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Teaching in a manner consistent with reform recommendations is a challenging and
often overwhelming task. Part of this challenge involves using students’ thinking and
understanding as a basis for the development of mathematical ideas (cf. NCTM, 2000).
The purpose of this article is to address this challenge by developing the notion of peda-
gogical content tool. A pedagogical content tool is a device such as a graph, diagram,
equation, or verbal statement that a teacher intentionally uses to connect to student
thinking while moving the mathematical agenda forward. We tender two examples
of pedagogical content tools: Transformational record and generative alternative. These
two pedagogical content tools are put forth as instructional counterparts to the Realistic
Mathematics Education (RME) design heuristics of emergent models and guided rein-
vention, respectively. We illustrate the pedagogical content tools of transformational
record and generative alternative by drawing on examples from two classroom
teaching experiments in undergraduate differential equations. 
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Reports from groups such as the National Research Council (1991; 2001), the
National Council of Teachers of Mathematics (2000), and the International
Commission on Mathematical Instruction (Holton, 2001) have created an influx of
attention to the improvement of mathematics teaching. As university teachers and
K–12 teachers alike rethink their mathematics teaching practice, they are simulta-
neously reconsidering important mathematical ideas and determining how to use
student thinking and understanding as launching points for the development of these
ideas. But how might a teacher continue to develop mathematical ideas with
students when their meaningful constructions appear to be inadequate for the
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bigger picture that the teacher envisions? Reflecting on her experiences with third
graders, Ball (1993) posed the question in the following way:

How do I create experiences for my students that connect with what they now know
and care about but that also transcend their present? How do I value their interests and
also connect them to ideas and traditions growing out of centuries of mathematical explo-
ration and invention? (p. 375)

Similar questions have arisen for us in the context of teaching undergraduate math-
ematics. Our goal in this article is to begin to address these pervasive and deep-rooted
questions by developing the notion of pedagogical content tool (PCT). A PCT is
a device, such as a graph, diagram, equation, or verbal statement, that a teacher inten-
tionally uses to connect to student thinking while moving the mathematical agenda
forward. Thus, a PCT involves not only the purposeful activity of relating to
student thinking while further developing the mathematics but also the tool or imple-
ment that a teacher uses to achieve these goals. We call these pedagogical content
tools because such teacher interventions suggest the need for the kind of special-
ized content knowledge that Shulman (1986) referred to as pedagogical content
knowledge. 

In general, a tool is something that the informed user explicitly recognizes as
useful for achieving specific goals (Bateson, 1972; Meira, 1998; Nemirovsky,
Tierney, & Wright, 1998; Polanyi, 1958). In every occupation there is a collection
of tools that professionals purposefully use. Teaching is no exception. Tools that
are at the disposal of teachers include graphs, diagrams, equations, verbal statements,
gestures, thought experiments, and so on. 

In this article we elaborate on two different types of PCTs that teachers purpose-
fully use to engage students’ current thinking while keeping an eye on the mathe-
matical horizon (Ball, 1993). We refer to these two PCTs as transformational
records and generative alternatives. Transformational records are defined as nota-
tions, diagrams, or other graphical representations that are initially used to record
student thinking and that are later used by students to solve new problems.
Generative alternatives are defined as alternate symbolic expressions or graphical
representations that a teacher uses to foster particular social norms for explanation
and that generate student justifications for the validity of these alternatives. These
two PCTs are specifically developed as the teaching counterparts to the Realistic
Mathematics Education (RME) instructional design heuristics of emergent models
and guided reinvention, respectively. The relationship between these two RME
design heuristics and the PCTs of transformational record and generative alterna-
tive is elaborated on in the next section.

Knowing when, what kind, and how to use tools such as graphs, diagrams, equa-
tions, or verbal statements to connect to student thinking and move the mathemat-
ical agenda forward requires a combination of specific content knowledge, general
pedagogical expertise, and knowledge of subject matter for teaching. Such blended
expertise is part of what teachers need in order to teach (Ball, 1998; Ball & Cohen
1996; Hill, Rowan, & Ball, 2005; Russell, 1997; Shulman, 1986). Mapping out this
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enacted expertise, which includes how teachers use tools to proactively support
student learning, is an increasingly important line of inquiry (Ball, Lubienski, &
Mewborn, 2001; Lampert, 2001).

In relation to this blended expertise for teaching, we have also found in our work
with university teachers in differential equations that certain theoretical ideas can
be useful orienting heuristics for both research and practice. For example, the
constructs of social and sociomathematical norms1 (Yackel & Cobb, 1996) expli-
cate the function of explanation and justification on evolving student beliefs (Yackel
& Rasmussen, 2002), and they offer teachers a structure for reflecting on the nature
of their classroom participation structure (Rasmussen, Yackel, & King, 2003;
Yackel, Rasmussen, & King, 2000). We make a distinction, however, between PCTs
and constructs such as social and sociomathematical norms, the latter of which we
refer to as conceptual tools. The term conceptual tool comes from Grossman and
colleagues’ research in English education. Conceptual tools are defined as princi-
ples, frameworks, and ideas about teaching and learning that are useful orienting
heuristics (Grossman, Smagorinsky, & Valencia, 1999). Conceptual tools, however,
do not address the problem of what to do in the classroom. PCTs, on the other hand,
speak directly to the problems of teaching mathematics—of how teachers can
proactively support their students’ learning in the classroom. 

More generally, PCTs could be useful in professional development efforts. For
example, policy recommendations from the NRC (2001) identify four different
promising approaches to professional development, all of which “integrate the study
of mathematics and the study of students’ learning so that teachers will forge
connections between the two” (p. 385). PCTs offer specificity on two ways in which
teachers might actually achieve this vision in their daily practice. PCTs may also
prove to be a useful component for future models of inquiry-based teaching. As such,
this work is both pragmatically and theoretically driven.

THEORETICAL BACKGROUND

The PCTs developed in this article are two ways in which the RME design
heuristics of emergent models and guided reinvention are recast for teaching rather
than for instructional design. In a manner consistent with how Simon (1995) exam-
ines the ways constructivism might “contribute to the development of useful theo-
retical frameworks for mathematics pedagogy” (p. 117), we examine ways in
which the instructional design theory of RME can similarly contribute. Just as
constructivist teaching is a misnomer, we think that RME teaching is a misnomer.

1 Social norms pertaining to explanation and justification refer to routine patterns of discursive inter-
action. Examples of such norms include explaining one’s thinking, listening to and attempting to make
sense of others’ reasoning, indicating agreement or disagreement with others’ reasoning, and responding
to requests for clarification or challenges. These norms might equally characterize an English class or
a history class. Sociomathematical norms, on the other hand, are those aspects of explanation and justi-
fication that fall under the purview of mathematics. Examples of sociomathematical norms include what
constitutes an acceptable, elegant, or different explanation (Yackel & Cobb, 1996).
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Nevertheless, as with constructivism, the instructional design theory of RME can
contribute to the development of useful constructs for mathematics pedagogy. 

The first RME heuristic that we modify for contributing to theory on teaching is
that of emergent models. As described by Gravemeijer (1999), this heuristic can
be thought of in terms of a global transition in which students and the teacher develop
a model-of their informal activity, which gradually develops into a model-for more
formal mathematical reasoning. This global transition is a process by which a new
mathematical reality emerges, grounded in informal and situation-specific activity.
Gravemeijer (1999) exemplifies the model-of/model-for transition using a case study
of a first-grade class learning to measure. In this measurement sequence, students
use a ruler as a model-of iterating some measurement unit, which then evolves into
interpreting positions on the ruler as signifying the results of iterating the measure-
ment unit. As the learning tasks are expanded to include incrementing, decre-
menting, and comparing lengths, students’ counting strategies are represented with
arcs on an empty number line2 (Treffers, 1991). The number line then serves as a
model-for formal reasoning with number relations.

The model-of to model-for transition, as pointed out by Gravemeijer (1999), is
compatible with Sfard’s (1991) notion of reification. Connecting the model-
of/model-for transition to reification is a strong requirement that typically accom-
panies extended periods of time. We did not want reification to be a requirement
for our notion of transformational record because we wanted a teaching mechanism
at a micro, or day-to-day, level (as opposed to thinking about instructional design
at the macro level). Thus, the transformational record construct represents a weak-
ening of the emergent model heuristic by not requiring reification and places this
idea at the micro level in terms of day-to-day teaching practice.

The second RME instructional design heuristic that we modify is guided rein-
vention. As described by Gravemeijer (1999), the guided reinvention heuristic
outlines a route by which students can develop the intended mathematics for them-
selves. The emphasis of guided reinvention is on the character of the learning
process, rather than on the inventing as such (Freudenthal, 1973). On a continuum
of instructional perspectives from pure discovery to pure telling, we view guided
reinvention as situated toward the middle of such a continuum. McClain and Cobb
(2001) refer to a similar continuum of a teacher’s actions ranging from noninter-
ventionist to assuming total responsibility. The PCT of generative alternative,
what we propose as a teaching counterpart construct to the RME heuristic of
guided reinvention, speaks to how a teacher can actually navigate this continuum.

A typical question that we have encountered when working with teachers is this:
“But what if students don’t come up with such and such idea or line of reasoning
or such and such result?” This most significant question reflects the need for the
teacher to play a proactive role in the delicate balance between student invention
and direct telling of discipline-specific methods and ways of reasoning, a balance

2 The number line is dubbed “empty” because it typically only shows those numbers that students use
in their computations.
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that respects the intended character of the reinvention process. The notion of
generative alternative suggests a means by which teachers can mediate between
a noninterventionist form of practice and assumption of total responsibility for
explicating certain mathematical concepts and ways of reasoning. The significance
of generative alternative for classroom learning is that it serves the function of
furthering students’ mathematical reasoning and contributes to the ongoing consti-
tution of desirable social and sociomathematical norms regarding explanation and
justification.

Transformational record and generative alternative are constructs that explicitly
relate teacher actions to the RME instructional design theory and to a perspective
on learning that blurs the traditional separation between “the mind” and the things
people say and do (Sfard & Kieran, 2001). If we take symbolizing and participa-
tion in argumentation as learning, then we need constructs that organize and illu-
minate features of teaching that promote symbolizing and argumentation. Moreover,
constructs about teaching and instructional design ought to be linked to a theory of
learning and, conversely, perspectives on learning influence research on teaching
and instructional design (Cobb, 2000; Romberg & Carpenter, 1986). In general,
RME is compatible with constructivist theories of learning (Gravemeijer, 1994;
Gravemeijer, Cobb, Bowers, & Whitenack, 2000). Our particular theoretical orien-
tation is grounded in a version of social constructivism referred to as the emergent
perspective (Cobb & Bauersfeld, 1995; Cobb & Yackel, 1996). A primary assump-
tion from this point of view is that mathematical learning can be usefully charac-
terized as both a process of mathematical enculturation and as a process of active
individual participation.

On the one hand, we work from the premise that meaning is constituted through
interaction (Blumer, 1969). Students develop ways of communicating, reasoning,
and providing arguments to defend their ideas as they participate in and contribute
to the norms and practices of their learning communities. On the other hand, we
draw on constructivism (von Glasersfeld, 1995), which emphasizes that learning
is a process involving the constant interaction between the learner and his or her
environment. An individual’s interpretations and construals do not exist apart from
the evolving norms and practices of their classroom community. Conversely,
communal processes do not exist apart from the interpretations and construals of
the active, cognizing individual (Cobb & Yackel, 1996). PCTs offer learner’s
opportunities for participating in and advancing their own and their communities’
mathematical activity.

The work presented in this article contributes more broadly to an emerging body
of research (e.g., Boaler, 2003; Bowers & Nickerson, 2001; Lampert, 2001; Lobato,
Clarke, & Ellis, 2005; Lovin, Cavey, & Whitenack, 2003; McClain, 2002; McClain
& Cobb, 2001; Staples, 2004) that is specifying important aspects of the proactive
role of the teacher in creating and sustaining innovative learning environments where
students learn mathematics with understanding and/or make shifts in their views
about mathematics learning and teaching. For example, Bowers and Nickerson
(2001) identified how different patterns of teacher-student interaction fostered a



393Chris Rasmussen and Karen Marrongelle

group of preservice teachers’ reorganization of their mathematical ideas and views
of effective teaching. This work is significant because rather than pointing to the
shortcomings in communication patterns, it specified productive aspects of the
teacher’s role in supporting the development of students’ conceptual orientation to
teaching. 

McClain and Cobb (2001) highlighted how a teacher’s notating of student
responses played an important role in constituting the sociomathematical norm of
what counts as a different mathematical solution. A specific connection we make
to this work is a focus on how a teacher’s proactive role in symbolizing and
notating can further students’ mathematical reasoning and function to promote and
sustain desirable social norms pertaining to explanation and justification. Finally,
Lobato, Clarke, and Ellis (2005) offered a reconceptualization of the teacher’s role
regarding the telling of new information. They reformulated telling as “the set of
teaching actions that serve the function of stimulating students’ mathematical
thoughts via the introduction of new ideas into a classroom conversation” (p. 101).
The notion of PCT that we advance in this article fits well within this broader
recasting of telling in mathematics education.

METHOD

Data for this analysis come from two different semester-long classroom teaching
experiments (Cobb, 2000) in differential equations. Instruction in both classrooms
generally followed an inquiry approach, in which important mathematical ideas and
methods emerged from students’ problem-solving activities and discussions about
their mathematical thinking. As such, the learning environments of these teaching
experiments provided an appropriate milieu for examining the types of teacher inter-
ventions that built on students’ ideas and furthered students’ mathematical reasoning.
The course materials used in these teaching experiments were inspired by the
instructional design theory of RME and largely designed in previous teaching
experiments. 

We refer to the two teaching experiment classrooms as Classroom A and
Classroom B. Classroom A consisted of 12 students at a midsized public univer-
sity who were taught by an experienced mathematician with an active research
program in partial differential equations. This was his first experience with the RME-
inspired instructional materials, although he had taught differential equations for
more than 10 years. Moreover, this was his first experience teaching in an inquiry-
oriented manner, as most of his prior differential equations teaching had been
conducted in a lecture-style format. His interest in participating in the teaching
experiment stemmed from his dissatisfaction with lecturing because he recognized
that many of his students did not develop deep, conceptual understandings.

Classroom B was taught by the second author of this article. She has a Ph.D in
mathematics education and a strong background in mathematics. This was her
second time teaching differential equations with the RME-inspired instructional
materials and her class contained 45 students. Classroom B took place in a large,
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public, urban university with a nontraditional student population, in the sense that
the majority of students have returned to school after spending some time in the
workforce.

We collected video recordings using two cameras of each class session, retained
copies of students’ written work, conducted video-recorded interviews with indi-
vidual students, and held audio-recorded weekly project meetings that included the
classroom teacher and at least one other researcher who attended each class session.
The weekly project meetings tended to focus pragmatically on both understanding
what had transpired in the previous class sessions and planning for subsequent
classes. This, at times, included modifying instructional tasks developed in earlier
teaching experiments, watching and analyzing videotapes, and discussing the inten-
tion and mathematical goals of the instructional tasks. As such, these project meet-
ings often served the purpose of developing possible paths by which learning
might take place. These hypothetical learning trajectories (Simon, 1995) were
background against which the teacher and students then blazed their own trail (see
Nemirovsky & Monk (2000) for a discussion of trail making versus path following). 

As Cobb (2000) noted, one of the strengths of classroom teaching experiments
is that they offer opportunities to delineate aspects of effective reform teaching
because teachers who participate in teaching experiments often become quite effec-
tive in supporting their students’ mathematical growth. Indeed, the inspiration for
PCTs grew out of previous teaching experiments conducted with numerous
colleagues.3 However, the analysis of data from the teaching experiments conducted
in Classrooms A and B was essential to sharpen, refine, and develop criteria for the
construct of PCTs. In particular, we reviewed all classroom video recordings and
made a log of all episodes that fit our criteria (subsequently outlined) for each type
of PCT. We then selected exemplar episodes to analyze in detail and to present in
this article. Thus, the examples we present are not meant to be representative of every
class session but were chosen to illustrate and clarify the two types of PCTs, trans-
formational record and generative alternative.

We identified episodes of a transformational record by the function that the record
served in organizing and further developing student’s ways of reasoning about
particular mathematical ideas. In particular, an episode was characterized as an
example of a transformational record when (1) some form of notation (typically
informal or unconventional notation) was either used by a student in whole-class
discussion or introduced by the teacher to record or notate student reasoning and
(2) this notational record was then used by students in achieving subsequent math-
ematical goals. As argued convincingly by Meira (1998) and others, production or
progression in notational use (or symbol use) is dialectically related to student inter-
pretation and sense-making. As such, these two criteria are consistent with our defi-
nition of transformational record and directly address students’ learning and their
construal of meaning.

3 These colleagues include ErnaYackel, Michelle Stephan, Karen Allen, Oh Nam Kwon, Wei Ruan,
Michael Keynes, and Karen King.
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We also developed two criteria for identifying episodes of generative alternatives.
Students in both classes were often asked to make graphical or symbolic predic-
tions, and on numerous occasions the teacher invited students to consider alterna-
tives, either student-generated or invented by the teacher, to one of more of their
predictions. We coded such episodes as examples of generative alternatives when
the alternatives functioned to (1) contribute to the ongoing constitution of social
norms pertaining to explanation and (2) elicit or generate justifications for why
someone believed particular graphs or symbolic expressions to be mathematically
correct or incorrect. That is, these alternatives generated explanations and justifi-
cations (hence the term generative alternative). As demonstrated by Stephan and
Rasmussen (2002), students’ mathematical learning can be traced by analyzing the
evolution of students’ explanations and justifications. In this sense, mathematical
learning proceeds by argumentation (Lampert & Cobb, 2003; Sfard & Kieran, 2001).

TRANSFORMATIONAL RECORD

As the person who knows the discipline, a teacher has the obligation of encul-
turating students into the discourse and conventional representational forms of the
broader community while honoring and building on students’ contributions. In
keeping with the RME design heuristic of emergent models, the purpose of the PCT
we refer to as transformational record addresses the important role of the teacher
in this process. 

Example from Classroom A

In the example that follows, we first show how the differential equations
teacher from Classroom A initially recorded student reasoning in a way that an
expert in the subject would recognize as the beginning of a tangent vector field
(also referred to as a slope field). As the lesson progressed, this record became a
means for students to reason about the form of the analytic expression for a differ-
ential equation. In subsequent class periods, tangent vector fields also functioned
as a way for students to reason about the space of solution functions4 (although
analyses of these subsequent episodes are beyond the scope of this article).
Therefore, it is of high pragmatic and theoretical interest to examine the proac-
tive role of the teacher in the process by which the tangent vector field was trans-
formed from a record of student reasoning to a means for reasoning about other
mathematical ideas. 

The example we discuss from Classroom A occurred on the second day of class.
Students were asked to make predictions about the shape of a population versus
time graph for a single species that reproduces continuously and has unlimited

4 Reasoning about the space of solutions includes, for example, justifying the shape of graphs of exact
solutions, developing arguments for why graphs of solutions to autonomous differential equations are
horizontal shifts of each other, and justifying why approximate solutions would or would not be under-
estimates or overestimates to an exact solution.
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resources (no differential equation was provided). The typical response to this task
was an exponential or quadratic-like shaped graph (see Figure 1a) positioned
above the t-axis.

The first topic of conversation initiated by the teacher about students’ graphical
predictions was whether or not the initial slope at P = 10 and t = 0 should be zero
or have a positive value. The first student to speak up on this issue argued that the
slope should be positive. The teacher did not at this time notate this student’s idea
with a tangent vector having positive slope (such as that shown in Figure 1b), but
rather led a whole-class discussion about the initial slope issue.

The fact that the teacher withheld making a record of a student’s initial response
is significant for two reasons. First, it allowed for alternative viewpoints to be
expressed, and in the process important mathematical issues were discussed.5

Second, it enabled other students in the class to take ownership of the positive slope
idea. Thus, when the teacher eventually did draw, with positive slope, a tangent
vector at P = 10 and time t = 0 (see Figure 1b), the notational record served the func-
tion of recording the taken-as-shared reasoning of the classroom community. In this
case, the teacher’s proactive role in the notating process was far more complex than
simply providing a record that fit with a student’s thinking for the purpose of intro-
ducing a particular conventional mathematical inscription. It also involved an
intentional effort to establish a community of learners, one in which students
explain their reasoning and listen to and make sense of others’ ideas. 

Subsequent topics of conversation about students’ graphical predictions for
population over time included how the rate of change at this initial point compared
to the rate of change at a later time, how (and why) the rate of change would compare
to the other rates if the initial population was greater than what was originally
sketched (e.g., if at t = 0, P = 20), and what the rate of change would be if the popu-

(a)                                       (b)                                       (c)

5 These issues included how the initial slope relates to the assumption of continuous reproduction,
whether or not this situation has a history, and what it means in term of motion to have an instantaneous
rate of change.

Figure 1. Population versus time graphs and records of student reasoning about rate.
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lation at time t = 0 was P = 0. As was the case with the initial tangent vector record
of students’ reasoning, these additional conversations provided further opportuni-
ties for the teacher to continue to record students’ reasoning with additional tangent
vectors, such as that shown in Figure 1c. We refer to Figure 1c as an emerging
tangent vector field because it is a consequence of classroom discourse and it is
beginning to resemble what an expert in differential equations would recognize as
tangent vector field. 

Class discussions surrounding students’ graphical predictions for the population
versus time scenario and the resulting records of this reasoning resulted in three
important advances. First, these discussions brought forth conceptions of rate of
change as a ratio and as an instantaneous quantity. Second, they opened a space for
exploring additional mathematical ideas. Third, they provided an opportunity for
recording students’ reasoning in a way in which the conventional inscription of a
tangent vector field began to take form. The point we want to make next is that the
tangent vector field, which was initially a record of students’ reasoning, subsequently
became a means for reasoning about the symbolic form of the rate of change equa-
tion. Thus, a transformation in the record took place.

A critical idea that facilitated this transformation emerged out of students’ argu-
ments for why, if the initial population is 20 instead of 10 at time t = 0, the initial
slope would be the same as the slope corresponding to P = 20 on the curve that starts
at P = 10 at time t = 0 (see Figure 1c). Students’ reasons for this horizontal invari-
ance in slope relied on their imagery of the scenario. The basic argument put forth
by the class was that it did not matter whether you called time zero Wednesday,
Friday, or Labor Day, the population of fish would be increasing at the same rate
for a given initial population. What mattered was the number of fish; what you
decided to call time zero was arbitrary. As shown in Figure 1c, this line of reasoning
was recorded by the teacher with two different tangent vectors that had the same
slope at P = 20 but at two different t-values.

All the mathematical work up to this point occurred without a symbolic expres-
sion for the differential equation. Developing the symbolic expression was the next
task in the sequence of instructional activities. The task began with the teacher inviting
students to consider whether the rate of change, dP/dt, should depend explicitly on
just the population P, just time t, or on both P and t. That is, if dP/dt = something,
what should the “something” consist of? Conceptually, this tends to be a chal-
lenging task for students for two reasons. First, students need to explicitly distinguish
between the rate of change in a quantity and the quantity itself. Second, P stands for
both an unknown function and a variable in the rate of change equation (Rasmussen,
2001). Reasoning about what the explicit variables are in a rate of change equation
involves conceptualizing rate as a function, which is cognitively more complex than
conceptualizing rate of change as the slope of the tangent line at a point. 

This conceptual complexity is reflected in the following student excerpt,6 in which
a student argued that, in order to have an exponential shape for the graph of P versus

6 All student names in this article are pseudonyms.
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t, the rate of change equation should depend on both the size of the population and
the time:

John: Well. It seems like it would be really difficult to get the shape of that graph
without using the e [exponential] function. [Teacher: OK, so?] And, from past
experience, it seems like when you do that and when you’re talking about expo-
nential growth that t is always a factor. Of, like, t is always part of the expo-
nent when you’re talking about population growth. So, I would have to assume
that the size of the population and the time in which it’s occurred both are going
to be significantly relevant.

John remarked that it would be difficult to get the proposed graphical shape
without using the exponential function. One way to interpret this remark is that John
is not making explicit the distinction between P as a function and P as a variable in
the rate of change equation. As the whole-class discussion continued, another
student, Bill, refuted John’s line of reasoning and pointed to the emerging tangent
vector field (which was still on the chalkboard) to support his argument. In other
words, the previous record of student reasoning shifted function and served as a means
for reasoning why the rate of change equation should depend explicitly on just P.

Bill: OK. We’re trying to find what the rate of change is. This differential should
tell me the rate of change. That’s the question. The something that is the right
side of this, uh, the graph, or the right side of the [rate of change] equation. When
we looked at our [P versus t] graphs, we all agreed that, when the population
reaches a certain size, all the rates of change are going to be the same. Doesn’t
matter what time they reach that, that change.

Notice that Bill’s argument relies on the previous conclusion that “we all agreed
that, when the population reaches a certain size, all the rates of change are going
to be the same.” This statement is significant because horizontal invariance of slopes
now becomes the basis from which Bill argues that the rate of change equation
should only depend on P, supporting our claim that the initial record is transformed
into a means for reasoning about a different mathematical idea. As Bill continued
to discuss his reasoning, the teacher, without comment, added additional tangent
vectors to the inscription on the board, as illustrated in Figure 2. These additional
markings served to record Bill’s thinking and to further develop the emerging
tangent vector field into an increasingly conventional looking representation.

Figure 2. Emerging tangent vector field.
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Bill: We’re just looking to find out what the rate of change is at the population of
40, at the population of 60. So, the only thing that matters was that we know
what the population is. It didn’t matter that it took an hour for, after, you know,
when you start out. Let’s call it at 10 population. It didn’t matter that the popu-
lation A took an hour to get there. Only that it is there. Now that rate of change
is such and such. It didn’t matter that it took population B a half hour to get
there. The point is it’s at that number. Now the rate of change is such. Same
with the next one. So that’s why I think that the only thing that’s important for
you to find the rate of change is to know what the population is. I mean, then
you can add some constants to it, whatever you want. But of P and t, only P
of those two is important.

As Bill articulated in his argument, the idea and record that for a set popula-
tion value the rate of change is invariant across time, was transformed into a means
for reasoning that the differential equation (that is, the rate of change equation)
should depend only on P and not on time t. Another point we want to make with
this example is that the initial record did not remain an immutable object. As
students progressed in their conceptualizations and developed new mathematical
insights, the teacher took a proactive role in reshaping the initial record of tangent
vectors in a way that fit student reasoning and increasingly moved toward what
an expert would recognize as a conventional tangent vector field. 

The teacher’s proactive role in initiating and furthering the tangent vector field
record of student reasoning also included making important decisions about when
to withhold making a record of student reasoning. As illustrated in this example,
the teacher initially chose not to make a tangent vector record of the reasoning
expressed by the first student. Instead he acted in accordance with an expecta-
tion that students listen to and attempt to make sense of others’ reasoning and
withheld notation (and he withheld making any evaluative remarks), which, in
addition to promoting certain social norms, created an opportunity for the class-
room community to develop a line of reasoning for which the emerging tangent
vector field was a fit. The fact that this emerging tangent vector field then
served as a means for students to reason about what the differential equation
should explicitly depend on exemplifies the PCT we refer to as transformational
record. 

Example from Classroom B

In this example, we show how the teacher introduced informal notation signifying
increasing and decreasing solutions to a differential equation as a written record of
student reasoning. The teacher’s initial record of student reasoning subsequently
became a means for students to reason about more complex mathematical ideas on
a latter task. 

Our example begins on the 5th day of class in which students analyzed a
differential equation that reflected a limited growth population assumption.
In particular, students were invited to decide if the graph of the oscillating
solution shown in Figure 3 was a reasonable graph of a solution to the differ-
ential equation
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After students discussed the plausibility of an oscillating solution graph in small
groups, the teacher elicited explanations and justifications in support of or against
the oscillating graph. The whole-class discussion began with Aimee arguing against
the possibility for the oscillating solution graph.

Aimee: Um, if we graph that function there [pointing to the differential equation],
this cannot be the graph. But if we say that 12.5 is like the number of fish
that we can support with our resources and that if we can exceed the
number of fish. Like if we can kind of increase the population somehow
above 12.5, then it’s going to start decreasing. Do you know what I’m
saying?

Teacher: I think I know what you’re saying. Does everyone else know what Aimee is
saying?

At this point, the teacher had not recorded any particular part of Aimee’s expla-
nation but rather choose to redirect Aimee’s question, “Do you know what I’m
saying?” back to the whole class, acting in accordance with the social norm that
students listen to and make sense of others’ ideas. As it happened, Aimee spoke up
to further clarify her reasoning.

Aimee: For this particular one, this couldn’t be, in my opinion this is not the graph.
Because at 12.5 it’s just going to be a straight line. But if we . . . 

Teacher: [Moving to the chalkboard] Hmm . . . I’m just going to write down your ideas.
Keep going.

Aimee: But if we say that 12.5 is the number of fish that we can support with our
resources and that we somehow manage to increase our population [above 12.5],
that means that our slope is going to become negative. It’s going to start
decreasing. And then again increasing . . .  . [Trails off]

dP
 = 0.3P �1 – 

12.5�.
dt

P

Figure 3. Possible graph of solution to 
dP

 = 0.3P �1 – 
12.5�.

dt
P
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As Aimee spoke, the teacher recorded her reasoning on the oscillating solution
graph as seen in Figure 4. The downward pointing arrow was the teacher’s record
of Aimee’s reasoning about the decreasing population, and the upward pointing arrow
was the teacher’s record of Aimee’s reasoning about the increasing population.

Teacher: So are you saying something like that above 12.5, based on this rate of change
equation, our population will be decreasing?

Aimee: Yes.
Teacher: OK, so I’m just using these arrows to represent what you said.
Aimee: The bottom graph [points to the oscillating graph] could be the more realistic

one, like if we were going to include all the other factors, but for that equation
there, at 12.5, it’s going to [be] more like a straight line.

Figure 4. Record of Aimee’s reasoning.

We note here that Aimee, not the teacher, made the distinction between reasoning
with the rate-of-change equation and reasoning with the imagined real-world
setting of a fish population with limited resources.

We claim that the teacher could have pursued a number of different paths at this
point in the discussion. Some of these options include asking Aimee to clarify what
was decreasing and increasing (The number of fish? The rate of change? Something
else?) or inviting the class to reflect on the feasibility of the oscillating graph in light
of the differential equation (rather than the population situation). We make no value
judgments about the teacher’s decision not to pursue these topics of conversation,
but rather we point to the fact that what the teacher strategically chose to do was
to inscribe certain parts of Aimee’s argument, specifically, Aimee’s statements about
increasing and decreasing populations. 
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Further, we do not claim that what the teacher did was a perfect match with
Aimee’s reasoning, but rather, paraphrasing von Glasersfeld (1995), it was a viable
fit. In addition to being compatible with Aimee’s ideas, the teacher’s up and down
arrow notation is significant because it reflects an eye toward moving students’
mathematical reasoning forward. In particular, subsequent mathematical activity
involving such an inscription, which one who is well versed in differential equa-
tions recognizes as the beginning of a phase line, may offer students a means to
conceptualize the two-dimensional solution space in one dimension, encourage
students to think more holistically about the solution space, and present opportu-
nities to further contribute to the ongoing constitution of the social norm that
students’ routinely provide explanations and justifications for their conclusions.
Consistent with the language that was used in this class, the teacher’s initial record
of Aimee’s thinking is referred to as a “flow line.” In subsequent class sessions, the
term flow line was replaced with the conventional terminology of “phase line.”

In the next part of the episode, the teacher asked other students for their inter-
pretation in order to gauge whether or not (and why) the horizontal line at 12.5 made
sense to them. We liken the teacher’s action here to the way in which researchers
often ask participants to read and review their interpretations in order to corrobo-
rate conclusions, commonly referred to as member checking (Stake, 1995).

Jake: I think that we need to consider a couple of things when we look at this. One
is that P is always going to be greater than zero because you can’t have a nega-
tive population. Since P is always going to be greater than zero as far as the
direction of our rate of change, we can ignore that first term, 0.3P because
that’s always going to be positive. So we’re only looking at our second term,
1 – (P/12.5). If we just take points along our population, like our initial popu-
lation’s 3, 3/12.5 is less than 1, so we’re going to have positive growth. We’re
going to continue to have positive growth until . . . so let’s say, a little bit longer,
we have 6 fish, we still have positive growth, we have 8 fish, we still have posi-
tive growth. Then let’s say there’s a large . . . all of a sudden we have 14 fish,
all of a sudden. Now we’re at negative growth. Our growth is going to
decrease until it gets below 12.5 again, then we’ll, then . . . it’s going to fluc-
tuate up and down like that. 

It is important to note that the teacher asked Jake to comment on Aimee’s idea, not
the record of Aimee’s idea, thus acting in accordance with the social norm that
students listen to and make sense of others’ ideas and reflecting a theoretical posi-
tion that meaning is not located in a particular inscription (Meira, 1998). Although
Jake did not actually comment on the issue surrounding 12.5, his discussion of posi-
tive and negative growth is consistent with the flow line notation (i.e., the up and
down arrow record of Aimee’s reasoning).

In a subsequent class session, the teacher selected a task in which students were
asked to compare two solutions to the differential equation dP/dt = 0.2P, one with
initial condition P(0) = 1 and the other with initial condition P(0) = 3. Students were
asked to physically demonstrate their comparison of the two solutions by moving
two cubes along a vertical line with arrow heads, similar to the teacher’s initial record
of Aimee’s reasoning. As shown in Figure 5, a partial slope field was located next
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to the flow line to help support student reasoning that the flow line is a one-dimen-
sional representation of the two-dimensional solution space. 

After the students had worked on this task in small groups, the teacher solicited
a volunteer to present his or her group’s thinking at the overhead projector. Donald
volunteered to demonstrate the movement of the two cubes, making reference to
the teacher’s flow line notation as well as the slopes at the initial time.

Donald: At zero there would be no change. You would use the flow line as an interval.
Everything above zero is a positive change and everything below zero is a nega-
tive change. So what happens to the two cubes at 1 and at 3? Well the first cube
[at 1] is going to be moving at a slower rate than the cube that is at 3 because
the rate of change at 1 is going to be smaller than the rate of change at 3. 

Teacher: Can you show the two cubes moving? [Donald then shows the two cubes
moving up the flow line, with the distance between the cubes becoming greater
the further up the line he moves them.]

Donald’s activity with the flow line and his comments are consistent with and
extend Aimee’s initial reasoning (which, the reader will recall, gave rise to the flow
line notation). In particular, Donald stated that “everything above zero is a posi-
tive change and everything below zero is a negative change.” This reasoning relates
to an upward pointing arrow above zero and a downward pointing arrow below zero
and is consistent with Aimee’s comment that the population was decreasing above
12.5 and increasing below 12.5 on the previous task.

Furthermore, Donald’s discussion of the two cubes moving at two different rates
is evidence that the flow line, which initially signified direction only, grew into a
dynamic object as students pursued their goal of comparing two solutions with

Figure 5. Reasoning about solutions and flow lines.
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different initial conditions. In other words, Donald’s discussion of the two cubes
moving at different rates indicates a transformation of the teacher’s initial record
of student thinking into a means for reasoning about the changing rates of change
of the cubes. Another student, Bruce, makes this transformation explicit in his
comments that we discuss next.

During the discussion of Donald’s ideas, Bruce commented that it would seem
to make more sense to draw arrow heads of varying size since the rate of change
is greater the higher up the vertical line the block begins. Bruce’s modification of
the flow line is further evidence that the initial record of Aimee’s reasoning was
functioning as a means for comparing changing rates of change of solutions.

Bruce: Well to me having just the single arrow pointing implies that the rate of change
would be the same across all [numbers] P. It implies that somehow it’s just one
rate of change up all the way as opposed to having different size arrows as you
move up. [He gestures, with his hands, arrow heads getting bigger and bigger
as his arms move straight up.] 

Teacher: So Bruce, you’re saying that maybe this single arrow might be just one rate of
change. How would you indicate a bigger rate of change?

Bruce: By a bigger arrow.

Based on Bruce’s gesturing, the teacher drew a series of arrow heads getting
bigger and bigger as they were placed higher up on the flow line. There are two signif-
icant consequences of Bruce’s comments. First, Bruce’s statement that “having just
the single arrow pointing implies that the rate of change would be the same across
all P” indicates Bruce’s belief that the teacher’s original inscription is insufficient for
the type of reasoning Donald put forth in his discussion. In particular, Bruce suggested
that the single arrow on the flow line implies a single rate of change, and he argued
that the changing rate of change warrants a modification of the original inscription. 

Second, Bruce used the teacher’s original record of student thinking as a means
for reasoning about the changing rates of change of solutions. The flow line became
a dynamic object for him, dynamic in the sense that as you move up the line, the
rate at which you move changes. Bruce clearly agreed with Donald’s idea that the
cube at P = 1 moves slower than the cube at P = 3 and he made this reasoning more
explicit by suggesting using arrow heads of varying size.

In this episode, we illustrated how the teacher’s informal notation was transformed
into a dynamic object as students achieved their goal of comparing solutions with
two different initial conditions. That is, the teacher’s initial record of Aimee’s
thinking functioned as a means for subsequent student reasoning. Bruce’s sugges-
tion of drawing arrow heads with different sizes implies that the teacher’s original
notation helped him to reason in increasingly sophisticated ways about rates of
change, and in the process the teacher’s initial record of Aimee’s thinking took on
new meaning. The teacher’s proactive role in this episode included (1) strategically
choosing to notate student reasoning in a way that was at once compatible with the
ideas expressed and had the potential to lead to the phase line notation used by the
mathematical community and (2) facilitating discourse that supported the norm that
students explain their reasoning and try to make sense of others’ reasoning.
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GENERATIVE ALTERNATIVES

We now illustrate the PCT of generative alternative, the sister construct to the
RME heuristic of guided reinvention. Generative alternatives highlight the proac-
tive role of the teacher in balancing between a noninterventionist form of practice
and assumption of total responsibility for explicating certain mathematical concepts
and ways of reasoning. As we will argue in the two examples, the significance of
generative alternative is that it functions as a teacher-driven mechanism to support
students’ evolving mathematical reasoning while contributing to the ongoing
constitution of productive social norms pertaining to explanation and justification. 

Example from Classroom A

This example centers on a fairly standard modeling task in which a rate of
change equation is developed to predict future amounts of salt in a very large tank.
The teacher initiated the task by setting up the following scenario (illustrated in
Figure 6):

A very large tank initially contains 15 gallons of saltwater containing 6 pounds
of salt. Saltwater containing 1 pound of salt per gallon is pumped into the top of
the tank at a rate of 2 gallons per minute, while a well mixed solution leaves the
bottom of the tank at a rate of 1 gallon per minute.

We outline classroom interactions in this example in four phases. In phase 1, the
teacher invited students to make graphical predictions for the amount of salt in the
tank over time. In phase 2, students were asked to decide if the rate of change equa-
tion for this situation should explicitly depend just on the amount of salt S in the
tank, on just the time t, or on both S and t. In phase 3 of the task, the class modeled

Figure 6. A salty-tank scenario.
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this situation with a rate of change equation based on the physical law dS/dt = rate
of change in – rate of change out. Finally, phase 4 moved toward finding approx-
imate and exact solutions to the rate of change equation from phase 3 to figure out
how much salt is in the tank when the tank is full if the tank has a maximum capacity
of 50 gallons. 

Phases 1 and 2: Generating predictions. The proactive role of the teacher involving
generative alternatives occurred in phase 3 of this episode and we therefore focus
our analysis of classroom events in that phase. In order for this discussion to make
sense to the reader, however, we first summarize what occurred in the first two phases. 

The fact that the teacher first invited students to generate predictions of the
scenario prior to developing an analytic expression for the differential equation
is consistent with his typical pattern of engaging students’ sense making by
generating qualitative/graphical predictions. These predictions then served as a
foundation for subsequent exploration, mathematization, and generalization
(Rasmussen & Ruan, in press). The vast majority of students predicted that the
amount of salt would continue to increase over time. As explained by one student,
“You’d still be losing 1 pound itself per minute while you gain 2 pounds of salt.
So, you’re always going to be increasing a pound of salt.” The point of inviting
students to make such predictions (with explanations) was not necessarily to
achieve perfectly correct responses but rather to engage students in thinking
about the situation in order that they might be more intellectually invested in
subsequent parts of the task.

In phase 2 of the task, the teacher continued to engage students in making predic-
tions (with reasons), but this time the predictions were of an analytic, rather than
graphical, nature. The majority of students reasoned that the rate of change equa-
tion should depend explicitly on both t and S. Despite this reasoning, S tended not
to be used as a variable in students’ rate of change equations. Instead, when formu-
lating their rate of change equations, students wrote the amount of salt in terms of
an expression involving time t. This is not surprising, however, given the concep-
tual complexity of reasoning with and about S as both an unknown function of the
amount of salt and as a variable in the differential equation (Rasmussen, 2001;
Stephan & Rasmussen, 2002). As evidenced by the discussion regarding the expres-
sion for the rate of change out, this conceptual difficulty played itself out by the
teacher assuming greater responsibility for developing at least a portion of the differ-
ential equation.

Phase 3: Formulating a rate of change equation. Consistent with the RME
heuristic of guided reinvention, the intention of this phase of the task was to provide
students with an opportunity to participate in developing a rate of change equation.
The idea behind generative alternative is that by intentionally engaging students in
analyzing different possibilities, in this case, different symbolic expressions, the
teacher provides occasions for students to generate explanations and justifications,
which serve to continually constitute the norm that students offer explanations and
justifications while moving mathematical ideas forward. 
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Recall that the task in this phase was to create for the salty tank situation a rate
of change equation, dS/dt = rate of change in – rate of change out. Following the
general agreement that the rate of change should include both S and t, students
worked in small groups, followed by whole-class discussion about their initial ideas
for the differential equation. In a spirit of joint inquiry in which ideas were shared
and debated, this pattern of small-group work followed by whole-class discussion
was repeated twice before the final form of the differential equation 

was reached. Cycling between small-group work and whole-class discussion was
facilitated by generative alternatives and contrasts with a traditional instructional
approach in which the teacher might take total responsibility for developing the
differential equation and/or solve a similar problem and then ask students to imitate
or repeat the process. We illustrate the role or function of generative alternatives
in an annotated transcript centering on the expression for the first part of the rate
of change equation, the rate in. The development of the expression for the rate out
had a similar character, although the mathematical issues that arose were more
complex. Thus, for illustrative purposes, analysis of the development for the rate
in expression suffices.

The first of three whole-class discussions focused on student ideas for what the
expression for the rate in should be. The conversation began with the teacher
asking students to share their ideas for the symbolic form of the rate of change in.
Two different ideas for the rate of change in were expressed by students, either 2
or 2t. The teacher capitalized on these student-initiated alternatives to continually
constitute the social norms that students are to explain and justify their reasoning
and to try to make sense of others’ reasoning.

Teacher: Let’s get some ideas, all right? Now. We know they are, they’re two parts. The
rate of change, the rate that the salt flows in and minus the rate of salt flow out.
So we just need to figure out which, for each part. Um. OK. Adam and Kalub?
What do you think? How about let’s look at the first part? The rate of change
that the salt flows in?

Adam: 2t.
Teacher: [Writes dS/dt = 2t on the board.] Any different ideas?
John: Just 2.
Teacher: Just 2? [Writes 2 above 2t.]
Bill: I think you have to have t in that part because you don’t know how much over

time. Like in 5 minutes, you’re going to have 10 gallons flowing in.
Teacher: Uh, let me hear, Lonnie? Sean? 
Sean: I think it would have to be 2t.
Bill: [Softly to his group, Jerry and Robert] Should it just be 2?

Note that after Bill’s spontaneous contribution the teacher did not evaluate or inter-
pret his reasoning but rather continued to involve other students in sharing their
ideas. As Bill’s previous comment and Jerry and Kevin’s analysis below suggest,
having choices from which to decide tends to open up spaces for providing justi-

dS
 = 2 – 

15 + tdt
S
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fications. It has been our experience that students are more likely to offer justifi-
cations when there is a choice to be made. As the discussion continued, the teacher
shifted from soliciting different responses to soliciting arguments for why one choice
over the other makes sense.

Teacher: OK. Now, let’s hear your arguments for why 2t or why 2.
John: Because, if it was just 2, then you’d be saying that you only added 2 pounds

of salt for the whole time that the whole thing went on. But, at 2t, as long as
you’re doing t in minutes, dealing with t minutes, you’re saying that every
minute it changed by a rate of 2. [Bill: Right.] So at 2 minutes you added 4
pounds of salt, at 3 minutes you added 6 pounds of salt.

Teacher: So. You’re saying that this [points to the expression 2t] is the amount of salt
you’re putting into the tank after t minutes?

Students: Uh, huh. Right. Yes.
Kevin: Also, think of it this way, that at t zero, all you have to have is .4, because that’s

the solution at t zero. 
Teacher: Did you [referring to John] change your mind? Because, initially you said it

was 2. Did you change it to 2t also? 
John: Yeah.
Teacher: Everybody thinks that it’s 2t?
Bill: Uh, huh.

Up until this point, the teacher had been capitalizing on the alternatives of 2
and 2t to proactively support students in generating justifications. In some
sense, we might say that the teacher is now in a bind because although his proac-
tive effort at generating justifications has been profitable, many students are now
swayed that the expression should be 2t, which is actually incorrect. The teacher
next began to assume more responsibility for the mathematical content and
direction of the discussion, representing a slide along the noninterventionist-total
responsibility continuum. In particular, the teacher recognized that students
were not making a conceptual distinction between rate of change in the amount
of salt and amount of salt and brought this issue up directly. Identifying and being
sensitive to the conceptual issues that students are working on is, as argued by
Schifter (2001), a critical ability in being able to build on and extend students’
thinking. 

Teacher: OK. Now. We look for the rate of change for the salt flow in. And, you told
me that after t minutes there are 2t pounds of salt flowing into tank. Is that the
rate of change?

Students: No. No. It sounds like the salt. Pounds of salt.
Teacher: What’s the difference?
Heath: There [referring to 2t], at say 3 minutes, you’re adding 6 pounds of salt, not

2 pounds. You’re always still adding 2 pounds of salt. So time doesn’t have
anything to do with that. [Bill: Right.] Because at time 3 minutes you’re
saying that you’re adding 6 pounds of salt. But in a sense you’ve added 6
pounds of salt, but you’re not adding at that time 6 pounds of salt. Your slope
of your slope field is changing with that [referring to 2t]. It [the rate] should
always be 2.
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Although his reasoning is not entirely clear,7 we suspect that Heath’s reasoning
stemmed from his and his group’s prediction of the graph of the amount of salt over
time (phase 1). In support of this interpretation, recall that the vast majority of
students predicted that the graph would increase over time, perhaps with an even-
tual constant positive slope, which then might not be consistent with a slope field
corresponding to a rate in of 2t. In any case, the teacher did not pick up on this contri-
bution but did pick up on the distinction Heath made between rate of change and
the amount of salt.

Teacher: OK, so this [2t] is not the rate of change. This is actually the amount of salt
after t minutes.

John: Yeah. Which its derivative is 2.
Teacher: So you [John] change back to 2?
John: Yeah. [Laughter from several class members.]
Teacher: Well tell us a bit more, why you changed back to 2.
John: Why? Because 2t is the equation for the amount of salt in the water at any time.

And so the derivative of that is the rate of change, which is 2.

The conversation continued as the teacher requested that other students respond
to the reasons that some students expressed in support of 2 as the rate in and to
explain their position as to whether (and why) they changed their mind. As evidence
that these actions on the part of the teacher were productive, we note that Robert,
who had yet to speak up in class, commented that “Well, he [John] brings up a good
point; we actually want the rate of change of salt.” 

What makes this episode an example of generative alternative is not simply the
fact that the teacher focused the whole-class discussion on two alternatives for the
rate in, namely, 2 or 2t. We see this as an example of generative alternative because
of the way the alternatives functioned for maintaining social norms and for
advancing mathematical ideas. The mathematical idea that was advanced through
students’ explanations and justifications was the explicit distinction between rate
of change in a quantity and the quantity itself, which previous research has pointed
to as a conceptual distinction that students, even university students who have taken
3 semesters of calculus, often need to revisit (Rasmussen, 2001). 

The teacher’s proactive role in advancing this idea involved not only continuing
to act in accordance with certain social norms but involved what we see as a slide
between being noninterventionist and assuming greater responsibility. Initially, as
students offered their ideas and explanations for why the rate of change in should
be 2 or 2t, the teacher was fairly noninterventionist. He did not evaluate or other-
wise try to direct students’ thinking. However, as students explained their thinking,
the teacher focused discussion on the distinction between rate of change in a quan-

7 We do note, however, that Heath mentions a slope field, even though a slope field for this situation
was never obtained. Indeed, students could not have obtained a slope field because they have yet to create
the rate of change equation. As we argued in the transformational record section, slope fields initially
emerged as a record of student reasoning and subsequently shifted to function as a means for reasoning
about different mathematical ideas. Heath’s use of a slope field in this instance is additional evidence
that slope fields functioned for reasoning about new mathematical ideas.
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tity and the quantity itself. Recall at one point the teacher said, “And, you told me
that after t minutes there are 2t pounds of salt flowing into the tank. Is that the rate
of change?” We characterize his proactive efforts in pointing out this conceptual
distinction as a slide toward assuming greater responsibility for articulating impor-
tant mathematical ideas.

Example from Classroom B

This final episode illustrates the proactive role of the teacher in strategically
orchestrating a classroom discussion about a graph that she introduced after students
had the opportunity to share with the whole class their position versus velocity
graphs. This episode focuses on a task designed to introduce students to graphs in
the phase plane. Prior to this activity, students engaged in a lesson intended to help
them visualize solutions to systems of two differential equations in three dimen-
sions and two-dimensional projections of these three-dimensional images.
Consistent with the teacher’s typical pattern of asking students to generate and
discuss mathematical ideas in small groups before leading a whole-class discussion,
the teacher invited students to discuss and generate graphs for the scenario described
in Figure 7.

Depending on the values for parameters like the stiffness of the spring, the weight
of the object attached to the spring, and the amount of friction along the surface that
the object travels, different motions of the mass may be possible. Describe in words
the different motions you might see or expect to see. For each different type of
motion provide a rough sketch of what you think the position versus velocity graph
would look like.

Students worked on this problem for some time in their small groups, and then
the teacher invited Wes to share his group’s ideas with the rest of the class. Wes
began by drawing an arc, as indicated in Figure 8, on the board. He explained his
graph as follows:

Wes: OK. This is assuming no friction, gravity, loss of energy, anything. The system
is constant and basically the velocity will be greatest when the spring crosses
through its midpoint in its oscillation. In reality, it would do this [pointing to

Figure 7. A spring-mass scenario.
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the arc] once and then it would go down [draws smaller arcs, as in Figure 9].
It would get smaller and smaller due to friction, gravity, and all the other stuff.
Any questions? 

A number of students questioned why Wes’s graph did not include negative
velocity, that is, why his graph lay only in the upper half plane. A discussion about
whether or not Wes’s graph adequately displayed the spring-mass system’s nega-
tive velocity ensued. Jay volunteered his ideas at the board by drawing a circle in
a clockwise direction, as shown in Figure 10. Jay reasoned within the context of

Figure 8. Wes’s sketch of a velocity versus position graph for a system with no friction.

Figure 9. Wes’s sketch of a velocity versus position graph for a system with friction.
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the spring-mass system to convince Wes and others that Wes’s graph adequately
represented speed versus position, not velocity versus position. 

During the discussion, Jay emphasized that his own graph did not include fric-
tion, unlike Wes’s graph of smaller and smaller arcs. The class came to a consensus
that Jay’s graph more appropriately represented velocity versus position and that
Wes’s graph more appropriately represented speed versus position. At this point,
the teacher addressed the class and posed the following question: “If we did intro-
duce friction and we wanted to construct a velocity versus position graph, what
would it look like?” 

This question is significant for two reasons. First, the teacher assumed greater
responsibility for the direction of the discussion, thus indicating a shift along the
noninterventionist-total responsibility continuum. Second, the question built upon
students’ ideas and moved the mathematical agenda forward. Wes included fric-
tion in one of his graphs, and although Jay did not, he attended to it in his discus-
sion. Thus, friction was an important idea in students’ reasoning and gave the teacher
an opportunity to make explicit connections between mathematics and physics. 

In response to the teacher’s question, Ryan sketched an inward-moving spiral,
as shown in Figure 11, and reasoned as follows:

Ryan: As friction acts on it, you’re going to get less velocity over time because fric-
tion’s reducing your velocity so you’re going to get less displacement over
time. . . . It’s going to lose a certain amount of velocity and a certain amount
of displacement over time. 

Ryan, like other students who explained their way of thinking before him, reasoned
within the context of the spring-mass system and drew on his understanding of
physics to present his argument. As evidence that the teacher’s actions were produc-

Figure 10. Jay’s position versus velocity graph for a system with no friction.
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tive, we note that Hank followed Ryan’s comments by adding, “If you took the
absolute value of [Ryan’s graph], you’d have exactly Wes’s graph.” 

At this point the teacher could have solicited more graphs from the class or moved
on to the next activity in the lesson. However, she posed the following question to
the class:

Teacher: Let me ask you all a question. Can we have a graph like this? [She sketches
the graph shown in Figure 12.] Is there a situation with the spring-mass system
that would match that graph? It’s a little bit different from the one that Ryan
put up.

We point out that the teacher again assumed more responsibility for the direction
of the class discussion and the mathematical content when she invited the class to
consider the graph in Figure 12. The teacher’s actions here are significant because
she did not have to wait for students to offer diverse ideas; rather, she was able to
draw upon her content expertise to further question students’ thinking. This is consis-
tent with the notion that teachers’ mathematics expertise is an essential aspect of
making pedagogical decisions (Ball 1991; Fennema & Franke, 1992). 

Figure 11. Ryan’s graph of the spring-mass system with friction.

Figure 12. The teacher’s outward spiraling graph.



414 Pedagogical Content Tools

A number of students offered explanations to justify the outward moving spiral
graph. Among them, Kevin stated, “Add energy to the system,” and Josh offered,
“If you were moving it [the mass and spring] on your own.” Thus, students offered
justifications in terms of their understanding of what needed to be added to the phys-
ical system in order to produce an outward spiraling graph. 

This example illustrated the proactive role of the teacher in strategically orches-
trating classroom discussions around appropriate graphical representations of
motion. We consider this an example of a generative alternative because the
teacher-created graph contributed to the ongoing constitution of social norms
pertaining to explanation and justification, and it furthered students’ emerging
mathematical and physical reasoning about graphs of motion. We point out that in
this example the ongoing constitution of the social norm that students provide expla-
nations contributed to moving the mathematical agenda forward because as students
provided explanations for the teacher’s outward spiraling graph, their reasoning
about the physical system and its limitations became explicit. In providing these
explanations, students broadened their reasoning about graphical representations
of motion. This reasoning was used by the teacher in subsequent investigations of
the spring-mass system, namely, leading to the development of straight line solu-
tions. Finally, we point to the proactive role of the teacher in this example in terms
of introducing a graph for class discussion, rather than waiting for a student to offer
such an idea and her proactive role in continuing to act in accordance with the social
norms regarding explanation and justification that she wished to foster.

CONCLUSION

Part of the intent of the instructional design theory of RME is to inform the
creation of sequences of tasks in which students develop important mathematical
ideas and methods through solving a series of connected and challenging problems.
This intention is captured in Freudenthal’s (1991) adage that, first and foremost,
mathematics is a human activity. The heuristics of emergent models and guided rein-
vention offer the instructional designer a way to think about the nature of students’
mathematical activity and how a well-connected instructional sequence can be
created to support students’ increasingly sophisticated ways of reasoning.
Freudenthal’s adage has mostly been used to refer to how students should experi-
ence mathematics learning. We think that this adage applies equally well to the role
of teachers. An important part of mathematics teaching is responding to student
activity, listening to student activity, notating student activity, learning from student
activity, and so on. In this sense, mathematics teaching is a human activity about
human (i.e., student) activity. Framed in this way, the two PCTs we developed in
this article function as resources for a teacher to think about his or her own teaching
activity in relation to the students’ mathematical activity. 

The RME heuristic of emergent models speaks to the long-term nature of a
hypothetical learning trajectory (Gravemeijer, 1999). In comparison, the notion of
transformational record falls within the realm of short-term or day-to-day teaching
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practice. The examples we tendered illustrate how a transformational record can
support a teacher’s proactive role in furthering students’ mathematical reasoning
in ways that are increasingly compatible with the reasoning and symbolizing of the
broader mathematical community. In the example from Classroom A, the teacher
led a whole-class discussion about slope before he recorded the students’ thinking.
The teacher’s decision to lead a whole-class discussion about slope enabled his
vector notation to emerge as a record of students’ collective thinking. In contrast,
the teacher in Classroom B provided notation that fit with an individual student’s
thinking. The teacher’s decision to inscribe one student’s ideas early in the class
discussion served the purpose of directing students’ attention to the rate of change
of solution graphs as well as of foreshadowing the mathematical idea of the phase
line. The difference in when these teachers decided to notate student thinking
underscores the fact that there is more than one way to instantiate the PCT of trans-
formational record. PCTs, like any good tool, ought to be adaptable to local circum-
stances. 

The PCT of generative alternative offers a teacher a way to think about how he
or she can slide between a noninterventionist form of practice and a form of prac-
tice that assumes total responsibility for the mathematical content. In the example
from Classroom A, the teacher began to assume more responsibility for the math-
ematical content and the direction of the whole-class discussion when he recognized
that many students were not attending to an important conceptual distinction
between rate of change in a quantity and the quantity itself. The teacher directed
the classroom discussion to this issue and solicited students’ elaboration of this
difference. In the example from Classroom B, the teacher assumed more respon-
sibility for facilitating whole-class discussion regarding her initiated alternative that
functioned generatively to further students’ reasoning about the graphical repre-
sentation of motion. Thus, in both examples, the teacher maneuvered along the
noninterventionist-total responsibility continuum.

The generative alternative construct, which is the teaching analogue to RME
instructional design heuristic of guided reinvention, serves the dual function of
furthering students’ mathematical reasoning and contributing to the ongoing consti-
tution of the norms of explaining and justifying one’s thinking, listening to and
attempting to make sense of other’s thinking, and responding to challenges and ques-
tions. In each of our examples, the generative alternatives offered an occasion for
students to provide explanations and justification for why they favored one option
over another. In addition, both the mathematical agenda and students’ mathemat-
ical reasoning were furthered through student reflection on their own thinking and
the explanations of others.

An analysis of the classroom data points to the fact that generative alternatives
can arise in two different ways. One way is that generative alternatives may be intro-
duced to the class by the teacher with the intention that students will make explicit
their reasoning about a concept or issue, as in Classroom B. A second way that a
generative alternative may be introduced to the class is by a student’s idea or an
example that the teacher deliberately pursues. This was the case in the example from
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Classroom A. In the case of Classroom A, the teacher intentionally initiated a discus-
sion about the alternative in order to solicit justifications from the students. As with
transformational records, there is more than one way for teachers to use the PCT
of generative alternatives.

As evidenced in these four examples, discourse was a prominent feature of both
classrooms. We argue that the teachers’ use of transformational records and gener-
ative alternatives contributed to the development of a mathematical discourse
community and thus created the “conditions for the possibility of learning” (Cobb,
Boufi, McClain, & Whitenack, 1997, p. 264). For example, recall that a significant
feature of generative alternative is that it functions as a teacher-driven mechanism
to support students’ evolving mathematical reasoning. The examples in both class-
rooms show the teacher providing instances (either by capitalizing on students’
contributions or a deliberate introduction of an idea) for engaging students in argu-
mentation. These assumptions about argumentation are consistent with Sfard’s
(2002) position that discourse is not a mathematical learning aid but rather consti-
tutes learning (Lampert & Cobb, 2003; Sfard, 2002).

The notion of PCT can be viewed within the broader notion of cultural tool.
Vygotsky (1978) introduced the notion of “cultural tool” as a means to mediate
thought. Typically, cultural tools are verbal and conform to social conventions
(Wertsch, 1991) but more recently have been extended to include such cultural arti-
facts as computer technology (Crawford, 1996). Individuals use cultural tools both
to internalize others’ ideas and to communicate one’s own ideas. The development
of concepts or ideas is thus inseparable from the cultural tools used to mediate
thought. Vygotsky’s notion of cultural tool is compatible with our notion of PCT
in that students’ ideas (which are typically communicated verbally) become func-
tional in the classroom as the teacher supports the interactive development of
meaning through the proactive use of various artifacts, such as graphical inscrip-
tions and symbolic expressions. Vygotsky (1978) developed the notion of cultural
tool within a broader sociocultural context, whereas we developed the construct of
PCT in the microcosm of the classroom, a much more specific context. Both the
cultural tool and the PCT are used to mediate social transactions, the former within
society at large, and the latter within the classroom. 

The PCTs of transformational record and generative alternative both move the
mathematical agenda forward but in different ways. Generative alternatives
promote discursive activity in which mathematical ideas are debated and claims
are justified. Transformational records, on the other hand, complement discursive
activity with symbolizing. In addition, both forms of PCTs contribute to the
constitution of particular social norms regarding explanation and justification.
Although we did not do so in this article, a complementary line of inquiry would
be to examine the ways in which these PCTs function in the initiation and ongoing
constitution of sociomathematical norms. For example, what role do these PCTs
play in the initiation and constitution of what counts as an acceptable mathemat-
ical explanation? Are there other types of PCTs that help promote particular
sociomathematical norms?
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The explicit theoretical and practical aim of this article is to explicitly connect
the instructional design theory of RME to teaching practices. We therefore make
no claim to have exhausted the types of PCTs available to teachers. Certainly there
are other types of PCTs that need to be explicated. For example, Burtch (2004)
examined how an undergraduate teacher used thought experiments as a tool to
support conjecturing as a normative activity and to move forward specific mathe-
matical ideas. Thought experiments might well be another type of PCT.

As another example of a potential PCT, Staples (2004) studied a ninth-grade pre-
algebra teacher, Ms. Nelson, who was particularly skillful in fostering collabora-
tive inquiry in which her students learned mathematics with understanding. Staples
referred to one of Ms. Nelson’s productive teaching tools as “pressure points.”
Pressure points are verbal statements that build on students’ current mathematical
reasoning by pushing them to think in new ways. For example, when teaching the
concept of function, Ms. Nelson pressed students to verbally explain in their own
words a process for finding missing values in a table of values and then pressed them
to verbalize a single relationship between the input and output values. Subsequent
pressure points ultimately led students to write rules in terms of variables x and y.
We view the notion of pressure points as a type of PCT because it blends pedagogical
and mathematical expertise in a way that connects to students’ thinking and moves
forward the mathematical agenda. 

We developed the PCTs of transformational record and generative alternative in
the context of differential equations as a means to complement the RME instruc-
tional design heuristics of emergent models and guided reinvention. These two PCTs
offer a vision of how teaching might proceed in a manner that reflects the under-
lying intention of RME. A two-part open question is the extent to which these two
PCTs are valuable for (1) teachers who are using RME-inspired instructional mate-
rials in other content areas and (2) teachers who are not using RME-inspired
instructional materials but who are developing student-centered instructional
approaches. 
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