%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Scientific Word Wrap/Unwrap Version 2.5 % % Scientific Word Wrap/Unwrap Version 3.0 % % % % If you are separating the files in this message by hand, you will % % need to identify the file type and place it in the appropriate % % directory. The possible types are: Document, DocAssoc, Other, % % Macro, Style, Graphic, PastedPict, and PlotPict. Extract files % % tagged as Document, DocAssoc, or Other into your TeX source file % % directory. Macro files go into your TeX macros directory. Style % % files are used by Scientific Word and do not need to be extracted. % % Graphic, PastedPict, and PlotPict files should be placed in a % % graphics directory. % % % % Graphic files need to be converted from the text format (this is % % done for e-mail compatability) to the original 8-bit binary format. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Files included: % % % % "/document/lec_3_6_00.tex", Document, 11481, 3/7/2000, 17:52:16, "" % % "/document/graphics/r_delta_r.bmp", ImportPict, 17462, 6/17/1999, 22:55:52, ""% % "/document/graphics/project_grad.bmp", ImportPict, 13310, 6/18/1999, 16:08:02, ""% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% Start /document/lec_3_6_00.tex %%%%%%%%%%%%%%%%%%% %\newtheorem{theorem}{Theorem} %\newtheorem{axiom}[theorem]{Axiom} %\newtheorem{conjecture}[theorem]{Conjecture} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{definition}[theorem]{Definition} %\newtheorem{example}[theorem]{Example} %\newtheorem{exercise}[theorem]{Exercise} %\newtheorem{lemma}[theorem]{Lemma} %\newtheorem{proposition}[theorem]{Proposition} %\newtheorem{remark}[theorem]{Remark} \documentclass{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{makeidx} \usepackage{graphicx} \usepackage{amsmath} %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Created=Sunday, May 16, 1999 12:00:37} %TCIDATA{LastRevised=Tuesday, March 07, 2000 12:52:14} %TCIDATA{} %TCIDATA{} %TCIDATA{Language=American English} %TCIDATA{CSTFile=webmath.cst} %TCIDATA{PageSetup=72,72,72,72,0} %TCIDATA{AllPages= %F=36,\PARA{038

\hfill \thepage} %} \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \input{tcilatex} \begin{document} \section{Ma 116 Lecture 3/6/00} \vspace{1pt} \subsection{Chain Rule for Partial Derivatives} Recall that if $y=f\left( u\right) $ and and $u=g\left( x\right) ,$ then \vspace{1pt} \begin{equation*} \dfrac{dy}{dx}=\dfrac{dy}{du}\dfrac{du}{dx}=f^{\prime }\left( u\right) g^{\prime }\left( x\right) =f^{\prime }\left( g\left( x\right) \right) g^{\prime }\left( x\right) \end{equation*} \vspace{1pt} This is called the \emph{chain rule }for a function of one variable. \vspace{1pt} The chain rule may be extended to functions of two or more variables. Let $% z=f\left( x,y\right) $ and suppose that $x=g\left( r,s\right) $ and $% y=h\left( r,s\right) ,$ that is, $x$ and $y$ are functions of the variables $% r$ and $s.$ Then $z$ may be thought of as a function of $r$ and $s,$ since $% z=f\left( x,y\right) =f\left( g\left( r,s\right) ,h\left( r,s\right) \right) =F\left( r,s\right) .$ Then the chain rule for partial derivatives gives \vspace{1pt} \begin{eqnarray*} \dfrac{\partial z}{\partial r} &=&\dfrac{\partial z}{\partial x}\dfrac{% \partial x}{\partial r}+\dfrac{\partial z}{\partial y}\dfrac{\partial y}{% \partial r}=\dfrac{\partial F}{\partial r} \\ \dfrac{\partial z}{\partial s} &=&\dfrac{\partial z}{\partial x}\dfrac{% \partial x}{\partial s}+\dfrac{\partial z}{\partial y}\dfrac{\partial y}{% \partial s}=\dfrac{\partial F}{\partial s} \end{eqnarray*} \vspace{1pt} \paragraph{Example:} Let $z=f\left( x,y\right) =e^{xy}$ and $x=r\cos s$ and $y=r\sin s.$ We shall find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial s}.$ Now $\frac{\partial x}{\partial r}=\cos s,$ $\frac{\partial x}{\partial s}% =-r\sin s,$ $\frac{\partial y}{\partial r}=\sin s,$ and $\frac{\partial y}{% \partial s}=r\cos s.$ Thus \vspace{1pt} \begin{eqnarray*} \frac{\partial z}{\partial r} &=&ye^{xy}\cos s+xe^{xy}\sin s=2r\sin s\cos se^{r^{2}\sin s\cos s} \\ \frac{\partial z}{\partial s} &=&ye^{xy}\left( -r\sin s\right) +xe^{xy}\left( r\cos s\right) =r^{2}e^{r^{2}\sin s\cos s}\left( \cos ^{2}s-\sin ^{2}s\right) \end{eqnarray*} \begin{example} \vspace{1pt}Suppose that \begin{equation*} z=f\left( u,v\right) \text{ \ \ \ \ \ }u=2x+y,\text{ \ \ \ }v=3x-2y \end{equation*} \end{example} \vspace{1pt} Given the values $\frac{\partial z}{\partial x}=3$ and $\frac{\partial z}{% \partial v}=-2$ at the point $\left( u,v\right) =\left( 3,1\right) ,$ find $% \frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the corresponding point $\left( x,y\right) =\left( 1,1\right) .$ \vspace{1pt} \emph{Solution: }% \begin{equation*} \dfrac{\partial z}{\partial x}=\dfrac{\partial z}{\partial u}\dfrac{\partial u}{\partial x}+\dfrac{\partial z}{\partial v}\dfrac{\partial v}{\partial x}% =3\cdot 2+\left( -2\right) \cdot 3=0 \end{equation*} \vspace{1pt} \begin{equation*} \dfrac{\partial z}{\partial y}=\dfrac{\partial z}{\partial u}\dfrac{\partial u}{\partial y}+\dfrac{\partial z}{\partial v}\dfrac{\partial v}{\partial y}% =3\cdot 1+\left( -2\right) \cdot \left( -2\right) =7 \end{equation*} \subsection{The Directional Derivative and the Gradient} \vspace{1pt}Let $\Phi \left( x,y,z\right) $ be a scalar function with first partial derivatives $\Phi _{x},\Phi _{y},$ and $\Phi _{z}$ in some region of $x,y,z-$space. Let $\vec{r}=x\vec{i}+y\vec{j}+z\vec{k}$ be the vector drawn from the origin to the point $P=\left( x,y,z\right) .$ Suppose that we move from $P$ to a nearby point $Q=\left( x+\Delta x,y+\Delta y,z+\Delta z\right) .$ \begin{center} \FRAME{dtbpF}{3.2993in}{2.0764in}{0pt}{}{}{r_delta_r.bmp}{\special{language "Scientific Word";type "GRAPHIC";maintain-aspect-ratio TRUE;display "USEDEF";valid_file "F";width 3.2993in;height 2.0764in;depth 0pt;original-width 13.3337in;original-height 9.1878in;cropleft "0";croptop "1";cropright "1";cropbottom "0";filename 'graphics/r_delta_r.bmp';file-properties "XNPEU";}} \vspace{1pt} \end{center} Then $\Phi $ will change by an amount $\Delta \Phi $ where \vspace{1pt} \begin{equation*} \Delta \Phi =\Phi _{x}\Delta x+\Phi _{y}\Delta y+\Phi _{z}\Delta z+\epsilon _{1}\Delta x+\epsilon _{2}\Delta y+\epsilon _{3}\Delta z \end{equation*} \vspace{1pt} where $\epsilon _{1},\epsilon _{2},$ and $\epsilon _{3}\rightarrow 0$ as the point $Q\rightarrow P.$ If we divide the change $\Delta \Phi $ by the distance $\Delta s=\left| \Delta \vec{r}\right| $ between $P$ and $Q$, we obtain a measure of the rate at which $\Phi $ changes when we move from $P$ to $Q:$ \vspace{1pt} \begin{equation*} \dfrac{\Delta \Phi }{\Delta s}=\Phi _{x}\frac{\Delta x}{\Delta s}+\Phi _{y}% \frac{\Delta y}{\Delta s}+\Phi _{z}\frac{\Delta z}{\Delta s}+\epsilon _{1}% \frac{\Delta x}{\Delta s}+\epsilon _{2}\frac{\Delta y}{\Delta s}+\epsilon _{3}\frac{\Delta z}{\Delta s} \end{equation*} \vspace{1pt} \paragraph{Example:} If $\Phi \left( x,y,z\right) $ represents the temperature at any point $% P\left( x,y,z\right) $ then $\frac{\Delta \Phi }{\Delta s}$ is the average rate of change in temperature per unit length at the point $P$ in the direction in which $\Delta s$ is measured. \vspace{1pt} The limiting value of $\frac{\Delta \Phi }{\Delta s}$ as $\Delta s\rightarrow 0,$ that is, as $Q\rightarrow P$ along the segment $PQ$ is called the derivative of $\Phi $ in the direction $PQ$ or simply the \emph{% directional derivative} of $\Phi .$ Since $\epsilon _{1},\epsilon _{2},\epsilon _{3}\rightarrow 0$ as $Q\rightarrow P,$ we have that \vspace{1pt} \begin{equation*} \dfrac{d\Phi }{ds}=\dfrac{d\Phi }{dx}\dfrac{dx}{ds}+\dfrac{d\Phi }{dy}\dfrac{% dy}{ds}+\dfrac{d\Phi }{dz}\dfrac{dz}{ds} \end{equation*} \vspace{1pt} \vspace{1pt}The first factor in each term of the products in the expression above for the directional derivative depend only on $\Phi $ and the point $P.$ The second factors in the products are independent of $\Phi $ and depend on the direction in which the derivative is being computed. We may rewrite the expression above in the form \vspace{1pt} \begin{eqnarray*} \dfrac{d\Phi }{ds} &=&\left( \Phi _{x}\vec{i}+\Phi _{y}\vec{j}+\Phi _{z}\vec{% k}\right) \cdot \left( \dfrac{dx}{ds}\vec{i}+\dfrac{dy}{ds}\vec{j}+\dfrac{dz% }{ds}\vec{k}\right) \\ &=&\left( \Phi _{x}\vec{i}+\Phi _{y}\vec{j}+\Phi _{z}\vec{k}\right) \cdot \dfrac{d\vec{r}}{ds} \end{eqnarray*} \vspace{1pt} The vector $\Phi _{x}\vec{i}+\Phi _{y}\vec{j}+\Phi _{z}\vec{k}$ is known as the \emph{gradient} of $\Phi $ or $grad\Phi .$ Thus \vspace{1pt} \begin{equation*} grad\Phi =\Phi _{x}\vec{i}+\Phi _{y}\vec{j}+\Phi _{z}\vec{k} \end{equation*} \vspace{1pt} The notation $\nabla \Phi $ is often used for $grad\Phi .$ In this notation the operator $\nabla $ is defined as \begin{equation*} \nabla =\vec{i}\dfrac{\partial }{\partial x}+\vec{j}\dfrac{\partial }{% \partial y}+\vec{k}\dfrac{\partial }{\partial z} \end{equation*} \vspace{1pt} \paragraph{Example:} Let $\Phi \left( x,y,z\right) =xyz+3x^{4}y^{2}z^{3}.$ The $\nabla \Phi =\left( yz+12x^{3}y^{2}z^{3}\right) \vec{i}+\left( xz+6x^{4}yz^{3}\right) \vec{j}+\left( xy+9x^{4}y^{2}z^{2}\right) $ \vspace{1pt} \paragraph{Example:} We may use SNB to find the gradient of a function. However, SNB writes vectors as ordered triples instead of the form given in the previous example. Thus $\nabla \left( xyz+3x^{4}y^{2}z^{3}\right) =\allowbreak \left( yz+12x^{3}y^{2}z^{3},xz+6x^{4}yz^{3},xy+9x^{4}y^{2}z^{2}\right) \allowbreak $ \vspace{1pt} With this notation we may write the directional derivative of $\Phi $ in the form \vspace{1pt} \begin{equation*} \frac{d\Phi }{ds}=grad\Phi \cdot \dfrac{d\vec{r}}{ds}=\nabla \Phi \cdot \frac{d\vec{r}}{ds} \end{equation*} Remark: Since $\Delta s$ is the length of $\Delta \vec{r}$ then $\frac{% \Delta \vec{r}}{\Delta s}$ and hence $\frac{d\vec{r}}{ds}$ are unit vectors. Therefore, $\nabla \Phi \cdot \frac{d\vec{r}}{ds}$ is the projection of \ $% grad\Phi $ in the direction of $\frac{d\vec{r}}{ds}.$ Thus $\nabla \Phi $ has the property that its projection in any direction is equal to the derivative of $\Phi $ in that direction. Since the maximum projection of a vector is the vector itself, it is clear that $grad\Phi $ extends in the direction of the greatest rate of change of $\Phi $ and has that rate of change for its length. \begin{center} \FRAME{dtbpF}{3.039in}{2.2632in}{0pt}{}{}{project_grad.bmp}{\special% {language "Scientific Word";type "GRAPHIC";maintain-aspect-ratio TRUE;display "USEDEF";valid_file "F";width 3.039in;height 2.2632in;depth 0pt;original-width 3.8752in;original-height 2.8746in;cropleft "0";croptop "1";cropright "1";cropbottom "0";filename 'graphics/project_grad.bmp';file-properties "XNPEU";}} \end{center} \paragraph{Example:} What is the directional derivative of the function $\Phi =xy^{2}+yz^{3}$ at $% \left( 2,-1,1\right) $ in the direction of the vector $\vec{i}+2\vec{j}+2% \vec{k}$ ? \ $\nabla \left( xy^{2}+yz^{3}\right) =\allowbreak \left( y^{2},2xy+z^{3},3yz^{2}\right) $ and a unit vector in the given direction is $\dfrac{1}{3}\left( 1,2,2\right) .$ Thus \begin{equation*} \dfrac{d\Phi }{ds}=\left( y^{2},2xy+z^{3},3yz^{2}\right) \cdot \dfrac{1}{3}% \left( 1,2,2\right) =\allowbreak \frac{1}{3}y^{2}+\frac{4}{3}xy+\frac{2}{3}% z^{3}+2yz^{2} \end{equation*} Hence \vspace{1pt}% \begin{equation*} \left. \dfrac{d\Phi }{ds}\right| _{\left( 2,-1,1\right) }=\frac{1}{3}\left( -1\right) ^{2}+\frac{4}{3}\left( 2\right) \left( -1\right) +\frac{2}{3}% \left( 1\right) ^{3}+2\left( -1\right) \left( 1\right) ^{2}=\allowbreak -% \frac{11}{3}. \end{equation*} \vspace{1pt} \end{document} %%%%%%%%%%%%%%%%%%%%% End /document/lec_3_6_00.tex %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%% Start /document/graphics/r_delta_r.bmp %%%%%%%%%%%%%%% BudwMH@@@@@@@xC@@@@J@@@@OG@@@HR@@@P@@D@@@@@@@`P@@@@@@@@@@@@@H@@@@`@@@@@@@@ @@|Cp o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o @@p o@@p o@@p o@@p o@@p{G o@@p{G o@@p{G o@@p{G o@@p{ Go@@p {Go@@p {Go@@p {Go@@p {Go@@p {Go@@p {Go @@p{G o@@p{G o@@p{G o@@p{A o@@p{A o@@p{O@} o@@p{O@} o@@p o@@p o@@p yo@@p yo@@p _~o@@p _~o@@p cO@_|o@@p cO@_|o @@p_~ o@@p_~ o@@py o@@py o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p _xo@@p _xo@@p _xo @@p_x o@@p_x o@@p_x o@@p{O@} _xo@@p{O @}_xo@@p o@|w_xo@@p o@|w_xo@@p@B@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@pAOx@|wo@@p@B@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@pAOx@|wo@@po@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@pA_x~qo@@po@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@pA_x~qo@@po@|q o@xwA_x_xo@@po@|q o@xwA_x_xo@@p`C p_{O@}a_x_xo@@p `Cp_{O@}a_x_xo @@p~CpA_`_x_x o@@p~CpA_`_x_x o@@pcO@_|_`_x~ qo@@pcO@_|_` _x~qo@@pO`A| _xOx@|wo@@pO`A| _xOx@|wo@@po@\p Ox}o@@po@\p Ox}o@@p`Cp_ Ox}o@@p`Cp_ Ox}o@@pCX@ O~}o@@pCX@ O~}o@@pcO @G|O~_|o@@p cO@G|O~_|o@@p Ox@|wO~_|o @@pOx@|wO~_| o@@p@FpoG| o@@p@FpoG| o@@pxCpGo G|o@@pxCpG oG|o@@pCN@} G~o@@pCN@} G~o@@p{O@G| A~o@@p{O@G| A~o@@pO~@|q A~o@@pO~@|q A~o@@p @Fpao@@p @Fpao@@p ~CpA`wo@@p ~CpA`wo @@pCN@}`w o@@pCN@}`w o@@pO`A|xw o@@pO`A| xwo@@pO~@|q xqo@@pO~@|q xqo@@p`Cp_ xqo@@p`Cp_ xqo@@p~CpA ~qo@@p~CpA ~qo@@p cO@_|~_po@@p cO@_|~_po@@p O`A|~_po@@p O`A|~_po@@p o@\p_xxCpAao @@po@\p_xxCpAa o@@p`CpGGxxwaa o@@p`CpGGxx waao@@pCX@ Gx~wgao@@pCX@ Gx~wgao@@p{O@G| G~~{qGao@@p{O@G| G~~{qGao@@pOx@|w C~_{y_ao@@pOx@|w C~_{y_ao@@p @FpC~_Cx_ao@@p @FpC~_Cx_ao@@p xCpGc_G~ao@@p xCpGc_G~ao@@p CN@}cGG~`wo@@p CN@}cGG~`wo @@p{O@G|cG`_p o@@p{O@G|cG`_ po@@pO~@|q{A o@@pO~@|q {Ao@@p@Fp {A~wo@@p@Fp {A~wo@@p~CpA ayo@@p~CpA ayo@@p CN@}_`@Fpo@@p CN@}_`@Fpo@@p O`A|_`yo@@p O`A|_`yo@@p O~@|q_x~wo@@p O~@|q_x~wo@@p `Cp_Ox}o @@p`Cp_Ox} o@@p~CpAOx} o@@p~CpAOx }o@@pcO@_| O~}o@@pcO@_| O~}o@@p_xO~@\PxO`A| O~_|o@@p_xO~@\PxO`A |O~_|o@@p_xO~]Xx o@\pO~_|o@@p_xO~]X xo@\pO~_|o@@p_xo_| o}Yx`CpGo_|o@@p_x o_|o}Yx`CpGo_|o@@p _xo_|o^|QxCX@oG|o@@p _xo_|o^|QxCX@oG|o@@p _xo_|^~Wx{O@G|oG|o@@p _xo_|^~Wx{O@G|oG|o @@p_xO`@|w@~WxOx@|wG~ o@@p_xO`@|w@~WxOx@|wG~ o@@p_xo_|a_x@FpA ~o@@p_xo_|a_x@Fp A~o@@pOx}o_|aOx}xCpG A~o@@pOx}o_|aOx}xC pGA~o@@pOxG|o_|OxG| CN@}ao@@pOxG|o_|OxG| CN@}ao@@p {O@G|`wo@@p {O@G|`wo@@po }o}O~@|q`wo@@p o}o}O~@|q`wo@@p _~_~@Fpxwo@@p _~_~@Fpxwo@@p O`A|O`A|~CpAxqo @@pO`A|O`A|~CpAxq o@@p_~_~CN@}xq o@@p_~_~CN@}x qo@@po}o}O`A| ~qao@@po}o}O `A|~qao@@p O~@|q~_pao@@p O~@|q~_pao@@p `Cp_^^pao@@p `Cp_^^pao@@p ~CpAGFxao@@p ~CpAGFxao@@p cO@_|aaGxao@@p cO@_|aaGxao@@p O`@|WxxGvao@@p O`@|WxxGvao @@po@\`^@pA o@@po@\`^@pA o@@pxCpGG BxAo@@p xCpGGBxAo@@p CX@aC~Ao@@p CX@aC~Ao@@p {O@@`wAo@@p {O@@`wAo@@p xAx@`qAo@@p xAx@`qAo@@p ~CpG@BpAo@@p ~CpG@BpAo@@p {O@@@pAo@@p {O@@@pAo@@p o@@pAo @@po@@pA o@@pCxA o@@p CxAo@@p ao@@p ao@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o @@p o@@p o@@p o@@p o@@p o@@p o@@p xwo@@p xwo@@p O`A|o@@p O`A|o@@p cGA~o@@p cGA~o@@p co_A|o@@p co_A|o@@p GN~x}wo @@pGN~x}w o@@pG ~xwo@@p G~xwo@@p G~xwo@@p G~xwo@@p G~xwo@@p G~xwo@@p G~xwo@@p G~xwo@@p G~xwo@@p G~xwo@@p c_ao@@p c_ao@@p cGA~o@@p cGA~o @@pO`_| o@@p O`_|o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o @@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o@@p o @@p o@@p o@@p o@@p o@@p o@@p o@@@ %%%%%%%%%%%%%%%%% End /document/graphics/r_delta_r.bmp %%%%%%%%%%%%%%%% %%%%%%%%%%%%%% Start /document/graphics/project_grad.bmp %%%%%%%%%%%%%% Buds@@@@@@@@xC@@@@J@@@@tE@@@PQ@@@P@@D@@@@@@@@|L@@`sN@@@N{@@@@@@@@@@@@@@@@@ @@|CppCp pCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCpp CppCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCp pCppCp pCp D{ppCpXzWN pCp|xO_ pCp|xO pCp|xO~ pCp||_|pCp ||xpCp |~apCpX~G pCpD{_O pCp|{__ pCp|{_^ pCp|_LpCp x_cpCp |pCp pCp pCp pCp pCppCp pCp pCpO@@@@@@| pCpO@@@@@@| pCp pCppC ppCp pCp pCpIboG_| pCppxO_} pCpoyyO^ pCpoyy_^pCp oyy\pCp oyyXpCpoyyY pCpyy@ pCpqx_^ pCpIzO_ pCpy{O_pCp y{O_pCp y{_^GpCpqc@{_ pCpyg pCp{ pCp} pCp~pCp _pCp CO@}opCpCO@}o pCp} pCp~ pCp~ pCp_pCp _pCp opCpo pCpox pCpw~q pCpO~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Dpp CpO}Oww~qpCp}o wwwxpCp~o {{wpCpOo|{w pCpwow{w pCpy_G|y{w pCp~_{s_~{wpCp W~wOOjwpCpy~~ wOwjwpCp~~|g {`pCp_}|gOq pCpg}|gwq pCp{{|C~gyq pCpG|c}G~{pCp w|}A_{pCp{~UL o}wpCp|~DO} ~wpCp_Kr_Ow pCpoE|ww pCp~yw pCp_~wpCp gwwpCp{ ywpCp} ~wpCp~wOw pCp{w pCp|{ pCp_OpCp owpCps ypCp_ ~pCpgOw pCp{w} pCp}w~ pCp_~GpCp opC@@@@@@@\ppCp} wpCp_~w pCpwow pCp~ssw pCp~|}wpC p_w~wpCp gswpCps} wpCp{p_~w pCp_xow pCpG_w pCpcp_{_pCp [q_opCpos wpCpg{y pCpw{~g pCps]Owg pCpsl}}wgwO pCpCo|~wgwOpCp ko}Owg{OpCpo_ }wwg`s{OpCpo}y wgO}{OpCpo}~wg_~ }OpCpo}wwgo~} OpCpO}ywgppa~OBO}O|}O|{wGG}` pCpo}~wg`qs|_\~G~r_~Oxssy{xO_pCp o\~_wggs|_~|OfOOqs}}{qo}pCpG~ gwgxws|_~|OfOOsg|sso}pCpG_~{ wgsss~_v|O_OgOsg|Cf|pCpg[OOwggys _r|O_OgOsg|Gd|pCp_Gwwggys_||O_OgO sg|d|pCpoO{ggys|_~~OoOgOsw}y{e_p| pCpg~O|gs@a|_^~O~oOgOysyqseOl|pCp _~O_gxGr~@O}oOgO|sGKfooO|pCp[O o}gOgO}Osooc}pCp_O~ gOgO}Osogx}pCpgOo_g Os_|O{OQpCp{OG~gwgO~O||O `pCp_[~{wgO~Op Cp\~}wg~OpCp ^~w~wwg_OpCp^~w {wg_OpCp^s|w g_OpCp^g_w oOpCpNgowoO pCpnwswpCp tw}_wpCp zw}gwpCp~w }{wpCp~w}w pCp~w~_~w pCp|g~ow pCp~G_|}pCp ~G~O_~pCp W~WopCp_~[ spCp_~}} pCp_~n~ pCp_~nsw pCp_nw}wpCp Ow_~wpCp OwsowpCpows wwpCpw}s{_w pCpsOow pCp[~soww pCpjsoyw}pCp pw~w|pCp xwOW~pCp}_ pW|pCp}OxG| pCpOG| pCp~G pCp~pCp ~pCp pCpw pCpw pCp pCppC ppCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCpp CppCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCp pCppCp pCp pCp pCp pCp pCp pCppCp pCp pC@ %%%%%%%%%%%%%%% End /document/graphics/project_grad.bmp %%%%%%%%%%%%%%%