%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Scientific Word Wrap/Unwrap Version 2.5 % % Scientific Word Wrap/Unwrap Version 3.0 % % % % If you are separating the files in this message by hand, you will % % need to identify the file type and place it in the appropriate % % directory. The possible types are: Document, DocAssoc, Other, % % Macro, Style, Graphic, PastedPict, and PlotPict. Extract files % % tagged as Document, DocAssoc, or Other into your TeX source file % % directory. Macro files go into your TeX macros directory. Style % % files are used by Scientific Word and do not need to be extracted. % % Graphic, PastedPict, and PlotPict files should be placed in a % % graphics directory. % % % % Graphic files need to be converted from the text format (this is % % done for e-mail compatability) to the original 8-bit binary format. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Files included: % % % % "/document/lec_4_10_00.tex", Document, 5688, 4/11/2000, 14:05:56, ""% % "/document/graphics/6-1.bmp", ImportPict, 113218, 7/23/1999, 17:08:58, ""% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% Start /document/lec_4_10_00.tex %%%%%%%%%%%%%%%%%%% %\newtheorem{theorem}{Theorem} %\newtheorem{axiom}[theorem]{Axiom} %\newtheorem{conjecture}[theorem]{Conjecture} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{definition}[theorem]{Definition} %\newtheorem{example}[theorem]{Example} %\newtheorem{exercise}[theorem]{Exercise} %\newtheorem{lemma}[theorem]{Lemma} %\newtheorem{proposition}[theorem]{Proposition} %\newtheorem{remark}[theorem]{Remark} \documentclass{article} \usepackage{amssymb} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{graphicx} \usepackage{amsmath} %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Created=Sunday, May 16, 1999 12:00:37} %TCIDATA{LastRevised=Tuesday, April 11, 2000 10:05:54} %TCIDATA{} %TCIDATA{} %TCIDATA{Language=American English} %TCIDATA{CSTFile=webmath.cst} %TCIDATA{PageSetup=72,72,72,72,0} %TCIDATA{AllPages= %F=36,\PARA{038
\hfill \thepage} %} \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \input{tcilatex} \begin{document} \section{Ma 116 Lecture 4/10/00} \begin{center} \vspace{1pt} \end{center} \subsection{Complex Numbers} Consider a number of the form $z=x+iy,$ where $x$ and $y$ are real and $% i^{2}=-1.$ We call $x$ the \emph{real part} of $z$ and $y$ is called the \emph{imaginary part.} We write $x=\func{Re}(z)$ and $y=\func{Im}\left( z\right) .$ Let $z_{1}=x_{1}+iy_{1}$ and $z_{2}=x_{2}+iy_{2}$, then \begin{equation*} z_{1}=z_{2}\Leftrightarrow x_{1}=x_{2}\text{ and }y_{1}=y_{2} \end{equation*} \vspace{1pt} \vspace{1pt}Complex numbers are added and subtracted according to the rule \vspace{1pt} \begin{equation*} z_{1}\pm z_{2}=\left( x_{1}\pm x_{2}\right) +i\left( y_{1}\pm y_{2}\right) \end{equation*} and are multiplied according to the rule \vspace{1pt} \begin{equation*} z_{1}\cdot z_{2}=\left( x_{1}+iy_{1}\right) \left( x_{2}+iy_{2}\right) =\left( x_{1}x_{2}-y_{1}y_{2}\right) +i\left( x_{1}y_{2}+x_{2}y_{1}\right) \end{equation*} \paragraph{Examples:} $\left( 2+3i\right) +(4-2i)=\allowbreak 6+i$ $\left( 2+3i\right) -(4-2i)=\allowbreak -2+5i$ $\left( 2+3i\right) (4-2i)=\allowbreak 14+8i$ \vspace{1pt} Note that $z=x+iy=0\Leftrightarrow x=0$ and $y=0.$ Also if $z_{1}\cdot z_{2}=0,$ then either $z_{1}=0$ or $z_{2}=0.$ \vspace{1pt} We now deal with dividing one complex number by another. Suppose $z_{2}\neq 0,$ then \vspace{1pt} \begin{equation*} \dfrac{z_{1}}{z_{2}}=\dfrac{x_{1}+iy_{1}}{x_{2}+iy_{2}} \end{equation*} \vspace{1pt} However, this is not an expression in the form $a+bi,$ so we do some algebraic manipulation to get it into this form. \vspace{1pt} \begin{equation*} \dfrac{z_{1}}{z_{2}}=\left( \dfrac{x_{1}+iy_{1}}{x_{2}+iy_{2}}\right) \left( \dfrac{x_{2}-iy_{2}}{x_{2}-iy_{2}}\right) =\dfrac{x_{1}x_{2}+y_{1}y_{2}}{% x_{2}^{2}+y_{2}^{2}}+i\left( \dfrac{x_{2}y_{1}-x_{1}y_{2}}{% x_{2}^{2}+y_{2}^{2}}\right) \end{equation*} \vspace{1pt} \paragraph{Example:} \begin{eqnarray*} \dfrac{1+4i}{-2+2i} &=&\left( \dfrac{1+4i}{-2+2i}\right) \left( \dfrac{-2-2i% }{-2-2i}\right) \\ &=&\dfrac{-2-2i-8i-8i^{2}}{\left( -2\right) ^{2}-\left( 2i\right) ^{2}} \\ &=&\dfrac{-2-10i+8}{4+4} \\ &=&\dfrac{6-10i}{8} \\ &=&\allowbreak \frac{3}{4}-\frac{5}{4}i \end{eqnarray*} \vspace{1pt} If $z=x+iy,$ then the number $\bar{z}=x-iy$ is called the \emph{complex conjugate} of $z.$ Note that $z\cdot \bar{z}=x^{2}+y^{2}.$ \ The absolute value of a complex number, which is a \emph{real} number, is defined to be \vspace{1pt} \begin{equation*} \left| z\right| =\sqrt{x^{2}+y^{2}}=\sqrt{z\bar{z}} \end{equation*} The diagram below shows how one may graph $z$ and $\bar{z}.$ \begin{center} \FRAME{dtbpF}{3.1185in}{2.0081in}{0pt}{}{}{6-1.bmp}{\special{language "Scientific Word";type "GRAPHIC";maintain-aspect-ratio TRUE;display "USEDEF";valid_file "F";width 3.1185in;height 2.0081in;depth 0pt;original-width 4.3439in;original-height 2.7812in;cropleft "0";croptop "1";cropright "1";cropbottom "0";filename 'graphics/6-1.bmp';file-properties "XNPEU";}} \vspace{1pt} \end{center} The fact that $z\bar{z}=x^{2}+y^{2}=\left| z\right| ^{2}$ leads to two fundamental properties of complex numbers. The triangle inequality \vspace{1pt} \begin{equation*} \left| \text{ }z_{1}+z_{2}\right| \leq \left| \text{ }z_{1}\right| +\left| \text{ }z_{2}\right| \end{equation*} and the fact that $\left| \text{ }z_{1}-z_{2}\right| =$ the distance between $z_{2}$ and $z_{2}.$ \vspace{1pt} \paragraph{Example:} Verify the triangle inequality for $z_{1}=3-5i$ and $z_{2}=-2+i.$ \begin{equation*} 3-5i+\left( -2+i\right) =\allowbreak 1-4i \end{equation*}% so $\left| 1-4i\right| =\allowbreak \sqrt{17}.$ Also, $\left| 3-5i\right| =\allowbreak \sqrt{34}$ and $\left| -2+i\right| =\allowbreak \sqrt{5}.$ Clearly $\sqrt{17}\thickapprox \allowbreak 4.\,\allowbreak 123\,1\leq \sqrt{% 34}+\sqrt{5}\thickapprox \allowbreak 8.\,\allowbreak 067$ \vspace{1pt} \end{document} %%%%%%%%%%%%%%%%%%%% End /document/lec_4_10_00.tex %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% Start /document/graphics/6-1.bmp %%%%%%%%%%%%%%%%%% BudPzF@@@@@@@XCA@@@J@@@@aF@@@lP@@@P@@`@@@@@@@p`mA@@qN@@@D{@@@@@@@@@@@@@@@@@ @@DP@A@`@BH@@CLp@@P@AD@PAET@@FX`A@\pAG@@BH`@@IdPB@h`BJ@pBKl@@Lp@C@tPCM@`CNx @@O|pC@@ADP@PDQDA@RHaD@LqDS@@ETPA@UTQE@XaEV@pEW\A@X`AF@dQFY@`FZhA@[lqF@pAG\ @PG]tA@^xaG@|qG_@@H`@B@aDRH@HbHb@pHcLB@dPBI@TRIe@`IfXB@g\rI@`BJh@PJidB@jhbJ @lrJk@@KlpB@mtRK@xbKn@pKo|B@p@CL@DSLq@`LrHC@sLsL@PCMt@PMuTC@vXcM@\sMw@@Nx`C @ydSN@hcNz@pN{lC@|pCO@tSO}@`O~xC@|sO@@DP@APPAED@BIdP@LtPCA@QDQD@EUTQ@XdQFA pQG]D@HaDR@dTRIA`RJiD@KmtR@pDSLAPSMuD@NydS@|tSOA@TPAE@QEUT@HeTRApTSME@TQEU@ TUUUA`UVYE@W]uU@`EVXAPVYeE@ZieV@luV[A@W\qE@]uUW@xeW^ApW_}E@`AFX@DVXaA`XbIF@ cMvX@PFYdAPYeUF@fYfY@\vYgA@ZhaF@ieVZ@hfZjApZkmF@lqF[@tV[mA`[nyF@o}v[@@G\pAP \qEG@rIg\@Lw\sA@]tQG@uUW]@Xg]vAp]w]G@xaG^@dW^yA`^ziG@{mw^@pG_|AP_}uG@~yg_@| w_A@`@BH@AFX`@Hh`BBp`CNH@DRHa@TXaEB`aFZH@G^xa@`HbHBPbIfH@Jjhb@lxbKB@cLrH@M vXc@xhcNBpcO~H@PBId@DYdQB`dRJI@SNyd@PIeTBPeUVI@VZie@\yeWB@fXbI@YfYf@hifZBpf [nI@\rIg@tYg]B`g^zI@_~yg@@Jh`BPhaFJ@bJjh@LzhcB@idRJ@eVZi@XjifBpig^J@hbJj@dZ jiB`jjjJ@knzj@pJklBPkmvJ@nzjk@|zkoB@lpBK@qF[l@HklrBplsNK@tRKm@T[muB`mvZK@w^ {m@`KnxBPnyfK@zjkn@l{n{B@o|rK@}v[o@xko~Bpo~K@@CLp@D\pAC`pBKL@CO|p@PLqDCPqE WL@F[lq@\|qGC@rHcL@Ig\r@hlrJCprKoL@LsLs@t\sMC`sN{L@O|s@@MtPCPtQGM@RKmt@L}t SC@uTSM@UW]u@XmuVCpuW_M@XcMv@d]vYC`vZkM@[o}v@pMw\CPw]wM@^{mw@|}w_C@x`CN@aG^ x@HnxbCpxcON@dSNy@T^yeC`yf[N@g_~y@`NzhCPzigN@jknz@l~zkC@{lsN@mw^{@xn{nCp{o N@pCO|@D_|qC`|rKO@sO|@PO}tCP}uWO@v[o}@\}wC@~xcO@yg_~@ho~zCp~{oO@|sO@t_} C`~{O@@| k C@@@| C@@@| C@@@| C@ @@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| y C@ @@| { C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| PS{ C@@@| v\~} C@ @@| olcu C@@@| mjww C@@@| _kpJ C@@@| WKm C@@@| db { C@@@| OgV C@@@| Sxv C@@@| ZGx C@@@| ovE~ C@@@| kK}a C@@@| _{NFy C@@@| mfd C@@@| SSy C@@@| O sEF C@@@| C]lm C\kiN| C@ @@| GHy OcuT[}Yw C@@@| oh{~ um} kMUV{iMd C@@@| a{~ wN_e AfvZ\n]a C@@@| aO Y[G||uw`|mGcavYq ~ _re~ C@@@| _jx~ ts} _SUTOYgtIzejoFXgmvHBG\}}v[ ~[Gmr]w~pI~ C@@@| obT Gm^gETWa{dWHn o~^m}qOEWV]UaZZuTYMy Op_Az C@@@| odL [{w GMTPIFvSYk{_fynmEZYQz m[UTc}_kWiy C@@@| O`Z u[~oMvTSAumwn~ coUOQuU_~tOFUe} KzU`AVl C@@@| _\X s_] WMUSOME\UFJv_nIKlr^gmva_]{is~}UQAEVFO bOngbJfiisSuSh}~{wTOEEi C@@@| ]a|Ow CJh^a]EVQYUrTTEeUQMEV^EuTTaE` _TMEu|kTQMEVQQuUz_OUTj} ZBU_Taug C@@@| O]i o}qY| zVXXaFwOVTAvWWQuWVMuTQYEbkyRKEu__qufZ mAW\d[eUI~HFuUq~Oiu~ C@@@| O\mKy\| |ofWeZopko{mSo{fg^yeS^| OuSMMuSSuT~}Oa^MuU {~obe~ C@@@| oZp Nn}_uGYVQI |O{IFEVOUyku P[UT|}oXbuTgsOwLN~ C@@@| O\ vO^` GuqPs}YOQuwsVaEWY_UvXn}f]mAwo SQUZt~OggbDSUT@~GHUQEev} U{ C@@@| oZ~ GHyFahuWZxEg~ OOV\MwVQYeUTEUVS]EeKibSyEV`~oeYiHm }NEVx}_eXTey@rgy C@ @@| oZ| w]~ {_~uoo}q{^{ho~}W]q|j[ nr~omtZzg_p\yuUQ~j}U\VMx_kXYE_o~ C@@@| Y{ _Zp@{nFoLqNw~ Oe_^{Z{~oxE[lmL C@@@| Y gXv WEUTVYETSeF} C@@@| _XDv }a]UVWYUVXaE ajFX l~ C@@@| _Y o_Y so~z[O~vk NREU_~ C@@@| OX~|sGx QbvWe~ C@@@| oZ oa~ mO~w C@@@| OXKo[x C@@@| X k_w C@@@| Wo{mm C@@@| _X WoeS C@@@| _XmCJv C@@@| W \J~ C@@@| oZ W{fd C@@@| WY^|{ C@ @@| oW OcG C@@@| WkHs C@@@| oW ~}} cJjuR{ZsMzrvko C@@@| WOmm~ }WaUzSOeYmeZ^i~ C_XtAh{HnuYQwZX^AV__\|aG~EZGbI^Zco~G{ntF{Os\oGWjw~ C@@@| Z skq oW[qv[wTaeIdEnjuKvV_dV]UmOgXUzOwT\G_`SQu sWwkXl|sZVY]{qneWa~avxgNFHi C@@@| oXob{ _X`i@OEZJg~guW wAVv_cV]|SEU|Oz^ae}o_o_~hOGZ|~[UVRzVwoi|~ C@@@| {\ _m[~ OXh}tNUdCvYzYUr_`Xm|zSEZ|Vqu}o} kJjzt}vuOEW]v}C`@ C@@@| _Xsyj oW`}B[Uf[Yqyo ]uwO`\}|sKVQ~_eu}^Whdb]{oVYkXVb C@@@| WoXo}Jf| V\}yZedzo_|[ufzmEv[XE~nYqJYyuwkUY ~cuYsgX_QUXz C@@@| k_Y_l] _X[}_buUciVZguvZzG^ZWYUz _]Vu}ebJmTqukHUO~GUZ{EEVYEfq C@@@| WOZ_[Jx om UYM~vkomfugm{]cu[~WW]wmMe|ZTU}CLoeeAv~izu\wZ GeWieVuv{ C@@@| Oo[oubn~ cGWbuw{pAFpoIXYb_mqEg~oEXoo]Ez_[Xi} mSuZXMECofhuz@H}mOUZsA}am C@@@| o^__fI Ob~}\ mQGsoiiMvW\]k~Vk}VZ[Q}oXQu}GKVhvJmVExOKYV`N~OiewGbAe X~a~[IXz C@@@| C^ yoYu o}r_|o~yiWSu~ ojVnibS~HzW`BJ|CwfZn]wzWv\Sw]m}|\j C@@@| g~`o|Mr| VTu~ _}vo}C@ @@| G^\ Ko_P OUTM C@@@| WM`i_w W^TWq C@@@| [}]ovw} gyTY} Ghb C@@@| Ol^W}^ `J~xoU[ C@@@| _\aPow Knv C@@@| Glcob} C@@@| wjecYx C@@@| Kjj{cf~ oiMNXbuzOi]RZkR{ C@@@| _qnafZoMfZtav]TvF^{MG`zeY`ZZye\Biev~ ZitZkrPslqFK\v`wMxdC}wm_nzz[o}x{O~kO|gIV`I~ ov{JZZcS_fSYEW[Qz C@@@| voo}q{N{iGNyn{]{NkluOw[mz~Jn}rllKYgJRyaAvGcvUG]qYwZkMf[mMh_bMfZgE FZpyUXbQuVT}v]gYw^nMG\kYW_HBX_}UYeLRYf\R{kmj[nonMpPW}rCWNyeNywkO|{ozco { OkqB_`QEEUY~ C@@@| {~ov[yU`m^|moN{hWNy[G]vZg}uB_\q|n[kq^ {fY^YkYrjfLzhb}YYk@ZGbx]I_nagXsUVZkyv[pEgXbEvXi}V[mmfZoAg`taX`QfXfWZibWF{gm FzjBwktwVMtGoMv_W~wnS^{p[_}~o Ou|myT_]uX C@@@| cXieOxoy{ oyoo~ncOy_MvdgMvOkLqEo\rqB\klvJk_RYeY~IcJVX_CVz^quvXhuvYpUVZqiVZuaW\kiV\t mw^omF`}MW_AjX`DvgdJvze\RJolFLourkqB[lvKSmwtg~{lK_~xo~~ zEy a|q~A{uTSyw C@@@| KXqW}a s|So{{wN|pknxjsMv_GMwO{|tf|vmN\l_RZlRfjcLJye~ Mhc}qXbCNX_veVZkYG\h}VZoev[jUg]qUi[vQG_AjX_JRIbJnKhTNIiZvziwf{u[K{rKS~rhW}| mo^||{|Oxkwnwoug_}QHzIGU T\Qy C@@@| cwp Ov}} {}vsO~{K|m SNzUKnt]K]uIokqzVKh[RZlUZyeJBzaRFG^tAw^{iX\@zfXjUVZmaFZpEgZqEg_vuW_xUX_SUFU SmU_]Fzi~ZFUTJ~ C@@@| _hsoLn{ ||o~_|skoqC|ok]v\quUS]uiLgjpj_MVVU~ C@ @@| WHy| ys ~uX_\Y[qFO| Omt}ZXh~ C@@@| _fxfD \k}tOS{UqyUo|B{ C@@@| Cwy|a^ | _}|hU~I}Y] C@@@| {V{|GJp V\yEV[Ufq_nuViuw C@@@| kV}cOcF _xjCtU_]~hs|r@K} C@@@| WV|_V| C@@@| WFSiw C@@@| wf~_X C@@@| Gw~|n} C@@@| {vrv C@@@| GvG_g C@@@| CvozA~ C@@@| u_Wx C@@@| Gv mc~ C@@@| uvP~ C@ @@| Cv SSy C@@@| cv{Hy C@@@| u O^n C@@@| Cvxm~ C@@@| u f~ C@@@| kvO\~ C@@@| gv qi{ C@@@| ~uShq C@@@| ~kv _dZ C@@@| {{wLR~ C@@@| s{v _y| C@@@| okw_kv C@@@| ]ww ~@v~ C@@@| _x zkx| C@@@| ]ky {obP~ C@ @@| USx cWz C@@@| X[y ]h C@@@| Jkx _v\~ C@@@| FWy~p~ } C@@@| DKy pgyq C@@@| wJycNh[ C@@@| GS{ ovR~} C@@@| qJ{b~^OY{ C@@@| WB| jI{g]lv C@@@| \V|eyuomIz C@@@| MZ| _}u[w C@@@| OZ|[Mvs_[ C@@@| Bb} T}uowM~ C@@@| LF~ \Ev`Oy C@@@| Gr~Vmu CLj C@ @@| ~E javsY~ C@@@| py~a}u {Bz C@@@| qQ oTeuo{i C@@@| g]~Sau mt~ C@@@| gy O~sautry C@@@| e}}YYu kf| C@@@| e} o}Vmuo[~ C@@@| b}_|VQw oq C@@@| _} ox[uwC}w{v C@@@| b}_{[ex[Iq O] C@@@| v} _{WYwXUpY C@@@| a}oyVqwYbU{ wvz C@@@| o}O uWAwskaUot_[m C@@@| `} xaaxJvF\a }i C@@@| a}OwcAx }Qy}dn|fSy C@ @@| a} OSzgqE{C{w O}f C@@@| `} {cU]_wGZZonq~ C@@@| g} _EVd{\PG y C@@@| b} OZGFZ]o^TGls C@@@| h} _XWo[[m^ahOwm~ } C@@@| b}Z WWI{vkx C@@@| o~e} oze_\XAmKzSNnx C@@@| O}n}^whs^yw \wGyoj}~ C@@@| _}a} S~oh}uJ_vdNf| C@@@| o|o}t\ae Ccug[It C@@@| O{o} Ogfc@GfhO`F C@@@| _ uq}KmW @wveMR} C@@@| vv} olgzunCIu C@@@| owE~ URU kOax} C@@@| _q{} T^elZKx @wZjC C@ @@| OqS~ GNvp {ld sXMuV_v} C@@@| Opd~ zEEsrO~ ZSeu^ZCy C@@@| On[~ LRUu O}lR{ _`imFg[Wx C@@@| _li~ kMEvtWju O_}MH_{qXh]V|o g\i C@@@| ohj~ qaev {MdpwTEuSvI]b^iz kAvYk}ObpAW_o}vovQk\w mO\b C@@@| Oev~ _QEysfb~ YAuUx~OyEb{koW[_|SqeUWUx @@pofVMUVS~C|W`~ C@@@| Obw~ g]Ez _ZtQCETba}Tvz ~gYn[[aVVd~@@p_{VEuX wzUZ~ C@@@| obz~ iEEzmhU [cMuTP]{mkx[uST]ug @@pO}cQUYb^EX`E{ C@@@| ^P ^Qe| OZ|USutSSAWeab}g[rBklwYk]xWw^ zl__UTPaeq@@p|T}DZ o~MuSQQz C@@@| __U ^]V~sir` BjWXWaUTVe|OEUQYUTSaeWQMEUXAxGUSQMO@@LU T@@PTT]e~wSEeZofPuGUX}y C@@@| `] _mu} _]|OonEFVhq}cEU`}uUT}eUSMUTVax ZntRQ}O@@tW\@@P[pEwOyVYUbO bQ]UlSZm C@@@| O _\ aMuOA~Ok yUiv{O|z{^{t{nyiW^ydGS}TSS}@@p tTMe_ShWS]unkXi C@@@| oZm bYu ~{vW}QfUTBs~ _bQauSU~Z}@@pOtVEE_KfXMuy| sMcc C@@@| oZq gbu [N_Q]Lt\_vST} }|oUXqUvWeMf[oYW[p}{TTeFmsyix@@p OqTEE`ARUTQi}__u~ C@@@| _Zm Sy _{oQHZ}eF^qiscEWsmUTVYEUQeuTWQyRj xT^aEh[YVJR{@@p_oSaE^WIFUY~O`| Y~ C@ @@| _Ym ~g_}{[_|nwNzk_UWLozfkl[Kmf~y GLW^]UdoZ_EgUC~wJVVqwk C@@@| OZt s_ygwnvnK^qF[Ks C@@@| _[ C@@@| X~ _hjAFk C@@@| OX ocTQug C@@@| W _dh}Ui C@@@| OX _{c} C@@@| X C@@@| Y C@@@| hy]kzs C@@@| Yi^wgw C@@@| bqO \cww C@@@| WmI^J~Ey C@@@| hbuYTEi~ sLsd C@@@| geUQi~_zlbuVMf C@ @@| sEUWE dYee_]{x C@@@| geUVQObDjgba{x C@@@| GiUY~ g}` C@@@| ooWm` C@@@| sOXgL XM~ C@@@| {Y\XV~ C@@@| Z_GU{U| C@@@| u~EZgE{ C@@@| _qbmeW[q{ C@@@| _hTmUfL[Kc C@@@| GLXWaUks[Z C@@@| o~ kYYVuX|_Npm~ C@@@| o~UTSU{a} C@@@| AZEUc}|}bq C@@@| oukEeXkzoweEF~ C@ @@| _bEbhbMb~KK_zAI` C@@@| C@@@| C@@@| C@@@| C@@@| or[~~ C@@@| SO\c]vYi}vXu }iSKpF C@@@| WG`U{wg| PbuVY]{ C@@@| wYm[OX TKjU~u C@@@|O{hUWX}}\hav`oms}Fg` pZ~[ee~vJlrcMp^objr]xgCyb[\Y[}r{{o}~ Cjm C@@@| ]ouVsO}XYuwOz@ZebzwSfeUw~gTIYjmFvTCzOujQUTVAFUVUV]zCvV[Mf {muW`}|BFX`uxz^v]vao^oUWapEx\lOoW_{^gn|~S^{sKo|| C@@@|kgUV^YuT^EmNCEV soXi}hVFUiOX[iw`EFHaJNxG^TSQcuVq~_YX~QsbMEylGvTQe}uTQup w~Ud~[MVs}ygWreXJNfUH~OWXhavpAIZk}}xzlmMBYb _~ C@@@| SSEVXUvJZupiNuY{VV}OGXqob|UKyPS]zS^TQyCvT ~kjUU~_qSMu_]VQ}V]Uw|oWTj}geUo_pe}De~Sm_pW_ YcYtcHUp~JNWl`_}q|} C@@@|U{eUY]uwAEo_Fu\OZV UKFTq~oUXT]E_sMVT}oUT~_YXj~_lVEe{UQ}_~Tyuy]GuT p}GvTrkvTeorhb~kouXxSZTUIjz{[} C@@@| KGuUSYuDzFsDvDWo}aeu{WVTm~`MuwvoKUv}g|T`}cETz SXTv~OsuudeTP}S]u|yxNUYwe~cvThhBe`Qse}XYU~ CwTYw{_Xe} C@ @@|OcuUTyuoAurLFuUxOw]ms EVqoXW}}_jQEwCMTQ}sEUkXTd~`HUaVOTP}[eu{oZOEg~YOv kXXun}ZFVh{W}[MY}_FUS[|ioVySY} C@@@|zNu VXYuhYEvvAEXox[oiyUTxWXu~OoYywWmUS}SuT~{wSj~ [ojYFzWV}_~hEU{o]Jav]_v_}^qEm]behSSQ}OFV^ vFVTPQuWY~ C@@@| oqaYeUofWuVfO~h}em{zpYuV[OVi}[uTx X[a}_haUxs|TT}GUSuKxTA_r~Iz{xSW}O[Me{K}VQuwiwF} oO~tGcYQuj@CFTS}KvUhc]u`lZzj C@@@||MfeU_k ^QUk`bJhXQXgHF[xpYed{~YgQ^|g[EZ~cYE{~wZTXQEeFcETP}pYuYhuVyKxS@OaSau OOTTy_hmEugLpNgUSw}K}ZouU~O|efj_jSAFzOkwSGVma] z|o{w~ C@@@| ygmw@s{_JnejcJbMzx{pmv\zQh{KVZ ayuc~c_zTX}kKFX[_~eLBgh~oteaUl`nyTa~OcWAEakRUTQAuSta~W{Z{GV Tvo}}MEpCIVBZ~OM^~{mvVnhQ~_dk} C@@@| |oOziC~wuLok}{rJi_n[k ojvg~}yw[niFZoqyXkfZR~k_V\]VYYiz[BWT^]w_gUIvxLceUzxfymkJj `B~ C@@@| O~y{o} wr{^zm_~k]x^{}{lssLn}j\{v~ C@@@|nk{{ C@@@| _fU[g md`~ C@@@|AGI` [yV[} O]v C@@@| S^qm~ sEV~ C@@@| Kid C@@@| C@@@| C@@@| C@ @@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@| C@@@@ %%%%%%%%%%%%%%%%%%%% End /document/graphics/6-1.bmp %%%%%%%%%%%%%%%%%%%