
USING INFORMATION FLOW TO DESIGN AN 
ISA THAT CONTROLS TIMING CHANNELS

DREW ZAGIEBOYLO 
G. EDWARD SUH 
ANDREW C. MYERS

�1



WE NEED A NEW  
HW-SW CONTRACT (ISA) TO 

CONTROL MICROARCHITECTURAL  
TIMING CHANNELS



INTRODUCTION

MICROARCHITECTURE
▸ Unspecified CPU behavior + state 

▸ Primarily affect performance 

▸ Caches  
 
 

▸ Branch Predictors  
 

▸ Arithmetic Units, Prefetchers, Address Translators, 
Fill buffers, Memory Arbiters,  Pipeline State, etc.

Valid Address Value
1 0xffff 0x1234
0 0xabcd 0xaaaa
1 0x10af 0xde12

PC Branch?
0x1234 Y
0xa3a4 N
0xdddd Y



INTRODUCTION

MICROARCHITECTURAL TIMING CHANNEL

s1	=	p0[s0]	
p1	=	p0[0]	

CPU	Cache

�4

Valid Address
0 0xffff
0 0xabcd
0 0x10af

▸ Essence of the Meltdown (’18) attack



INTRODUCTION

MICROARCHITECTURAL TIMING CHANNEL

s1	=	p0[s0]	
p1	=	p0[0]	

CPU	Cache

�5

Valid Address
0 0xffff
0 0xabcd
0 0x10af

▸ Essence of the Meltdown (’18) attack



INTRODUCTION

MICROARCHITECTURAL TIMING CHANNEL

s1	=	p0[s0]	
p1	=	p0[0]	

CPU	Cache

�6

Valid Address
0 0xffff
1 p0	+	s0		
0 0x10af

▸ Essence of the Meltdown (’18) attack



INTRODUCTION

MICROARCHITECTURAL TIMING CHANNEL

s1	=	p0[s0]	
p1	=	p0[0]	

CPU	Cache

�7

Valid Address
0 0xffff
1 p0	+	s0		
0 0x10af

▸ Essence of the Meltdown (’18) attack

s0	==	0 
Cache	HIT!	😈



INTRODUCTION

MICROARCHITECTURAL SIDE CHANNELS

�8

Spectre (’18) 

Meltdown (’18) 

Foreshadow 
(’18) 

RIDL (’19)  Zombieload (’19)



INTRODUCTION

MITIGATING MICROARCHITECTURAL SIDE CHANNELS

HARDWARE

OPERATING SYSTEM

PROGRAMMING 
LANGUAGES

APPLICATION CODE

😈



INTRODUCTION

MITIGATING MICROARCHITECTURAL SIDE CHANNELS

▸ Microarchitectural side 
channels bypass current 
contracts  

▸ Need a HW-SW co-design 
mitigation mechanism

HARDWARE

OPERATING SYSTEM

PROGRAMMING  
LANGUAGES

APPLICATION CODE

😈



INTRODUCTION

THIS PAPER: INFORMATION FLOW CONTROL ISA
1. Sound and portable contract 

for secure SW design 

Extension	of	RISC-V	
Timing-Sensitive	
Noninterference	

2. Guide to HW designers 

Microarchitectural	
Noninterference	
No	implementation	details	

3. Practical ISA Features 

Constrained	Downgrading	
Control	Transfer	Primitives

�11

HARDWARE

OPERATING SYSTEM

PROGRAMMING  
LANGUAGES

APPLICATION CODE

⊑



ISA DESIGN

DYNAMIC IFC CONTRACT

▸ Software controls IFC labels 

▸ Labels are mutable state 

▸ SW must explicitly change 
architectural labels 

▸ Hardware enforces policies at 
runtime

�12

⊑

FLOATING LABELS



ISA DESIGN

ENFORCING NONINTERFERENCE

add	x1,	x2,	x3

▸ Change existing semantics of RISC-V

NO-OP

X1	:=	X2	+	X3
L(pc) ⊔ L(x2) ⊔ L(x3) ⊑ L(x1)

L(pc) ⊔ L(x2) ⊔ L(x3) ⋢ L(x1)

�13



ISA DESIGN

ENFORCING NONINTERFERENCE

beq	x1,	x2,	LOC

▸ Change existing semantics of RISC-V

NO-OP

if	(x1	==	s2)		
then	PC	:=	LOC

L(x1) ⊔ L(x2) ⊑ L(pc)

L(x1) ⊔ L(x2) ⋢ L(pc)

SIMILAR RESTRICTIONS ON OTHER INSTRUCTIONS

�14



HARDWARE REQUIREMENTS

TIMING SENSITIVITY

▸ How does software control timing? 

▸ State that influences timing ⊑ t 

▸ Language-based Timing Mitigation [Zhang et al. ’12]

t

�15



HARDWARE REQUIREMENTS

TIMING SENSITIVITY

t

s1	=	p0[s0]	
p1	=	p0[0]	

CPU	Cache

LBL ADDR

X ??

X ??

X ??

(SECRETS CAN INFLUENCE TIMING)

�16



HARDWARE REQUIREMENTS

TIMING SENSITIVITY

t

s1	=	p0[s0]	
p1	=	p0[0]	

CPU	Cache

LBL ADDR

X ??

X ??

X ??

(SECRETS CAN INFLUENCE TIMING)

�17



s1	=	p0[s0]	
p1	=	p0[0]	

HARDWARE REQUIREMENTS

TIMING SENSITIVITY

t

CPU	Cache

LBL ADDR

SEC p0	+	s0		

X ??

X ??

(SECRETS CAN INFLUENCE TIMING)

�18



HARDWARE REQUIREMENTS

TIMING SENSITIVITY

t

CPU	Cache

(SECRETS CAN INFLUENCE TIMING)

s0	==	0 
Cache	HIT!	😈

LBL ADDR

SEC p0	+	s0		

X ??

X ??

�19

s1	=	p0[s0]	
p1	=	p0[0]	



HARDWARE REQUIREMENTS

TIMING SENSITIVITY

t

CPU	Cache

(SECRETS CANNOT INFLUENCE TIMING)

LBL ADDR

X ??

X ??

X ??

�20

s1	=	p0[s0]	
p1	=	p0[0]

PUBLIC



HARDWARE REQUIREMENTS

TIMING SENSITIVITY

t

CPU	Cache

(SECRETS CANNOT INFLUENCE TIMING)

LBL ADDR

SEC p0	+	s0		

X ??

X ??

�21

s1	=	p0[s0]	
p1	=	p0[0]

PUBLIC



HARDWARE REQUIREMENTS

TIMING SENSITIVITY

t

CPU	Cache

(SECRETS CANNOT INFLUENCE TIMING)

LBL ADDR

SEC p0	+	s0		

X ??

X ??

Can’t	use	Secret	Entries!	
Cache	Miss!	

�22

s1	=	p0[s0]	
p1	=	p0[0]

PUBLIC



HARDWARE REQUIREMENTS

MICROARCHITECTURAL NONINTERFERENCE
▸ Software controls data and timing labels 

▸ Hardware ensures timing and microarchitecture 
observe noninterference

MICROARCHITECTURAL 
STATE

INSTRUCTION DURATION

�23

∀C1, C2 . (C1 =L C2) ∧ (Ci → C′�i)

⟹ (C′�1[μ] =L C′�2[μ]) ∧ (C′�1[t] =L C′�2[t])



HARDWARE REQUIREMENTS

MICROARCHITECTURAL NONINTERFERENCE

�24

▸ Implementation independent 

▸ Allows many performance optimizations  
(e.g. speculation) 

▸ HW designer must prove implementation safe

▸ Software controls data and timing labels 

▸ Hardware ensures timing and microarchitecture 
observe noninterference

∀C1, C2 . (C1 =L C2) ∧ (Ci → C′�i)

⟹ (C′�1[μ] =L C′�2[μ]) ∧ (C′�1[t] =L C′�2[t])



ISA DESIGN

IFC SECURITY GUARANTEES

�25

Security 
Guarantee

Requires Static 
Enforcement

Requires Compiler 
Changes

TS-
Noninterference Y Y

TS-
Nonmalleability N Y

Legacy Isolation N N



DOWNGRADING

CONSTRAINING DOWNGRADING
▸ Downgrades violate noninterference 

▸ Declassification, Endorsement 

▸ Nonmalleable Information Flow [Cecchetti et al. ’17] 

▸ Robust Declassification +  
Transparent Endorsement

�26

co
nfi
de
nti
alit
y

integrity

(iA, cA)

pu
bli
c

se
cre
t

trusted

untrusted

⊑

iA

c A



DOWNGRADING

CONSTRAINING DOWNGRADING

▸ Key Idea: Compromised data may not be downgraded 

▸ Compromised = More secret than trustworthy  

co
nfi
de
nti
alit
y

integrity

(iA, cA)

pu
bli
c

se
cre
t

trusted

untrusted

⊑

iA

c A

�27

BOB’S 
SECRET IS 3



DOWNGRADING

CONSTRAINING DOWNGRADING

▸ Compromised = More 
secret than trustworthy 

▸ Novel contribution:  

▸ More general re-label 
restrictions in  
dynamic label setting 

▸ Must keep pc 
uncompromised

�28

co
nfi
de
nti
alit
y

integrity

(iA, cA)

pu
bli
c

se
cre
t

trusted

untrusted

⊑

iA

c A



ISA DESIGN

CONTROL TRANSFER

�29

▸ Required for sharing HW 
across security domains 

▸ System Calls and other HW 
primitives provide support 

▸ Protection Rings are an 
instance of a Lattice 

▸ Call Gates 

▸ Generalized control 
transfer for a lattice policy



ISA DESIGN

CALL GATES
▸ Upcalls 

▸ Establish return 
conditions a priori 

▸ Primitive for black-box 
timing mitigation 
[Zhang et al. ’12] 

▸ Primitive for 
sandboxing

�30

co
nfi
de
nti
alit
y

integrity

(iA, cA)

pu
bli
c

se
cre
t

trusted

untrusted

⊑

iA

c A



ISA DESIGN

CALL GATES
▸ Downcalls 

▸ Analogous to system 
calls 

▸ Pre-register entry 
points

�31

co
nfi
de
nti
alit
y

integrity

(iA, cA)

pu
bli
c

se
cre
t

trusted

untrusted

⊑

iA

c A

WE PROVIDE OTHER CONSTRAINTS ON CALL GATES  
TO PROVE NONMALLEABILITY



CONCLUSION

MORE TECHNICAL DETAILS IN PAPER / TECHNICAL REPORT

▸ Attacker model, low equivalence relation,  
more explicit restrictions and full proofs of  
Timing-Sensitive Noninterference 
TS-Nonmalleable Information Flow 

▸ Discussion on Exception Handling + Asynchrony 

▸ Example Programs + Call Gate Usage

�32



CONCLUSION

FUTURE WORK

▸ Model multicore and 
concurrency ISA operations

�33

▸ How do we verify that 
HW satisfies 
Microarchitectural NI? 

▸ Existing tools not 
expressive enough 
(SecVerilog ’12, ’19)



CONCLUSION

CONCLUSION

‣ General and portable contract for secure SW design 

‣ Microarchitecural NI Security Condition  
Guides Secure HW Development 

‣ Proof of Timing-Sensitive Noninterference and 
Timing-Sensitive Nonmalleability 

‣ Practical primitives for downgrading and control transfer 

‣ Nonmalleability w/ Dynamic Labels 

‣ Call Gates provide Generalized Control Transfer

�34



THANK YOU!

�35


