkA}@@XO |O@U\DgxwCCPhoNt@DLcp_U@PGEW}s@dpwC~O@hoFtC@|c}p@TqQ|_b_O|O@a~zPCPp L~CUA@]T\uOCPB_Ox@`~ZPO@pOvCCPEGqI~}p@DzkC}O@AsxO|WE@tUqyC@EC`yJ}O @qzzqCpYnNhS|{AC@tWGz@@nq_xoJx~Kb^UBtumycFlUzzy}f}iC~bVlv{lEiUJXyFcdTNI CPOcKhOPehJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@pZOITtu {J{oeRq~k|sU^nv]IYsyY[Dhqpic^J@mh@fs@`_P||q@HdiG~O@Bb~_xkyOaS@|uoBZ~a KDz@H~Z`JJ`y|O@xGDO_|O@BYzaC``hG~Z~SxD@_}k`f_xBa~O@boFhbBXNC@~AqsGC` Pf^x@HHzaofDNApWJhyG~oPhC`xkAjh@fs@`_P||q@HdiG~O@Bb~_xkyOaS@|uoBZ~ aKDz@HnZgcX}YQ{OO|ezPo}QsYJyybGgPyqyFuBP``UgsH]oKEZZ}i}__HmMoUrr{WwiUqsU nk]Mc~FnAwLLNNNTDpgC@BgLx@`NUPO@pwuCCpDGqOH^~p@DzTC}O@ASwO|wD]T@uA|O@ H\r`C@zTA}@@_WO|O@S\D`xyCCPhSMt@DL]p_StQATG|s@`pIC~O@hSEtC@|]}p@Lq Q|CbgO|O@aNuPCPpt}CMQGEP]pOC@BgLx@`NUPO@pwuCCpDVqB_gD^orHNKpCi[ueQ] NYPguQ[xZPGp`AFEtHqwjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJbB@bjHJ@Hjbh@`hJ bB@bjHJ@Hjbh@`hJbB@bjHJ@HjbhL`fxGxLgDXMkbW{ozrY|JkfVcQkmPZgZ^TcBRNHxxqy@hg| h`_s|S`tlU^m|ZKgNklFZMZnvNiAZIQMNDXxdaGcCb~poVibBhBhHJ`J`bh@j@JbBhBhHJ`J`b h@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhH J`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@Jb BhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh @j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ `J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@j@JbBhBhHJ`J`bh@~sYCEnddocumentfivej pgEnddocumentfivejpCEnddocumentfivejpgEnddocumentfivejpC %%%%%%%%%%%%%%%%%%% End /document/graphics/five.jpg %%%%%%%%%%%%%%%%%%%