Professor Svetlana Malinovskaya

ASSOCIATE PROFESSOR
School: Schaefer School of Engineering & Science
Department: Physics and Engineering Physics
Building: Burchard
Room: 509
Phone: 201.216.8094
Fax: 201.216.5638
Email: smalinov@stevens.edu
Website
Resume
Education

Ph.D. in Physics and Mathematics, Novosibirsk State University and Institute of Chemical Kinetics and Combustion of Russian Academy of Science, Russia

1996-2000 Alexander von Humboldt Fellow and Research Scientist, University of Heidelberg, Germany

2000-2001 Postdoctoral Fellow at the Quantum Theory Project, University of Florida

2001-2006 Postdoctoral Fellow in Ultrafast Optical Science at FOCUS Center and Lecturer in Physics, University of Michigan

Research
  • AMO theory
  • Stimulated Raman spectroscopy, CARS, x-ray and Auger spectroscopy
  • Frequency Comb spectroscopy
  • Molecular cooling
  • Quantum many-body physics with trapped Rydberg atoms
  • Coherence, entanglement and decoherence
  • Quantum control 
  • Dynamical symmetry breaking; non-adiabatic effects
  • Dynamics of collisions
  • Properties and photoinduced reactions in biomolecules

 

 

Institutional Service

 

Stevens Faculty Committee on Committees  (2008-2010; 2010-2012; 2012-2014 Chair)

Professional Service

Chair of the Theoretical Atomic, Molecular and Optical Community (TAMOC) in the American Physical Society, 2012-2014

Committee on Career and Professional Development of the American Physical Society (2011-2014).

 

 

Honors & Awards
Teaching Faculty Award presented by Student Government Association at Stevens Institute of Technology, May 2011.
 
Honor Award from Society of Graduate Physics Students of Stevens Institute of Technology, May 2011.

Professional Societies
Member of the American Physical Society (2000 – present)
 
Member of the Optical Society of America (2002 – present)
 
Member of the American Chemical Society (2001 – 2007)
 
Member of the Association for Women in Science (2005 – present)
 
Associate member of Michigan Center for Theoretical Physics (2002-2006)
Grants, Contracts & Funds


-ONR Award 2020-2023; PI S. Malinovskaya, Title: Quantum-enhanced FAST CARS for remote detection using a multi-static platform.

- ONR Award 2017-2020; PI S. Malinovskaya, Title: Remote detection of chem/bio hazards via coherent anti-Stokes Raman spectroscopy.

- ONR Award 2016; PI S. Malinovskaya, Title: Remote detection of chem/bio hazards via coherent anti-Stokes Raman spectroscopy.

- Alexander von Humboldt Award 2014; Three-months research visit (sabbatical) of the University of Kassel, Germany.

- NSF Award 2012-2016; PI S. Malinovskaya,
Title: Control of Ultracold Dynamics and Decoherence Using Optical Frequency Combs.

- NSF Award 2009-2012; PI S. Malinovskaya,
Title: Ultrafast Control of Raman Transitions Using Frequency Combs:
Prevention of Decoherence.

- DARPA Award 2009-2010; Title: Entanglement dynamics of qubit systems, Collaborative grant with Ting Yu, Norman Horing, Joe Eberly (University of Rochester) and Bela Hu (University of Maryland).

- NSF sponsored visits of Kavli Institute for Theoretical Physics (KITP) to participate in Scientific Programs on i) Frontiers of Intense Laser Physics (July - Sept. 2014); ii) Fundamental Science and Applications of Ultra-Cold Polar Molecules, (March 2013); iii) Quantum Control (August 2009).

 

Patents & Inventions

S.A. Malinovskaya, V.S. Malinovsky, ``CARS microscopy and spectroscopy using ultrafast chirped pulses'', USP 7847933 (2010)

Description: The invention is a method that uses ultrafast pulse shaping techniques that allow for selective excitation of molecules in a sample in order to generate a signal that can be processed to perform CARS microscopy or CARS spectroscopy of the sample.  Two linearly chirped pulses in a Raman scheme provide selective excitation of only one target transition without disturbing any other transitions or molecules. Selectivity is guaranteed by the adiabaticity of the pulse excitation. The large bandwidth of the intense femtosecond pulse provides the flexibility necessary to manipulate by frequency components and to apply a time-dependent phase on the pulse. The importance of the method is in its unique ability to distinguish between molecules or molecular groups having very similar structural properties reflected in close vibrational frequencies, whose difference may be less than 3 cm-1. Our method uniquely allows for discrimination between such species since it imposes no limitation on a possible vibrational frequency difference. It is a label-free technique that provides with a single molecule sensitivity, unique molecular selectivity and low background signal.  The novelty of the method is in implementation of two linearly chirped femtosecond pulses, with one of them having the temporal profile of the instantaneous frequency resembling the roof shape. It is in the controlled manner of the implementation of these two pulses that enhances the molecular specific signal and increases the resolution of the imaging in 103 – 105 times in comparison to current state of art techniques.  It is developed for noninvasive imaging of bio-molecules, sensing of trace amounts of molecules, molecular identification, and remote detection of chemicals. The developed method has an extremely large range of applications including, but not limited to, in biomedicine for in vivo imaging, diagnostics of cancerous cells, and blood analysis; in homeland security to remotely identify trace amounts of hazardous chemicals and explosives detection; and in environmental science and technology for environmental monitoring and nondestructive analysis. 
Selected Publications
Journals
  1. N. Pandya, G. Lui, F. A. Narducci, J. Chathanathil, S. A. Malinovskaya. (2020). "Creation of the maximum coherence via adiabatic passage in the four-wave mixing process of coherent anti-Stokes Raman scattering", Chem. Phys. Letters. 738 136763.  Download  (2801 kb PDF).
  2. Gengyuan Liu, Frank A. Narducci, Svetlana A. Malinovskaya. (2020). "Limits to remote molecular detection via coherent anti-Stokes Raman spectroscopy using a maximal coherence control technique", J. Mod. Optics. 67 21-25.  Download  (1377 kb PDF).
  3. Svetlana A. Malinovskaya, Elliot Pachniak. (2019). "Generation of entanglement in spin states of Rydberg atoms by chirped optical pulses", Adv. Materials Letters. 10 619-621.  Download  .
  4. Gengyuan Liu, Svetlana A. Malinovskaya. (2018). "Adiabatic passage control methods for ultracold alkali atoms and molecules using chirped laser pulses and optical frequency combs", Adv. Quant. Chem. 77 241-294.  Download  .
  5. Ignacio R. Sola, Bo Y. Chang, Svetlana A. Malinovskaya, Vladimir S. Malinovsky. (2018). "Quantum Control in Multilevel Systems", Advances in At. Mol. Opt. Phys. 67 151-256.  Download  (4951 kb PDF).
  6. Gengyuan Liu, Svetlana A. Malinovskaya. (2018). "Creation of ultracold molecules within the lifetime scale by direct implementation of an optical frequency comb", J. Mod. Opt.. 65 1309-1317.  Download  .
  7. Svetlana A. Malinovskaya. (2017). "Design of many-body spin states of Rydberg atoms excited to highly tunable magnetic sublevels", Opt. Letters. 42 314-317.  Download  .
  8. Svetlana A. Malinovskaya, Gengyuan Liu. (2016). "Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation", Chem. Phys. Letters. 664 1-4.  Download  .
  9. Gengyuan Liu, Svetlana A Malinovskaya. (2015). "Two-photon adiabatic passage in ultracold Rb interacting with a single nanosecond, chirped pulse", J. Phys. B: At. Mol. Opt. Phys. , 48 194001.  Download  .
  10. Praveen Kumar, Svetlana A. Malinovskaya, Vladimir S. Malinovsky. (2014). "Optimal control of multilevel quantum systems in the field-interaction representation", Phys. Rev. A , 90 033427.  Download  (802 kb PDF).
  11. Maxim Sukharev, Svetlana A. Malinovskaya. (2014). "Collective effects in subwavelength hybrid systems: a numerical analysis", Mol. Phys., 113 392.  Download  .
  12. G. Liu, V. Zakharov, T. Collins, P. Gould, S.A. Malinovskaya. (2014). "Optimal control of multilevel quantum systems in the field-interaction representation", Phys. Rev. A., 89 041803(R).  Download  (1202 kb PDF).
  13. E. Kusnetzova, G. Liu, S.A. Malinovskaya. (2014). "Adiabatic rapid passage two-photon excitation of a Rydberg atom", Phys. Scr., 160 014024.  Download  .
  14. Kumar P., Malinovskaya S.A., Sola I.R., Malinovsky V.S.. (Feb 2014). "Selective creation of maximum coherence in multi-level system", Molecular Physics, Taylor & Francis. 112 236-331.  Download  .
  15. S.A. Malinovskaya, S.L. Horton. (2013). "Impact of decoherence on internal state cooling using optical frequency combs", J. Opt. Soc. Am. B, 30 482.  Download  .
  16. M. Sukharev, S.A. Malinovskaya. (2012). "Stimulated Raman adiabatic passage as a route to achieving optical control in plasmonics", Phys. Rev. A, 86 043406.  Download  .
  17. T.A. Collins, S.A. Malinovskaya. (2013). "Robust Control in Ultracold Alkali Metals using a Single Linearly Chirped Pulse", J. Mod. Optics, 60 28.  Download  .
  18. V. Patel, S.A. Malinovskaya. (2012). "Realization of population inverstion under the nonadiabatic conditions induced by the coupling between vibrational modes", Int. J. Quant. Chem., 112 3739.  Download  .
  19. T. A. Collins, S. A. Malinovskaya. (2012). "Manipulation of ultracold rubidium atoms using a single linearly chirped laser pulse", Optics Lett., 37 2298.  Download  (313 kb PDF).
  20. Svetlana A. Malinovskaya, Tom Collins, Vishesha Patel. (2012). "Ultrafast manipulation of Raman transitions and prevention of decoherence using chirped pulses and optical frequency combs", Advanc. Quant. Chem., 64  Download  (3399 kb PDF).
  21. P. Kumar, S.A. Malinovskaya, V.S. Malinovsky. (2011). "Optimal control of population and coherence in three-level λ-systems", J. Phys. B: At. Mol. Opt. Phys., 44 154010 .  Download  (1011 kb PDF).
  22. P.E. Hawkins, S.A. Malinovskaya, V.S. Malinovsky. (2012). "Ultrafast geometric control of a single qubit using chirped pulses", Phys. Scr., 147 014013.  Download  (163 kb PDF).
  23. Vishesha Patel and Svetlana Malinovskaya. (2011). "Nonadiabatic effects induced by the coupling between vibrational modes via Raman fields", Phys. Rev. A, 83 013413.  Download  (1037 kb PDF).
  24. S. Malinovskaya, W. Shi. (2010). "Feshbach-to-ultracold molecular state Raman transitions via a femtosecond optical frequency comb", J. Mod. Opt. , 57 1871.  Download  (457 kb PDF).
  25. S. Malinovskaya, V. Patel, T. Collins. (2010). "Internal state cooling with a femtosecond optical frequency comb", Int. J. Quant. Chem. , 110 3080 .  Download  (410 kb PDF).
  26. W. Shi, S. Malinovskaya. (2010). "Implementation of a single femtosecond optical frequency comb for molecular cooling", Phys. Rev. A , 82 013407.  Download  (355 kb PDF).
  27. Praveen Kumar, Svetlana A. Malinovskaya. (2010). "Quantum dynamics manipulation using optimal control theory in the presence of laser field noise", J. Mod. Opt. , 57 1243.  Download  (292 kb PDF).
  28. Vishesha Patel, Vladimir Malinovsky, Svetlana Malinovskaya. (2010). "Effects of phase and coupling between the vibrational modes on selective excitation in CARS microscopy", Phys. Rev. A, 81 063404.  Download  (822 kb PDF).
  29. S.A. Malinovskaya. (2009). "Optimal Coherence via Adiabatic Following", Optics Comm., 282 3527.  Download  (393 kb PDF).
  30. B. Corn, S.A. Malinovskaya. (2009). "An ab initio analysis of charge redistribution upon isomerization of retinal in rhodopsin and bacteriorhodopsin", Int. J. Quant. Chem., 109 3131.  Download  (404 kb PDF).
  31. S.A. Malinovskaya. (2009). "Robust control by two chirped pulse trains in the presence of decoherence", J. Mod. Opt., 56 784.  Download  (771 kb PDF).
  32. Svetlana A. Malinovskaya. (2008). "Prevention of decoherence by two femtosecond chirped pulse trains", Optics Lett., 33 2245.  Download  (228 kb PDF).
  33. S.A. Malinovskaya, V.S. Malinovsky. (2007). "Chirped Pulse Adiabatic Control in CARS for Imaging Biological Structure and Dynamics", Optics Lett. , 32 707.  Download  (240 kb PDF).
  34. S.A. Malinovskaya. (2006). "Mode selective excitation using ultrafast chirped laser pulses", Phys. Rev. A. , 73 033416.  Download  (488 kb PDF).
  35. S. Malinovskaya, P. Bucksbaum, P. Berman. (2004). "Theory of selective excitation in Stimulated Raman Scattering", Phys. Rev. A , 69 013801.  Download  (70 kb PDF).
  36. S. Malinovskaya, P. Bucksbaum, P. Berman. (2004). "On the role of coupling in mode selective excitation using ultrafast pulse shaping in stimulated Raman spectroscopy", J. Chem. Phys. , 121 3434.  Download  (373 kb PDF).
  37. S. Malinovskaya, R. Cabrera-Trujillo, J.R. Sabin, E. Deumens and Y. Ohrn. (2002). "Dynamics of proton-acetylene collisions at 30 eV", J. Chem. Phys. , 117 1103.  Download  (382 kb PDF).
  38. Malinovskaya S.A., and Cederbaum L.S.. (2000). "Violation of electronic optical selection rules in X-ray emission by nuclear dynamics: time-dependent formulation", Phys. Rev. A , 61 42706.  Download  (215 kb PDF).
Reports
  1. Svetlana A. Malinovskaya. (2015). "Sabbatical Report",  Download  (7462 kb PDF).
Books
  1. Svetlana A. Malinovskaya, Irina Novikova, Edts.. (2015). From Atomic to Mesoscale: The Role of Quantum Coherehce in Systems of Various Complexities, World Scientific Publishing Co. PTE. LTD.
  2. S.A. Malinovskaya. (2005). "Observation and control of molecular motion using ultrafast laser pulses", Trends in Chemical Physics Research, Linke, A.N., Nova Science Publishers, Inc., New York. 257-280.
Book Chapters
  1. Svetlana A. Malinovskaya, Tom Collins, Vishesha Patel. (2012). "Ultrafast manipulation of Raman transitions and prevention of decoherence using chirped pulses and optical frequency combs", Advances in Quantum Chemistry, Elsevier. 64 211.  Download  .
Courses
  • PEP 111 Mechanics
  • PEP 112 Electricity and Magnetism
  • PEP 509 Intermediate Waves and Optics
  • PEP 538 Introduction to Mechanics
  • PEP 642 Mechanics
  • PEP 680 Quantum Optics
  • PEP 800 Special Topics in Physics (MS)
  • PEP 801 Special Topics in Physics (PhD)
  • PEP 777 Methods of Quantum Control