%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Scientific Word Wrap/Unwrap Version 2.5 % % Scientific Word Wrap/Unwrap Version 3.0 % % % % If you are separating the files in this message by hand, you will % % need to identify the file type and place it in the appropriate % % directory. The possible types are: Document, DocAssoc, Other, % % Macro, Style, Graphic, PastedPict, and PlotPict. Extract files % % tagged as Document, DocAssoc, or Other into your TeX source file % % directory. Macro files go into your TeX macros directory. Style % % files are used by Scientific Word and do not need to be extracted. % % Graphic, PastedPict, and PlotPict files should be placed in a % % graphics directory. % % % % Graphic files need to be converted from the text format (this is % % done for e-mail compatability) to the original 8-bit binary format. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Files included: % % % % "/document/lec_4_10_00.tex", Document, 5688, 4/11/2000, 14:05:56, ""% % "/document/graphics/6-1.bmp", ImportPict, 113218, 7/23/1999, 17:08:58, ""% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% Start /document/lec_4_10_00.tex %%%%%%%%%%%%%%%%%%% %\newtheorem{theorem}{Theorem} %\newtheorem{axiom}[theorem]{Axiom} %\newtheorem{conjecture}[theorem]{Conjecture} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{definition}[theorem]{Definition} %\newtheorem{example}[theorem]{Example} %\newtheorem{exercise}[theorem]{Exercise} %\newtheorem{lemma}[theorem]{Lemma} %\newtheorem{proposition}[theorem]{Proposition} %\newtheorem{remark}[theorem]{Remark} \documentclass{article} \usepackage{amssymb} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{graphicx} \usepackage{amsmath} %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Created=Sunday, May 16, 1999 12:00:37} %TCIDATA{LastRevised=Tuesday, April 11, 2000 10:05:54} %TCIDATA{} %TCIDATA{} %TCIDATA{Language=American English} %TCIDATA{CSTFile=webmath.cst} %TCIDATA{PageSetup=72,72,72,72,0} %TCIDATA{AllPages= %F=36,\PARA{038

\hfill \thepage} %} \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \input{tcilatex} \begin{document} \section{Ma 116 Lecture 4/10/00} \begin{center} \vspace{1pt} \end{center} \subsection{Complex Numbers} Consider a number of the form $z=x+iy,$ where $x$ and $y$ are real and $% i^{2}=-1.$ We call $x$ the \emph{real part} of $z$ and $y$ is called the \emph{imaginary part.} We write $x=\func{Re}(z)$ and $y=\func{Im}\left( z\right) .$ Let $z_{1}=x_{1}+iy_{1}$ and $z_{2}=x_{2}+iy_{2}$, then \begin{equation*} z_{1}=z_{2}\Leftrightarrow x_{1}=x_{2}\text{ and }y_{1}=y_{2} \end{equation*} \vspace{1pt} \vspace{1pt}Complex numbers are added and subtracted according to the rule \vspace{1pt} \begin{equation*} z_{1}\pm z_{2}=\left( x_{1}\pm x_{2}\right) +i\left( y_{1}\pm y_{2}\right) \end{equation*} and are multiplied according to the rule \vspace{1pt} \begin{equation*} z_{1}\cdot z_{2}=\left( x_{1}+iy_{1}\right) \left( x_{2}+iy_{2}\right) =\left( x_{1}x_{2}-y_{1}y_{2}\right) +i\left( x_{1}y_{2}+x_{2}y_{1}\right) \end{equation*} \paragraph{Examples:} $\left( 2+3i\right) +(4-2i)=\allowbreak 6+i$ $\left( 2+3i\right) -(4-2i)=\allowbreak -2+5i$ $\left( 2+3i\right) (4-2i)=\allowbreak 14+8i$ \vspace{1pt} Note that $z=x+iy=0\Leftrightarrow x=0$ and $y=0.$ Also if $z_{1}\cdot z_{2}=0,$ then either $z_{1}=0$ or $z_{2}=0.$ \vspace{1pt} We now deal with dividing one complex number by another. Suppose $z_{2}\neq 0,$ then \vspace{1pt} \begin{equation*} \dfrac{z_{1}}{z_{2}}=\dfrac{x_{1}+iy_{1}}{x_{2}+iy_{2}} \end{equation*} \vspace{1pt} However, this is not an expression in the form $a+bi,$ so we do some algebraic manipulation to get it into this form. \vspace{1pt} \begin{equation*} \dfrac{z_{1}}{z_{2}}=\left( \dfrac{x_{1}+iy_{1}}{x_{2}+iy_{2}}\right) \left( \dfrac{x_{2}-iy_{2}}{x_{2}-iy_{2}}\right) =\dfrac{x_{1}x_{2}+y_{1}y_{2}}{% x_{2}^{2}+y_{2}^{2}}+i\left( \dfrac{x_{2}y_{1}-x_{1}y_{2}}{% x_{2}^{2}+y_{2}^{2}}\right) \end{equation*} \vspace{1pt} \paragraph{Example:} \begin{eqnarray*} \dfrac{1+4i}{-2+2i} &=&\left( \dfrac{1+4i}{-2+2i}\right) \left( \dfrac{-2-2i% }{-2-2i}\right) \\ &=&\dfrac{-2-2i-8i-8i^{2}}{\left( -2\right) ^{2}-\left( 2i\right) ^{2}} \\ &=&\dfrac{-2-10i+8}{4+4} \\ &=&\dfrac{6-10i}{8} \\ &=&\allowbreak \frac{3}{4}-\frac{5}{4}i \end{eqnarray*} \vspace{1pt} If $z=x+iy,$ then the number $\bar{z}=x-iy$ is called the \emph{complex conjugate} of $z.$ Note that $z\cdot \bar{z}=x^{2}+y^{2}.$ \ The absolute value of a complex number, which is a \emph{real} number, is defined to be \vspace{1pt} \begin{equation*} \left| z\right| =\sqrt{x^{2}+y^{2}}=\sqrt{z\bar{z}} \end{equation*} The diagram below shows how one may graph $z$ and $\bar{z}.$ \begin{center} \FRAME{dtbpF}{3.1185in}{2.0081in}{0pt}{}{}{6-1.bmp}{\special{language "Scientific Word";type "GRAPHIC";maintain-aspect-ratio TRUE;display "USEDEF";valid_file "F";width 3.1185in;height 2.0081in;depth 0pt;original-width 4.3439in;original-height 2.7812in;cropleft "0";croptop "1";cropright "1";cropbottom "0";filename 'graphics/6-1.bmp';file-properties "XNPEU";}} \vspace{1pt} \end{center} The fact that $z\bar{z}=x^{2}+y^{2}=\left| z\right| ^{2}$ leads to two fundamental properties of complex numbers. The triangle inequality \vspace{1pt} \begin{equation*} \left| \text{ }z_{1}+z_{2}\right| \leq \left| \text{ }z_{1}\right| +\left| \text{ }z_{2}\right| \end{equation*} and the fact that $\left| \text{ }z_{1}-z_{2}\right| =$ the distance between $z_{2}$ and $z_{2}.$ \vspace{1pt} \paragraph{Example:} Verify the triangle inequality for $z_{1}=3-5i$ and $z_{2}=-2+i.$ \begin{equation*} 3-5i+\left( -2+i\right) =\allowbreak 1-4i \end{equation*}% so $\left| 1-4i\right| =\allowbreak \sqrt{17}.$ Also, $\left| 3-5i\right| =\allowbreak \sqrt{34}$ and $\left| -2+i\right| =\allowbreak \sqrt{5}.$ Clearly $\sqrt{17}\thickapprox \allowbreak 4.\,\allowbreak 123\,1\leq \sqrt{% 34}+\sqrt{5}\thickapprox \allowbreak 8.\,\allowbreak 067$ \vspace{1pt} \end{document} %%%%%%%%%%%%%%%%%%%% End /document/lec_4_10_00.tex %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% Start /document/graphics/6-1.bmp %%%%%%%%%%%%%%%%%% BudPzF@@@@@@@XCA@@@J@@@@aF@@@lP@@@P@@`@@@@@@@p`mA@@qN@@@D{@@@@@@@@@@@@@@@@@ @@DP@A@`@BH@@CLp@@P@AD@PAET@@FX`A@\pAG@@BH`@@IdPB@h`BJ@pBKl@@Lp@C@tPCM@`CNx @@O|pC@@ADP@PDQDA@RHaD@LqDS@@ETPA@UTQE@XaEV@pEW\A@X`AF@dQFY@`FZhA@[lqF@pAG\ @PG]tA@^xaG@|qG_@@H`@B@aDRH@HbHb@pHcLB@dPBI@TRIe@`IfXB@g\rI@`BJh@PJidB@jhbJ @lrJk@@KlpB@mtRK@xbKn@pKo|B@p@CL@DSLq@`LrHC@sLsL@PCMt@PMuTC@vXcM@\sMw@@Nx`C @ydSN@hcNz@pN{lC@|pCO@tSO}@`O~xC@|sO@@DP@APPAED@BIdP@LtPCA@QDQD@EUTQ@XdQFA pQG]D@HaDR@dTRIA`RJiD@KmtR@pDSLAPSMuD@NydS@|tSOA@TPAE@QEUT@HeTRApTSME@TQEU@ TUUUA`UVYE@W]uU@`EVXAPVYeE@ZieV@luV[A@W\qE@]uUW@xeW^ApW_}E@`AFX@DVXaA`XbIF@ cMvX@PFYdAPYeUF@fYfY@\vYgA@ZhaF@ieVZ@hfZjApZkmF@lqF[@tV[mA`[nyF@o}v[@@G\pAP \qEG@rIg\@Lw\sA@]tQG@uUW]@Xg]vAp]w]G@xaG^@dW^yA`^ziG@{mw^@pG_|AP_}uG@~yg_@| w_A@`@BH@AFX`@Hh`BBp`CNH@DRHa@TXaEB`aFZH@G^xa@`HbHBPbIfH@Jjhb@lxbKB@cLrH@M vXc@xhcNBpcO~H@PBId@DYdQB`dRJI@SNyd@PIeTBPeUVI@VZie@\yeWB@fXbI@YfYf@hifZBpf [nI@\rIg@tYg]B`g^zI@_~yg@@Jh`BPhaFJ@bJjh@LzhcB@idRJ@eVZi@XjifBpig^J@hbJj@dZ jiB`jjjJ@knzj@pJklBPkmvJ@nzjk@|zkoB@lpBK@qF[l@HklrBplsNK@tRKm@T[muB`mvZK@w^ {m@`KnxBPnyfK@zjkn@l{n{B@o|rK@}v[o@xko~Bpo~K@@CLp@D\pAC`pBKL@CO|p@PLqDCPqE WL@F[lq@\|qGC@rHcL@Ig\r@hlrJCprKoL@LsLs@t\sMC`sN{L@O|s@@MtPCPtQGM@RKmt@L}t SC@uTSM@UW]u@XmuVCpuW_M@XcMv@d]vYC`vZkM@[o}v@pMw\CPw]wM@^{mw@|}w_C@x`CN@aG^ x@HnxbCpxcON@dSNy@T^yeC`yf[N@g_~y@`NzhCPzigN@jknz@l~zkC@{lsN@mw^{@xn{nCp{o N@pCO|@D_|qC`|rKO@sO|@PO}tCP}uWO@v[o}@\}wC@~xcO@yg_~@ho~zCp~{oO@|sO@t_} C`~{O@@|   k    C@@@|        C@@@|       C@@@|       C@ @@|       C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@| y      C@ @@|   {    C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@|        C@@@|   PS{    C@@@|   v\~}    C@ @@|   olcu    C@@@|   mjww    C@@@|    _kpJ    C@@@|   WKm    C@@@|   db {    C@@@|   OgV    C@@@|   Sxv     C@@@|   ZGx    C@@@|   ovE~     C@@@|   kK}a    C@@@|   _{NFy     C@@@|   mfd    C@@@|   SSy     C@@@|  O sEF    C@@@|   C]lm  C\kiN|  C@ @@|  GHy  OcuT[}Yw   C@@@|  oh{~ um}  kMUV{iMd  C@@@|  a{~ wN_e  AfvZ\n]a   C@@@|  aO Y[G||uw`|mGcavYq ~ _re~  C@@@|  _jx~ ts} _SUTOYgtIzejoFXgmvHBG\}}v[ ~[Gmr]w~pI~   C@@@|  obT Gm^gETWa{dWHn o~^m}qOEWV]UaZZuTYMy Op_Az  C@@@|  odL [{w GMTPIFvSYk{_fynmEZYQz m[UTc}_kWiy   C@@@|  O`Z u[~oMvTSAumwn~ coUOQuU_~tOFUe} KzU`AVl  C@@@|  _\X s_] WMUSOME\UFJv_nIKlr^gmva_]{is~}UQAEVFO bOngbJfiisSuSh}~{wTOEEi   C@@@|  ]a|Ow CJh^a]EVQYUrTTEeUQMEV^EuTTaE` _TMEu|kTQMEVQQuUz_OUTj} ZBU_Taug  C@@@|  O]i o}qY| zVXXaFwOVTAvWWQuWVMuTQYEbkyRKEu__qufZ mAW\d[eUI~HFuUq~Oiu~   C@@@|  O\mKy\| |ofWeZopko{mSo{fg^yeS^| OuSMMuSSuT~}Oa^MuU {~obe~  C@@@|  oZp Nn}_uGYVQI |O{IFEVOUyku P[UT|}oXbuTgsOwLN~   C@@@| O\ vO^` GuqPs}YOQuwsVaEWY_UvXn}f]mAwo SQUZt~OggbDSUT@~GHUQEev} U{  C@@@|  oZ~ GHyFahuWZxEg~ OOV\MwVQYeUTEUVS]EeKibSyEV`~oeYiHm }NEVx}_eXTey@rgy  C@ @@| oZ| w]~ {_~uoo}q{^{ho~}W]q|j[ nr~omtZzg_p\yuUQ~j}U\VMx_kXYE_o~   C@@@|  Y{ _Zp@{nFoLqNw~  Oe_^{Z{~oxE[lmL  C@@@|  Y gXv WEUTVYETSeF}    C@@@|  _XDv }a]UVWYUVXaE ajFX l~  C@@@|  _Y o_Y so~z[O~vk NREU_~   C@@@|  OX~|sGx  QbvWe~   C@@@|  oZ oa~  mO~w   C@@@|  OXKo[x     C@@@|  X k_w     C@@@|  Wo{mm     C@@@|  _X WoeS     C@@@|  _XmCJv     C@@@|  W \J~     C@@@| oZ W{fd     C@@@|  WY^|{     C@ @@| oW OcG     C@@@|  WkHs     C@@@|  oW ~}}   cJjuR{ZsMzrvko  C@@@|  WOmm~   }WaUzSOeYmeZ^i~ C_XtAh{HnuYQwZX^AV__\|aG~EZGbI^Zco~G{ntF{Os\oGWjw~ C@@@|  Z skq   oW[qv[wTaeIdEnjuKvV_dV]UmOgXUzOwT\G_`SQu sWwkXl|sZVY]{qneWa~avxgNFHi C@@@|  oXob{   _X`i@OEZJg~guW wAVv_cV]|SEU|Oz^ae}o_o_~hOGZ|~[UVRzVwoi|~ C@@@|  {\ _m[~   OXh}tNUdCvYzYUr_`Xm|zSEZ|Vqu}o} kJjzt}vuOEW]v}C`@ C@@@|  _Xsyj   oW`}B[Uf[Yqyo ]uwO`\}|sKVQ~_eu}^Whdb]{oVYkXVb C@@@|  WoXo}Jf|    V\}yZedzo_|[ufzmEv[XE~nYqJYyuwkUY ~cuYsgX_QUXz C@@@|  k_Y_l]   _X[}_buUciVZguvZzG^ZWYUz _]Vu}ebJmTqukHUO~GUZ{EEVYEfq C@@@|  WOZ_[Jx   om UYM~vkomfugm{]cu[~WW]wmMe|ZTU}CLoeeAv~izu\wZ GeWieVuv{ C@@@|  Oo[oubn~   cGWbuw{pAFpoIXYb_mqEg~oEXoo]Ez_[Xi} mSuZXMECofhuz@H}mOUZsA}am C@@@|  o^__fI   Ob~}\ mQGsoiiMvW\]k~Vk}VZ[Q}oXQu}GKVhvJmVExOKYV`N~OiewGbAe X~a~[IXz C@@@| C^ yoYu   o}r_|o~yiWSu~ ojVnibS~HzW`BJ|CwfZn]wzWv\Sw]m}|\j C@@@|  g~`o|Mr|    VTu~ _}vo}C@ @@| G^\ Ko_P   OUTM  C@@@|  WM`i_w    W^TWq C@@@|  [}]ovw}    gyTY} Ghb C@@@|  Ol^W}^    `J~xoU[ C@@@|  _\aPow     Knv C@@@|  Glcob}     C@@@|  wjecYx      C@@@|  Kjj{cf~    oiMNXbuzOi]RZkR{ C@@@| _qnafZoMfZtav]TvF^{MG`zeY`ZZye\Biev~ ZitZkrPslqFK\v`wMxdC}wm_nzz[o}x{O~kO|gIV`I~     ov{JZZcS_fSYEW[Qz C@@@| voo}q{N{iGNyn{]{NkluOw[mz~Jn}rllKYgJRyaAvGcvUG]qYwZkMf[mMh_bMfZgE FZpyUXbQuVT}v]gYw^nMG\kYW_HBX_}UYeLRYf\R{kmj[nonMpPW}rCWNyeNywkO|{ozco {   OkqB_`QEEUY~ C@@@|  {~ov[yU`m^|moN{hWNy[G]vZg}uB_\q|n[kq^ {fY^YkYrjfLzhb}YYk@ZGbx]I_nagXsUVZkyv[pEgXbEvXi}V[mmfZoAg`taX`QfXfWZibWF{gm FzjBwktwVMtGoMv_W~wnS^{p[_}~o   Ou|myT_]uX C@@@|  cXieOxoy{ oyoo~ncOy_MvdgMvOkLqEo\rqB\klvJk_RYeY~IcJVX_CVz^quvXhuvYpUVZqiVZuaW\kiV\t mw^omF`}MW_AjX`DvgdJvze\RJolFLourkqB[lvKSmwtg~{lK_~xo~~ zEy a|q~A{uTSyw C@@@|  KXqW}a  s|So{{wN|pknxjsMv_GMwO{|tf|vmN\l_RZlRfjcLJye~ Mhc}qXbCNX_veVZkYG\h}VZoev[jUg]qUi[vQG_AjX_JRIbJnKhTNIiZvziwf{u[K{rKS~rhW}| mo^||{|Oxkwnwoug_}QHzIGU T\Qy C@@@| cwp Ov}}  {}vsO~{K|m SNzUKnt]K]uIokqzVKh[RZlUZyeJBzaRFG^tAw^{iX\@zfXjUVZmaFZpEgZqEg_vuW_xUX_SUFU SmU_]Fzi~ZFUTJ~ C@@@|  _hsoLn{    ||o~_|skoqC|ok]v\quUS]uiLgjpj_MVVU~ C@ @@| WHy| ys   ~uX_\Y[qFO| Omt}ZXh~ C@@@|  _fxfD    \k}tOS{UqyUo|B{ C@@@|  Cwy|a^ |    _}|hU~I}Y] C@@@|  {V{|GJp    V\yEV[Ufq_nuViuw C@@@|  kV}cOcF     _xjCtU_]~hs|r@K} C@@@|  WV|_V|     C@@@|  WFSiw      C@@@|  wf~_X     C@@@|  Gw~|n}      C@@@|  {vrv     C@@@|  GvG_g      C@@@|  CvozA~     C@@@|  u_Wx      C@@@| Gv mc~     C@@@|  uvP~     C@ @@| Cv SSy     C@@@|  cv{Hy     C@@@|  u O^n     C@@@|  Cvxm~     C@@@|  u f~     C@@@|  kvO\~     C@@@|  gv qi{     C@@@|  ~uShq     C@@@|  ~kv _dZ     C@@@|  {{wLR~     C@@@|  s{v _y|     C@@@|  okw_kv     C@@@|  ]ww ~@v~     C@@@| _x zkx|     C@@@|  ]ky {obP~    C@ @@| USx cWz     C@@@|  X[y ]h    C@@@|  Jkx _v\~     C@@@|  FWy~p~ }    C@@@|  DKy pgyq     C@@@|  wJycNh[     C@@@|  GS{ ovR~}     C@@@|  qJ{b~^OY{     C@@@|  WB| jI{g]lv     C@@@|  \V|eyuomIz     C@@@|  MZ| _}u[w     C@@@|  OZ|[Mvs_[     C@@@|  Bb} T}uowM~     C@@@| LF~ \Ev`Oy     C@@@|  Gr~Vmu CLj    C@ @@| ~E javsY~     C@@@|  py~a}u {Bz    C@@@|  qQ oTeuo{i     C@@@|  g]~Sau mt~    C@@@|  gy O~sautry     C@@@|  e}}YYu kf|    C@@@|  e} o}Vmuo[~     C@@@|  b}_|VQw oq    C@@@|  _} ox[uwC}w{v     C@@@|  b}_{[ex[Iq O]    C@@@|  v} _{WYwXUpY     C@@@|  a}oyVqwYbU{ wvz    C@@@|  o}O uWAwskaUot_[m     C@@@| `} xaaxJvF\a }i    C@@@|  a}OwcAx }Qy}dn|fSy    C@ @@| a} OSzgqE{C{w O}f    C@@@|  `} {cU]_wGZZonq~    C@@@|  g} _EVd{\PG y    C@@@|  b} OZGFZ]o^TGls    C@@@|  h} _XWo[[m^ahOwm~ }    C@@@|  b}Z WWI{vkx    C@@@|  o~e} oze_\XAmKzSNnx     C@@@|  O}n}^whs^yw \wGyoj}~    C@@@|  _}a} S~oh}uJ_vdNf|     C@@@|  o|o}t\ae Ccug[It    C@@@|  O{o} Ogfc@GfhO`F     C@@@| _ uq}KmW @wveMR}    C@@@|  vv} olgzunCIu     C@@@| owE~ URU kOax}    C@@@|  _q{} T^elZKx  @wZjC  C@ @@| OqS~ GNvp {ld  sXMuV_v}  C@@@|  Opd~ zEEsrO~  ZSeu^ZCy  C@@@|  On[~ LRUu O}lR{  _`imFg[Wx  C@@@|  _li~ kMEvtWju O_}MH_{qXh]V|o g\i  C@@@|  ohj~ qaev {MdpwTEuSvI]b^iz kAvYk}ObpAW_o}vovQk\w mO\b  C@@@|  Oev~ _QEysfb~ YAuUx~OyEb{koW[_|SqeUWUx @@pofVMUVS~C|W`~  C@@@|  Obw~ g]Ez _ZtQCETba}Tvz ~gYn[[aVVd~@@p_{VEuX wzUZ~  C@@@|  obz~ iEEzmhU [cMuTP]{mkx[uST]ug @@pO}cQUYb^EX`E{  C@@@|  ^P ^Qe| OZ|USutSSAWeab}g[rBklwYk]xWw^ zl__UTPaeq@@p|T}DZ o~MuSQQz  C@@@|  __U ^]V~sir` BjWXWaUTVe|OEUQYUTSaeWQMEUXAxGUSQMO@@LU T@@PTT]e~wSEeZofPuGUX}y  C@@@|  `] _mu} _]|OonEFVhq}cEU`}uUT}eUSMUTVax ZntRQ}O@@tW\@@P[pEwOyVYUbO bQ]UlSZm  C@@@| O _\ aMuOA~Ok yUiv{O|z{^{t{nyiW^ydGS}TSS}@@p tTMe_ShWS]unkXi  C@@@|  oZm bYu ~{vW}QfUTBs~ _bQauSU~Z}@@pOtVEE_KfXMuy| sMcc  C@@@| oZq gbu [N_Q]Lt\_vST} }|oUXqUvWeMf[oYW[p}{TTeFmsyix@@p OqTEE`ARUTQi}__u~  C@@@|  _Zm Sy _{oQHZ}eF^qiscEWsmUTVYEUQeuTWQyRj xT^aEh[YVJR{@@p_oSaE^WIFUY~O`| Y~ C@ @@| _Ym   ~g_}{[_|nwNzk_UWLozfkl[Kmf~y GLW^]UdoZ_EgUC~wJVVqwk  C@@@|  OZt   s_ygwnvnK^qF[Ks  C@@@|  _[      C@@@|  X~   _hjAFk  C@@@|  OX   ocTQug   C@@@|  W   _dh}Ui  C@@@|  OX   _{c}   C@@@|  X     C@@@|  Y      C@@@|  hy]kzs     C@@@|  Yi^wgw      C@@@| bqO \cww     C@@@|  WmI^J~Ey      C@@@| hbuYTEi~ sLsd     C@@@|  geUQi~_zlbuVMf     C@ @@| sEUWE dYee_]{x     C@@@|  geUVQObDjgba{x     C@@@|  GiUY~ g}`     C@@@|  ooWm`     C@@@|  sOXgL XM~     C@@@|  {Y\XV~     C@@@|  Z_GU{U|      C@@@|  u~EZgE{     C@@@|  _qbmeW[q{      C@@@|  _hTmUfL[Kc     C@@@|  GLXWaUks[Z      C@@@| o~ kYYVuX|_Npm~     C@@@|  o~UTSU{a}      C@@@|  AZEUc}|}bq     C@@@|  oukEeXkzoweEF~     C@ @@|  _bEbhbMb~KK_zAI`     C@@@|       C@@@|        C@@@|       C@@@|        C@@@| or[~~      C@@@| SO\c]vYi}vXu }iSKpF      C@@@| WG`U{wg| PbuVY]{     C@@@| wYm[OX TKjU~u      C@@@|O{hUWX}}\hav`oms}Fg` pZ~[ee~vJlrcMp^objr]xgCyb[\Y[}r{{o}~ Cjm     C@@@| ]ouVsO}XYuwOz@ZebzwSfeUw~gTIYjmFvTCzOujQUTVAFUVUV]zCvV[Mf {muW`}|BFX`uxz^v]vao^oUWapEx\lOoW_{^gn|~S^{sKo||      C@@@|kgUV^YuT^EmNCEV soXi}hVFUiOX[iw`EFHaJNxG^TSQcuVq~_YX~QsbMEylGvTQe}uTQup w~Ud~[MVs}ygWreXJNfUH~OWXhavpAIZk}}xzlmMBYb    _~ C@@@| SSEVXUvJZupiNuY{VV}OGXqob|UKyPS]zS^TQyCvT ~kjUU~_qSMu_]VQ}V]Uw|oWTj}geUo_pe}De~Sm_pW_ YcYtcHUp~JNWl`_}q|}     C@@@|U{eUY]uwAEo_Fu\OZV UKFTq~oUXT]E_sMVT}oUT~_YXj~_lVEe{UQ}_~Tyuy]GuT p}GvTrkvTeorhb~kouXxSZTUIjz{[}     C@@@| KGuUSYuDzFsDvDWo}aeu{WVTm~`MuwvoKUv}g|T`}cETz SXTv~OsuudeTP}S]u|yxNUYwe~cvThhBe`Qse}XYU~ CwTYw{_Xe}    C@ @@|OcuUTyuoAurLFuUxOw]ms EVqoXW}}_jQEwCMTQ}sEUkXTd~`HUaVOTP}[eu{oZOEg~YOv kXXun}ZFVh{W}[MY}_FUS[|ioVySY}     C@@@|zNu VXYuhYEvvAEXox[oiyUTxWXu~OoYywWmUS}SuT~{wSj~ [ojYFzWV}_~hEU{o]Jav]_v_}^qEm]behSSQ}OFV^ vFVTPQuWY~    C@@@| oqaYeUofWuVfO~h}em{zpYuV[OVi}[uTx X[a}_haUxs|TT}GUSuKxTA_r~Iz{xSW}O[Me{K}VQuwiwF} oO~tGcYQuj@CFTS}KvUhc]u`lZzj     C@@@||MfeU_k ^QUk`bJhXQXgHF[xpYed{~YgQ^|g[EZ~cYE{~wZTXQEeFcETP}pYuYhuVyKxS@OaSau OOTTy_hmEugLpNgUSw}K}ZouU~O|efj_jSAFzOkwSGVma] z|o{w~    C@@@| ygmw@s{_JnejcJbMzx{pmv\zQh{KVZ ayuc~c_zTX}kKFX[_~eLBgh~oteaUl`nyTa~OcWAEakRUTQAuSta~W{Z{GV Tvo}}MEpCIVBZ~OM^~{mvVnhQ~_dk}     C@@@| |oOziC~wuLok}{rJi_n[k ojvg~}yw[niFZoqyXkfZR~k_V\]VYYiz[BWT^]w_gUIvxLceUzxfymkJj `B~    C@@@|  O~y{o} wr{^zm_~k]x^{}{lssLn}j\{v~     C@@@|nk{{       C@@@| _fU[g md`~      C@@@|AGI` [yV[} O]v     C@@@| S^qm~  sEV~     C@@@|  Kid     C@@@|        C@@@|       C@@@|       C@ @@|       C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@|        C@@@|       C@@@@ %%%%%%%%%%%%%%%%%%%% End /document/graphics/6-1.bmp %%%%%%%%%%%%%%%%%%%