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Capability machine a secure architecture
(Data/code) capability memory access token
Object capability representation of sandboxes
CHERI' a prominent capability machine

'R. N. Watson, Woodruff, Neumann, S. W. Moore, Anderson, Chisnall, Dave, Davis, Gudka,
Laurie, et al., “CHERI: A hybrid capability-system architecture for scalable software
compartmentalization”.
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CHERI does not allow local capabilities passed around sandboxes.

/] fetch and sort are exported from a different sandbox
void fetch(int xr);
void sort(int =r);

void main(void) {
int q[100]; // compiled as a local capability
fetch(q); // not allowed
sort(q); // not allowed

}

The above code will cause a runtime exception.

DistriN=t
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What if the restriction was lifted...
void ally (intxx p) {

int x;
xp = &x; // Unsafe assignment
}
void main() {
int xq;
ally(&q); // g points at unused stack memory
victim (q) ;
}

void victim (int*x q) {
xq = 0; // May overwrite own return address

}

2Song, Lettner, Rajasekaran, Na, Volckaert, Larsen, and Franz, “SoK: Sanitizing for Security”.
SCVE-2015-1730. CVE-2017-7756.
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What if the restriction was lifted...
void ally (intxx p) {

int x;
xp = &x; // Unsafe assignment
}
void main() {
int xq;
ally(&q); // g points at unused stack memory
victim (q) ;
}

void victim (int*x q) {
xq = 0; // May overwrite own return address

}

e Attack in a sandboxed environment

2Song, Lettner, Rajasekaran, Na, Volckaert, Larsen, and Franz, “SoK: Sanitizing for Security”.
SCVE-2015-1730. CVE-2017-7756.
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What if the restriction was lifted...
void ally (intsx p) {

int x;
«xp = &x; // Unsafe assignment
1
void main() {
int xq;
ally (&q); // q points at unused stack memory
victim (q) ;
1

void victim (int*x q) {
xq = 0; // May overwrite own return address

}

e Attack in a sandboxed environment

e _..Also a bug in a single-sandbox application®3

2Known as stack-based use-after-free or use-after-return (Song, Lettner, Rajasekaran, Na,
Volckaert, Larsen, and Franz, “SoK: Sanitizing for Security”)
SCVE-2015-1730. CVE-2017-7758.
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Frame #1

Frame #2

Frame #3

Frame #4
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The number of active stack frames
defines a hierarchy of various
lifetimes

The more recent the frame, the less
its variables will live

2" stack frames require n bits to
accurately represent the lifetimes of
their objects

The 1-bit information flow model is
not adequate
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Contributions

What? Reserve additional bits for a hierarchy of localities
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Contributions

What? Reserve additional bits for a hierarchy of localities
How? Expand policy for multiple levels of locality
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Contributions

What? Reserve additional bits for a hierarchy of localities
How? Expand policy for multiple levels of locality
Really? Formalization and proof of correctness in Agda
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Contributions

What? Reserve additional bits for a hierarchy of localities
How? Expand policy for multiple levels of locality
Really? Formalization and proof of correctness in Agda
So? Propose an implementation in CHERI
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e Capabilities have an extra n-bit field to represent locality

® The higher the value, the more ephemeral the region
® | ocal/global no longer a meaningful distinction

e Storing a capability in a region requires:
® Original boundary checks
® source.locality < destination.locality

e Sandbox capability restriction is now lifted
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Formal methodology

ImpR High level language with local variables and functions

Ideal Idealized dependently typed machine that runs ImpR “as intended”
Cap Unmodified capability semantics

Cap+ Extended capability semantics

27 /134 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t



ImpR | Ideal ImpR | Cap

Pointer values are always in bounds A capability may point to an out of

Pointers in the store may only point bounds address
to current or parent stack frame

¢ Assignment is restricted by the
definition of sStore

® Memory is simply an array of values
e No restrictions on assignments

Capabilities cannot be used as
arguments

Local pointers can be used as
arguments
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ImpR | Ideal ImpR | Cap

¢ Pointer values are always in bounds A capability may point to an out of

¢ Pointers in the store may only point bounds address
to current or parent stack frame

¢ Assignment is restricted by the
definition of store

® Memory is simply an array of values
e No restrictions on assignments

Capabilities cannot be used as
arguments

¢ Local pointers can be used as
arguments

We show that the capability semantics cannot simulate the ideal ones.
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ImpR | Ideal

Pointer values are always in bounds

Pointers in the Sstore may only
point to the current or a parent stack
frame

Assignment is restricted by the
definition of Store

Local pointers can be used as
arguments
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ImpR | Cap+
A capability consists of an address
and a locality counter
Memory is still just an array of values

Assigning a capability value c to the
location referenced by cap/ty d
requires c.locality <
d.locality

Local capabilities can be used as
arguments

DistriN=t



ImpR | Ideal

Pointer values are always in bounds

Pointers in the Sstore may only
point to the current or a parent stack
frame

Assignment is restricted by the
definition of store

Local pointers can be used as
arguments

ImpR | Cap+

A capability consists of an address
and a locality counter

Memory is still just an array of values

Assigning a capability value c to the
location referenced by cap/ty d
requires c.locality <
d.locality

Local capabilities can be used as
arguments

We show that the extended capability semantics can simulate the ideal ones and

prove that the identity compiler is fully abstract.
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Proof
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https://github.com/solidsnk/cap-extensions.git

Proof

It's inductive
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https://github.com/solidsnk/cap-extensions.git

Proof

It's inductive

— Available online 4

4https ://github.com/solidsnk/cap-extensions.git
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https://github.com/solidsnk/cap-extensions.git

// fetch and sort are exported from a different sandbox
void fetch(int xr);
void sort(int xr);

void main(void) {
int g[100]; // compiled as a local capability
fetch(q); // allowed
sort(q); // allowed

}

DistriN=t

31/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines



// fetch and sort are exported from a different sandbox
void fetch(int xr);
void sort(int x*r);

void main(void) {
int g[100]; // compiled as a local capability
fetch(q); // allowed
sort(q); // allowed

}

The above code will not cause a runtime exception.

DistriN=t
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void ally (intxx p) {
int x; // &.locality = 1
xp = &; // &x.locality > q.locality
}
void main() {
int xq; // q.locality = 0
ally (&q);
victim (q) ;
1
void victim (int*x q) {
xq = 0; // May overwrite own return address

}

32/34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines

DistriN=t



void ally (intxx p) {
int x; // &.locality = 1
xp = &; // &x.locality > q.locality
}
void main() {
int xq; // q.locality = 0
ally (&q);
victim (q) ;
}
void victim (int*x q) {
xq = 0; // May overwrite own return address

}

This will cause an exception at the unsafe assignment

v
32 /34 Stelios Tsampas, Dominique De\ Temporal safety for stack allocated memory on capability machines DIStrI N :t



Notes on CHERI implementation

Use reserved bits for locality counter

Adequate (est.) number in 256-bit version

Locality bottoms out if bits are exhausted

New compression schemes® allow for 128-bit implementation
e We require automatic cleanup of stack on sandbox entry

® Few necessary adjustments in stack allocator

SWoodruff, Joannou, Xia, Davis, Neumann, R. N. M. Watson, S. Moore, Fox, Norton, Chisnall,
and Fox, “CHERI Concentrate: Practical Compressed Capabilities”.
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Thank you :-)
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