Temporal safety for stack allocated memory on capability
machines

Stelios Tsampas Dominique Devriese Frank Piessens

stelios.tsampas@cs.kuleuven.be
imec-DistriNet, KU Leuven

IEEE Computer Security Foundations Symposium, June 27, 2019

DistriN=t

stelios.tsampas@cs.kuleuven.be

Capability machine a secure architecture
(Data/code) capability memory access token
Object capability representation of sandboxes
CHERI' a prominent capability machine

'R. N. Watson, Woodruff, Neumann, S. W. Moore, Anderson, Chisnall, Dave, Davis, Gudka,
Laurie, et al., “CHERI: A hybrid capability-system architecture for scalable software
compartmentalization”.

2/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

3/34

type

(o]

permissions

length

offset

base

/ |

Virtual space

Stelios Tsampas, Dominique De\

Temporal safety for stack allocated memory on capability machines

DistriN=t

Unforgeability

|

General Capability
purpose registers
registers

Memory

v
4/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N =t

Unforgeability

General
purpose
registers

5/34 Stelios Tsampas, Dominique De\

Memory

Store capability
register

Capability
registers

Temporal safety for stack allocated memory on capability machines

DistriN=t

Unforgeability

Load capability
register

General Capability
purpose registers
registers

Memory

6/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines

DistriN=t

Unforgeability

Store word

c3
c8
cl6
General Capability
purpose registers
registers

Memory

v
7/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N =t

Unforgeability

Load capability
register

Tag := False

General Capability
purpose registers
registers

Memory

v
8 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N =t

Monotonicity

Capability
registers

.-

memory

v
9/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N =t

Monotonicity

e 7 -
Create new
capability based
stisting one {
- cl
CSetBounds 3
c2 3
Capability
registers

memory

v
10/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Stl’l N =t

Monotonicity

Create new
capability based
on existing one

CSetBounds

Capability
registers

memory

v
11/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Stl’l N =t

Monotonicity

e 7 -
Create new
capability based
stisting one { J
- cl i
CSetBounds 3
c2
Capability
registers

memory

v
12/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Stl’l N =t

Monotonicity

Create new
\ capability based

\\\ﬂ\on existing one / 0
. cl
CSetBounds |
c2
_4 *
Capability
registers

memory

v
13/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N =t

The g bit

csc c2 cl
cl '
c2 .
Capability
registers

memory

v
14 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Stl’l N =t

The g bit

csc ¢2 c1 -

1 -
c2 .
Capability
registers
{

memory

v
15/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N =t

The g bit

csc c2 cl
cl '
c2 .
Capability
registers

memory

v
16 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Stl’l N =t

The g bit

csc c2 cl x

Capability
registers

memory

v
17 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Stl’l N =t

The g bit

csc ¢l c2
cl '
c2 .
Capability
registers

memory

v
18/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Stl’l N =t

The g bit

csc ¢l c2 -

1 -
c2 .
Capability
registers
{

memory

v
19 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N =t

The g bit

csc ¢2 c1 -

1 -
c2 .
Capability
registers
{

memory

v
20 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N =t

The g bit

csc ¢2 c1 -

1 -
c2 .
Capability
registers
{

memory

v
21/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N =t

CHERI does not allow local capabilities passed around sandboxes.

/] fetch and sort are exported from a different sandbox
void fetch(int xr);
void sort(int =r);

void main(void) {
int q[100]; // compiled as a local capability
fetch(q); // not allowed
sort(q); // not allowed

}

The above code will cause a runtime exception.

DistriN=t

22 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines

What if the restriction was lifted...
void ally (intxx p) {

int x;
xp = &x; // Unsafe assignment
}
void main() {
int xq;
ally(&q); // g points at unused stack memory
victim (q) ;
}

void victim (int*x q) {
xq = 0; // May overwrite own return address

}

2Song, Lettner, Rajasekaran, Na, Volckaert, Larsen, and Franz, “SoK: Sanitizing for Security”.
SCVE-2015-1730. CVE-2017-7756.

v
23 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

What if the restriction was lifted...
void ally (intxx p) {

int x;
xp = &x; // Unsafe assignment
}
void main() {
int xq;
ally(&q); // g points at unused stack memory
victim (q) ;
}

void victim (int*x q) {
xq = 0; // May overwrite own return address

}

e Attack in a sandboxed environment

2Song, Lettner, Rajasekaran, Na, Volckaert, Larsen, and Franz, “SoK: Sanitizing for Security”.
SCVE-2015-1730. CVE-2017-7756.

v
23 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

What if the restriction was lifted...
void ally (intsx p) {

int x;
«xp = &x; // Unsafe assignment
1
void main() {
int xq;
ally (&q); // q points at unused stack memory
victim (q) ;
1

void victim (int*x q) {
xq = 0; // May overwrite own return address

}

e Attack in a sandboxed environment

e _..Also a bug in a single-sandbox application®3

2Known as stack-based use-after-free or use-after-return (Song, Lettner, Rajasekaran, Na,
Volckaert, Larsen, and Franz, “SoK: Sanitizing for Security”)
SCVE-2015-1730. CVE-2017-7758.

23 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

24 /34

Frame #1

Frame #2

Frame #3

Frame #4

Stelios Tsampas, Dominique De\

The number of active stack frames
defines a hierarchy of various
lifetimes

The more recent the frame, the less
its variables will live

2" stack frames require n bits to
accurately represent the lifetimes of
their objects

The 1-bit information flow model is
not adequate

Temporal safety for stack allocated memory on capability machines DIStI‘I N :t

Contributions

What? Reserve additional bits for a hierarchy of localities

v
25 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Strl N :t

Contributions

What? Reserve additional bits for a hierarchy of localities
How? Expand policy for multiple levels of locality

25 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

Contributions

What? Reserve additional bits for a hierarchy of localities
How? Expand policy for multiple levels of locality
Really? Formalization and proof of correctness in Agda

25 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

Contributions

What? Reserve additional bits for a hierarchy of localities
How? Expand policy for multiple levels of locality
Really? Formalization and proof of correctness in Agda
So? Propose an implementation in CHERI

25 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

e Capabilities have an extra n-bit field to represent locality

® The higher the value, the more ephemeral the region
® | ocal/global no longer a meaningful distinction

e Storing a capability in a region requires:
® Original boundary checks
® source.locality < destination.locality

e Sandbox capability restriction is now lifted

26 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

Formal methodology

ImpR High level language with local variables and functions

Ideal Idealized dependently typed machine that runs ImpR “as intended”
Cap Unmodified capability semantics

Cap+ Extended capability semantics

27 /134 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

ImpR | Ideal ImpR | Cap

Pointer values are always in bounds A capability may point to an out of

Pointers in the store may only point bounds address
to current or parent stack frame

¢ Assignment is restricted by the
definition of sStore

® Memory is simply an array of values
e No restrictions on assignments

Capabilities cannot be used as
arguments

Local pointers can be used as
arguments

28 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStI‘I N :t

ImpR | Ideal ImpR | Cap

¢ Pointer values are always in bounds A capability may point to an out of

¢ Pointers in the store may only point bounds address
to current or parent stack frame

¢ Assignment is restricted by the
definition of store

® Memory is simply an array of values
e No restrictions on assignments

Capabilities cannot be used as
arguments

¢ Local pointers can be used as
arguments

We show that the capability semantics cannot simulate the ideal ones.

28 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStI‘I N :t

29 /34

ImpR | Ideal

Pointer values are always in bounds

Pointers in the Sstore may only
point to the current or a parent stack
frame

Assignment is restricted by the
definition of Store

Local pointers can be used as
arguments

Stelios Tsampas, Dominique De\

Temporal safety for stack allocated memory on capability machines

ImpR | Cap+
A capability consists of an address
and a locality counter
Memory is still just an array of values

Assigning a capability value c to the
location referenced by cap/ty d
requires c.locality <
d.locality

Local capabilities can be used as
arguments

DistriN=t

ImpR | Ideal

Pointer values are always in bounds

Pointers in the Sstore may only
point to the current or a parent stack
frame

Assignment is restricted by the
definition of store

Local pointers can be used as
arguments

ImpR | Cap+

A capability consists of an address
and a locality counter

Memory is still just an array of values

Assigning a capability value c to the
location referenced by cap/ty d
requires c.locality <
d.locality

Local capabilities can be used as
arguments

We show that the extended capability semantics can simulate the ideal ones and

prove that the identity compiler is fully abstract.

29 /34

Stelios Tsampas, Dominique De\

Temporal safety for stack allocated memory on capability machines

DistriN=t

Proof

v
30 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Stl’l N =t

https://github.com/solidsnk/cap-extensions.git

Proof

It's inductive

v
30 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

https://github.com/solidsnk/cap-extensions.git

Proof

It's inductive

— Available online 4

4https ://github.com/solidsnk/cap-extensions.git

30 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

https://github.com/solidsnk/cap-extensions.git

// fetch and sort are exported from a different sandbox
void fetch(int xr);
void sort(int xr);

void main(void) {
int g[100]; // compiled as a local capability
fetch(q); // allowed
sort(q); // allowed

}

DistriN=t

31/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines

// fetch and sort are exported from a different sandbox
void fetch(int xr);
void sort(int x*r);

void main(void) {
int g[100]; // compiled as a local capability
fetch(q); // allowed
sort(q); // allowed

}

The above code will not cause a runtime exception.

DistriN=t

31/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines

void ally (intxx p) {
int x; // &.locality = 1
xp = &; // &x.locality > q.locality
}
void main() {
int xq; // q.locality = 0
ally (&q);
victim (q) ;
1
void victim (int*x q) {
xq = 0; // May overwrite own return address

}

32/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines

DistriN=t

void ally (intxx p) {
int x; // &.locality = 1
xp = &; // &x.locality > q.locality
}
void main() {
int xq; // q.locality = 0
ally (&q);
victim (q) ;
}
void victim (int*x q) {
xq = 0; // May overwrite own return address

}

This will cause an exception at the unsafe assignment

v
32 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t

Notes on CHERI implementation

Use reserved bits for locality counter

Adequate (est.) number in 256-bit version

Locality bottoms out if bits are exhausted

New compression schemes® allow for 128-bit implementation
e We require automatic cleanup of stack on sandbox entry

® Few necessary adjustments in stack allocator

SWoodruff, Joannou, Xia, Davis, Neumann, R. N. M. Watson, S. Moore, Fox, Norton, Chisnall,
and Fox, “CHERI Concentrate: Practical Compressed Capabilities”.

33 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStI‘I N :t

Thank you :-)

v
34 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines D | Stn N =t

