
EasyUC: Using EasyCrypt to
Mechanize Proofs of Universally

Composable Security

Ran Canetti1,2, Alley Stoughton1,
Mayank Varia1

1 Boston University 2 Tel Aviv University

32nd IEEE Computer Security Foundations Symposium
June 25-28, 2019, Hoboken, NJ, USA

Universally Composable Security
• Universally Composable (UC) Security (Canetti, …) is a

refinement of the real/ideal paradigm supporting modular
proof development

• In UC, a protocol interacts with
• an environment, which supplies protocol inputs and

consumes protocol outputs, and
• an adversary, which is given certain powers to observe or

corrupt the protocol
• The environment and adversary (may) communicate
• UC uses a coroutine style of message passing in which

control is transferred along with data

Universally Composable Security
• A protocol consists of some number of protocol parties
• An ideal protocol consists of an ideal functionality combined

with dummy parties transferring inputs/outputs to/from the
ideal functionality
• Specifies desired functionality, plus leakage to simulator

P1 P2 D1 D2

F

protocol ideal protocol

ideal
functionality

dummy
partiesparties

Universally Composable Security
• Because we always work with an ideal functionality and its

dummy parties as a unit, and we needed a neutral term for a
protocol or an ideal protocol, we settled on

P1 P2 D1 D2

F

protocol ideal protocol

Universally Composable Security
• Because we always work with an ideal functionality and its

dummy parties as a unit, and we needed a neutral term for a
protocol or an ideal protocol, we settled on:
• calling ideal protocols ideal functionalities, and
• calling protocols real functionalities

• Thus a functionality is either a real or ideal functionality

P1 P2 D1 D2

F

real functionality ideal functionality

Universal Composable Security
• A real functionality RF UC-emulates an ideal functionality IF

iff, there is an efficient, black box simulator Sim, such that, for
all efficient adversaries Adv, and for all efficient environments
Env, Env can’t tell if it is interacting with
• RF/Adv (the real game), or
• IF/Sim(Adv) (the ideal game)

• More precisely, the environment yields a boolean judgment,
and we want the absolute value of the difference between the
probabilities of the environment returning true in the real and
ideal games to be small

• This definition is the same when the second functionality is
also a real functionality

• UC-emulation is trivially transitive: the simulators compose

Universal Composable Security
• The UC Composition Theorem says that:

• if S UC-emulates R, and Q is a functionality using R,

then if we change Q to use S instead of R (this is the UC
composition operator), the result will UC-emulate Q

R

Q

S

Q

UC-emulates uses

Sequence of Games Approach
• In general, it takes some number of steps to connect real and

ideal games
• Each step establishes an upper bound on the ability of the

environment to discriminate between the two games
• The sum of these upper bounds is an upper bound on the

ability of the environment to discriminate between the real
and ideal games

• Steps may be proved by reductions, up-to bad reasoning,
code motion, …

b1 b2 b3

Proof Mechanization
• Several frameworks have been developed for mechanizing

cryptographic security proofs in the sequence of games
approach:
• CryptoVerif (Blanchet) is semi-automated, guided by hints
• FCF (Petcher & Morrisett) is embedded in Coq
• CryptHOL (Basin, Lochbihler & Sefidgar) is embedded in

Isabelle/HOL
• EasyCrypt (Barthe, Grégoire, Strub, …, Stoughton, …) is a

standalone proof assistant, with a fairly small and well-
studied TCB

• We’re using EasyCrypt partly because it directly handles
modules — including abstract ones like adversaries — with
their own local, private state

EasyCrypt’s Modules
• Modules consist of global variables and procedures
• Modules may be parameterized, e.g., by adversaries or

environments
• Procedures are written in a simple imperative language, with

while loops and random assignments (choosing values from
probability sub-distributions)

EasyCrypt’s Logics
• EasyCrypt has four logics:

• a Probabilistic Relational Hoare Logic (pRHL) for proving
relations between pairs of games

• a Probabilisitic Hoare logic (pHL) for proving probabilistic
facts about single games

• an ordinary Hoare logic (HL)
• an ambient higher-order logic for proving mathematical

facts and connecting judgements from the other logics

EasyCrypt’s Proofs and Theories
• Proofs are structured as sequences of lemmas
• Lemmas are proved using tactics, as in Coq
• EasyCrypt theories may be used to group definitions,

modules and lemmas together
• Theories may be specialized via cloning

UC in EasyCrypt
• We are in the early stages of researching how UC security

may be mechanized in EasyCrypt
• A major challenge is how to deal with UC’s coroutine style of

communication in EasyCrypt’s procedural programming
language

• Our approach is to give functionalities, the adversary and
parts of the environment addresses (lists of integers), and to
build abstractions that route messages to their destinations
• The empty list, [], is the root address of the environment

UC in EasyCrypt
• On top of the addressing system, we have a simple naming

scheme based on ports (α, i), where α is an address, and i is
an integer (a port index)
• ([], 0) is the environment’s default port
• Each of a functionality’s parties has some number of ports

• Messages can be
• “direct” — providing functionality inputs or reporting

functionality outputs; or
• “adversarial” — communication between environment and

adversary, or functionality and adversary

Functionalities in EasyCrypt
• We realize functionalities as modules

• The parties of a functionality live within a single module
• Functionalities may have sub-functionalities, with sub-

addresses
• A parent functionality can choose which messages from

the environment to forward to its sub-functionalities
• Modules in EasyCrypt may be parameterized, allowing the

UC composition operator to be realized as module
application

• Multiple instances of functionalities can be statically created
using EasyCrypt’s cloning mechanism

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

address of
functionality

address of
adversary

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

functionality learns
address of adversary

adversary
learns root
address of

environment

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

input guard
controls

environment’s
access to
adversary

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

Env may
send direct

messages to
Fun

procedure
calls

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

Env may
send

adversarial
messages to

Adv

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

Env may
send

adversarial
messages to
Adv, including

(β,1)

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

Fun may
send
direct

messages to
Env

procedure
returns

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

Fun may
send

adversarial
messages to

Adv

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

Adv may
send

adversarial
messages to

Fun

Interface Firewall

α β

Interface
{1}

([],0)
Env

([],0)

Fun Adv
02 1

β []

Adv may
send

adversarial
messages to

Env

Simulators

Simulator

real functionality
spoofing

EnvironmentIdeal Functionality

0

2

Adversary 1

β

β

[]

[]

Simulators

Simulator

real functionality
spoofing

EnvironmentIdeal Functionality

0

2

Adversary 1

β

β

[]

[]

Simulators

Simulator

real functionality
spoofing

EnvironmentIdeal Functionality

0

2

Adversary 1

β

β

[]

[]

Simulators

Simulator

real functionality
spoofing

EnvironmentIdeal Functionality

0

2

Adversary 1

β

β

[]

[]

Secure Message Communication

As a case study, we proved the security of secure message
communication in a UC style, via a one-time pad agreed by the
parties using Diffie-Hellman key exchange

Group key of Keys
(^^, id, inv, g)

Commutative Semi-group
exp of Exponents

(*)

Type text of plain
texts

k ^ q : key

inj proj (partial)

g ^ q determines all keys, uniquely
(k ^q)^r = k ^(q*r)

Secure Message Communication

As a case study, we proved the security of secure message
communication in a UC style, via a one-time pad agreed by the
parties using Diffie-Hellman key exchange

Group key of Keys
(^^, id, inv, g)

Commutative Semi-group
exp of Exponents

(*)

Type text of plain
texts

k ^ q : key

inj proj (partial)

g ^ q determines all keys, uniquely
(k ^q)^r = k ^(q*r)

Secure Message Communication

As a case study, we proved the security of secure message
communication in a UC style, via a one-time pad agreed by the
parties using Diffie-Hellman key exchange

Group key of Keys
(^^, id, inv, g)

Commutative Semi-group
exp of Exponents

(*)

Type text of plain
texts

k ^ q : key

inj proj (partial)

g ^ q determines all keys, uniquely
(k ^q)^r = k ^(q*r)

Secure Message Communication

As a case study, we proved the security of secure message
communication in a UC style, via a one-time pad agreed by the
parties using Diffie-Hellman key exchange

Group key of Keys
(^^, id, inv, g)

Commutative Semi-group
exp of Exponents

(*)

Type text of plain
texts

k ^ q : key

inj proj (partial)

g ^ q determines all keys, uniquely
(k ^q)^r = k ^(q*r)

Secure Message Communication

As a case study, we proved the security of secure message
communication in a UC style, via a one-time pad agreed by the
parties using Diffie-Hellman key exchange

Group key of Keys
(^^, id, inv, g)

Commutative Semi-group
exp of Exponents

(*)

Type text of plain
texts

k ^ q : key

inj proj (partial)

g ^ q determines all keys, uniquely
(k ^q)^r = k ^(q*r)

Secure Message Communication
• Two protocol parties: 1 and 2

• P1 wants to securely transmit plain text t to P2
• P1 and P2 use Diffie-Hellman key exchange to agree on a

key, k — (see next slide)
• P1 transmits e = inj t ^^ k to P2 — adversary observes

but can’t corrupt
• P2 gets decryption of e as proj (e ^^ inv k)

Diffie-Hellman Key Exchange
• P1 and P2 both have their own randomly generated secrets

q1, q2 : exp
• P1 sends g^q1 to P2, which sends g^q2 to P1 — adversary

observes these transmissions
• P1 then computes (g^q2)^q1 = g^(q2 *q1) = g^(q1*q2)

as the shared key, k
• P2 then computes (g^q1)^q2 = g^(q1*q2) as the shared

key, k

SMC Ideal Functionality

(β,3)pt1 pt2

α β

1 2 3
SMCIdeal

simulator’s
port

accepts
direct
 on 1

accepts
adversarial

 on 3

P1 P2

rest of
system

SMC Ideal Functionality

(β,3)pt1 pt2

α β

1 2 3
SMCIdeal

SMC Ideal Functionality

(β,3)pt1 pt2

α β

1 2 3
t, pt1, pt2

SMCIdeal

dirt, pt2

SMC Ideal Functionality

(β,3)pt1 pt2

α β

1 2 3
SMCIdeal

t, pt1, pt2

SMC Ideal Functionality

(β,3)pt1 pt2

α β

1 2 3
SMCIdeal

simulator
must work

not knowing
t

pt1, pt2 adv

t, pt1, pt2

SMC Ideal Functionality

(β,3)pt1 pt2

α β

1 2 3
SMCIdeal

adv

t, pt1, pt2

SMC Ideal Functionality

(β,3)pt1 pt2

α β

1 2 3
SMCIdeal

t, pt1, pt2

(β,3)pt1 pt2

SMC Ideal Functionality

α β

1 2 3
SMCIdeal

dirt, pt1

t, pt1, pt2

Ideal Forwarding Functionality

(β,1)pt1 pt2

α β

1
Forw

adversary’s
port for

forwarding
monitoring

accepts
direct
on 1

accepts
adversarial

on 1

Forwarding Functionality

(β,1)pt1 pt2

α β

1
Forw

Forwarding Functionality

(β,1)pt1 pt2

α β

1
Forw

v, pt1, pt2

dirv,pt2

Forwarding Functionality

(β,1)pt1 pt2

α β

1
Forw

advv, pt1, pt2

v, pt1, pt2

Forwarding Functionality

(β,1)pt1 pt2

α β

1
Forw

adv

v, pt1, pt2

Forwarding Functionality

(β,1)pt1 pt2

α β

1
Forw

dirv, pt1

v, pt1, pt2

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

simulator’s
port

accepts
direct
on 1/2

accepts
adversarial

on 3

P1 P2

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

dirpt2

pt1, pt2

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

pt1, pt2

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

pt1, pt2

advpt1, pt2

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

pt1, pt2

adv

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

k, pt1, pt2

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

k, pt1, pt2

dirpt1,k

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

k, pt1, pt2

dir

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

k, pt1, pt2

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

k, pt1, pt2

adv

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

k, pt1, pt2

adv

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

k, pt1, pt2

α β

1 2 3
KEIdeal

Key Exchange Ideal Functionality

(β,2)pt1 pt2

k, pt1, pt2

dirk

Key Exchange Real Functionality

(β,1)pt1 pt2

port of
adversary for

forwarding
monitoring

accepts
direct on 1/2

accepts
adversarial

on
α1/α2

3/4
internal

α β

1 2
KEReal

Forw
1

βα1 β
Forw
1

α23 4

P1

P2

SMC Real Functionality

(β,1)pt1 pt2

α β

1 2
SMCReal(KE)

Forw

1

βα1 β
KE

1 2

α23 4

P1

P2

accepts
direct on 1/2

accepts
adversarial

on
α1/α2

3/4
internal

Key Exchange Security

To prove the security of key exchange, we must formulate a
simulator, KESim, and connect the real and ideal games via a
sequence of intermediate games:

2 ∉ X

Interface
X

Env

AdvKEReal
α β

Interface
X

Env

KESim(Adv)KEIdeal
α β

Key Exchange Simulator

KESim

EnvKEIdeal

0

2

Adv 1

(α1,1)
(α2,1)

spoofs forwarders:

Key Exchange Sequence of Games
• Use EasyCrypt’s eager/lazy sampling to move choices of

random exponents to beginning of game
• Reduce to Decisional Diffie-Hellman (DDH) assumption

• Constructed DDH adversary parameterized by Env and
Adv

• Now the agreed upon key is g ^ q3, for a random q3
• Use eager/lazy sampling to delay generation of exponents
• Connect this hybrid game with ideal game

Adv

Instance of Composition Theorem

Interface
X

Env

SMCReal(KE)

Forw KE
α1 α2

α

Instance of Composition Theorem

Interface
X

Env

SMCReal(KE)

Forw KE

Adv
α1 α2

α

KEReal Adv

Instance Composition Theorem

Interface
X

Env

SMCReal(KE)

Forw KE

Adv
α1 α2

α

KEIdeal KESim(Adv)

Bridging Lemma for Composition Theorem

Interface
X

Env

SMCReal(KE)

Forw KE

Adv
α1 α2

α

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

KE wants
to return

to SMCReal

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

AdvStub puts
message in

mailbox shared
with KEStub

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

Bridging Lemma for Composition Theorem

Interface
Y

Interface
X

Env

SMCReal(KEStub)

Forw KEStub

AdvStub

CompEnv(Env)

AdvKE

α

α1 α2

α2

X ⊆ Y
1 ∈ Y

KEStub returns
contents of

shared mailbox

One-time Pad Step
• Next, we must define the SMC simulator SMCSim, and

connect
• SMCReal(KEIdeal)/Adv’
• SMCIdeal/SMCSim(Adv’)

where the input guard must exclude port index 3
• This is done using EasyCrypt’s random sampling tactic

• uses an isomorphism on the uniform distribution on
exponents involving the plain text to be communicated

• We then apply the above when Adv’ = KESim(Adv)

Overall Security Theorem
• Combining the instance of the composition theorem with the

one-time pad step yields the connection between
• SMCReal(KEReal)/Adv
• SMCIdeal/SMCSim(KESim(Adv))

where:
• the input guard excludes 2 (from KESim) and 3 (from
SMCSim)

• the security upper bound is the DDH one, where the
DDH adversary is applied to the composed environment

Lessons Learned
• SMC case study is complete, and validates our architecture

and approach
• But it was too much work to scale-up to more realistic

systems without some improvements to EasyCrypt and
supporting tools

Relational Invariants/Symbolic Evaluation
• Proofs use relational invariants allowing the related evolutions

of real and ideal games to be tracked
• Since the real and ideal worlds are structurally dissimilar, this

means doing a lot of symbolic evaluation, essentially running
code via tactics

• We have proposed and are implementing a way of
automating this

real

ideal

Realization of UC Composition Theorem
• In our case study, we proved an instance of the UC

Composition Theorem, via the definition of the composed
environment and bridging lemmas

• We are now generalizing this work, producing a generic
version of these definitions/proofs

• To obtain needed instances of the composition theorem, we’ll
then instantiate the generic definitions/proofs, and
automatically generate some additional bridging definitions
and proofs

Update from Paper

Dummy Adversary Lemma
• The same relational state may hold in two situations when the

adversary is called:
• when the adversary was called after the state was first

established; or
• when the adversary was invoked by the environment at

stage when the state already held
• See the paper for how we currently unify these two cases in

our proofs
• But we are working toward an improvement in which the user

can think they are working in the so-called dummy adversary
model — i.e., with an adversary that acts as instructed by the
environment

Expressing Functionalities
• Defining real and ideal functionalities and simulators involves

low-level message-routing code
• This boilerplate can be automatically generated, given

domain specific language (DSL) for expressing functionalities
and simulators

• DSL will be allow crypto theorists to more easily write and
understand functionalities and simulators

• DSL type-checking will catch errors like badly formed
messages, e.g., ones with bad source addresses

• Short term: translate DSL into existing EasyCrypt
• Longer term: integrate it into EasyCrypt

Conclusions
• The successful completion of our case study shows the

validity of our UC in EasyCrypt architecture and approach
• But extensions and improvements to EasyCrypt and

supporting tools will be needed for the approach to scale-up
to realistic systems

• The EasyCrypt code for our case study, and a link to the
extended (ePrint) version of our paper are available on
GitHub:

github.com/easyuc/EasyUC

