DREW ZAGIEBOYLO
G. EDWARD SUH
ANDREW C. MYERS

USING INFORMATION FLOW T0 DESIGN AN
ISA THAT CONTROLS TIMING CHANNELS

WE NEED A NEW
HW-SW CONTRACT (ISA) TO
CONTROL MICROARCHITECTURAL
TIMING CHANNELS

INTRODUCTION

MICROARCHITECTURE

» Unspecified CPU behavior + state

» Primarily affect performance
Valid Address Value

» Caches

?
» Branch Predictors PC__ Branch:

» Arithmetic Units, Prefetchers, Address Translators,
Fill buffers, Memory Arbiters, Pipeline State, etc.

INTRODUCTION

MICROARCHITECTURAL TIMING CHANNEL

» Essence of the Meltdown (’18) attack

Valid Address
sl = p@[sO]
pl = po[0O]

INTRODUCTION

MICROARCHITECTURAL TIMING CHANNEL

» Essence of the Meltdown (’18) attack

— Valid Address
sl = p@[sO]
pl = po[o]

INTRODUCTION

MICROARCHITECTURAL TIMING CHANNEL

» Essence of the Meltdown (’18) attack

Valid Address

sl = po[s@] —

po[0]

©
=
i1

INTRODUCTION 7

MICROARCHITECTURAL TIMING CHANNEL

» Essence of the Meltdown (’18) attack

Valid Address
sl = p@[sO]

po[O] <——

©
=
i1

SO == -
Cache HIT! @

INTRODUCTION 8

MICROARCHITECTURAL SIDE CHANNELS

Foreshadow
- E - ki
' S

Meltdown ('18)

RIDL ('19) Zombieload ('19)

INTRODUCTION

MITIGATING MICROARCHITECTURAL SIDE CHANNELS

INTRODUCTION

MITIGATING MICROARCHITECTURAL SIDE CHANNELS

» Microarchitectural side
channels bypass current
contracts

» Need a HW-SW co-design
mitigation mechanism

INTRODUCTION 11

THIS PAPER: INFORMATION FLOW CONTROL ISA

1. Sound and portable contract
for secure SW design

e Extension of RISC-V
e Timing-Sensitive
Noninterference

2. Guide to HW designers

e Microarchitectural
Noninterference
e No implementation details

3. Practical ISA Features

e Constrained Downgrading
e Control Transfer Primitives

ISA DESIGN

12

DYNAMIC IFC CONTRACT

» Software controls IFC labels
» Labels are mutable state

» SW must explicitly change
architectural labels

» Hardware enforces policies at
runtime

ISA DESIGN

13

ENFORCING NONINTERFERENCE

» Change existing semantics of RISC-V

v
Lipc) U L(x2) LU L(x3) E L(x1)

_— X1 := X2 + X3

ISA DESIGN

14

ENFORCING NONINTERFERENCE

» Change existing semantics of RISC-V

v/
LD ULG2) CL(pe) _if (x1 == s2)

then PC := LOC

beg x1, x2, LOC

SIMILAR RESTRICTIONS ON OTHER INSTRUCTIONS

HARDWARE REQUIREMENTS

15

TIMING SENSITIVITY

» How does software control timing?

» State that influences timing C t

» Language-based Timing Mitigation [Zhang et al. '12]

HARDWARE REQUIREMENTS

16

TIMING SENSITIVITY

HARDWARE REQUIREMENTS

17

TIMING SENSITIVITY

HARDWARE REQUIREMENTS

18

TIMING SENSITIVITY

HARDWARE REQUIREMENTS

19

TIMING SENSITIVITY

o T

)
[

e

i

pl = po[0] «—

HARDWARE REQUIREMENTS

TIMING SENSITIVITY

(SECRETS CANNOT INFLUENCE TIMING)

D EE— LBL ADDR
sl = pO[sO]
p1 = po[e] ox o

HARDWARE REQUIREMENTS

TIMING SENSITIVITY

(SECRETS CANNOT INFLUENCE TIMING)

CPU Cache

LBL ADDR
pO[sO] < ——

sl

=
=
i1

HARDWARE REQUIREMENTS 22

TIMING SENSITIVITY

(SECRETS CANNOT INFLUENCE TIMING)

po[so]

O
=
i1

VC, G, . (Cr = G A(C — C))

= (Cilpl = GluD) A (Cile] = GylzD)

VCL G (G = YA = ()

= (Cilul = GluD) A (Gl =, Glz])

ISA DESIGN 25

IFC SECURITY GUARANTEES
Security Requires Compiler
Guarantee Changes
TS-
Noninterference ’ ’

Legacy Isolation \ N

DOWNGRADING

26

CONSTRAINING DOWNGRADING

» Downgrades violate noninterference
4 '
» Nonmalleable Information Flow [Cecchetti et al. '17]

» Robust Declassification +
Transparent Endorsement

DOWNGRADING

27

CONSTRAINING DOWNGRADING

» Key Idea: Compromised data may not be downgraded

» Compromised = More than trustworthy

COMPROMISED

DOWNGRADING

28

CONSTRAINING DOWNGRADING

» Compromised = More
than trustworthy

» Novel contribution:

» More general re-label
restrictions in
dynamic label setting

» Must keep pc
uncompromised

ISA DESIGN 29

CONTROL TRANSFER

» Required for sharing HW
across security domains

» System Calls and other HW
primitives provide support

» Protection Rings are an

Device drivers

S instance of a Lattice

» Call Gates

» Generalized control
transfer for a lattice policy

ISA DESIGN 30

CALL GATES
» Upcalls

» Establish return
conditions a priori

» Primitive for black-box
timing mitigation
[Zhang et al. "12]

» Primitive for
sandboxing

ISA DESIGN 31

CALL GATES

» Downcalls

» Analogous to system
calls

» Pre-register entry
points

WE PROVIDE OTHER CONSTRAINTS ON CALL GATES
T0 PROVE NONMALLEABILITY

CONCLUSION

32

MORE TECHNICAL DETAILS IN PAPER / TECHNICAL REPORT

» Attacker model, low equivalence relation,
more explicit restrictions and full proofs of
Timing-Sensitive Noninterference
TS-Nonmalleable Information Flow

» Discussion on Exception Handling + Asynchrony

» Example Programs + Call Gate Usage

CONCLUSION 33

FUTURE WORK

Bl
’_H_"‘_“M ". s

T i T- ‘.:;--

Jgkx ’m it

ﬂll

» Model multicore and
concurrency ISA operations

module Mux module Mux

el » How do we verify that

input {D2} in2 input in2
input {L sel input sel

output {Domain sel} out output out C L
satisties
. ou

reg {Domain sel} out reg out

always begin

T [WSecverilog | I gnmp " Microarchitectural NI?

else else
out = in2 out = in2
end A end
endmodule | endmodule

always begin

» Existing tools not

expressive enough
(SecVerilog ‘12, '19)

CONCLUSION

34

CONCLUSION

» General and portable contract for secure SW design

» Microarchitecural NI Security Condition
Guides Secure HW Development

» Proof of Timing-Sensitive Noninterference and
Timing-Sensitive Nonmalleability

» Practical primitives for downgrading and control transfer
» Nonmalleability w/ Dynamic Labels

» Call Gates provide Generalized Control Transfer

THANK YOU!

