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Universally Composable Security
• Universally Composable (UC) Security (Canetti, …) is a 

refinement of the real/ideal paradigm supporting modular 
proof development 

• In UC, a protocol interacts with 
• an environment, which supplies protocol inputs and 

consumes protocol outputs, and 
• an adversary, which is given certain powers to observe or 

corrupt the protocol 
• The environment and adversary (may) communicate 
• UC uses a coroutine style of message passing in which 

control is transferred along with data



Universally Composable Security
• A protocol consists of some number of protocol parties 
• An ideal protocol consists of an ideal functionality combined 

with dummy parties transferring inputs/outputs to/from the 
ideal functionality 
• Specifies desired functionality, plus leakage to simulator
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Universally Composable Security
• Because we always work with an ideal functionality and its 

dummy parties as a unit, and we needed a neutral term for a 
protocol or an ideal protocol, we settled on
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Universally Composable Security
• Because we always work with an ideal functionality and its 

dummy parties as a unit, and we needed a neutral term for a 
protocol or an ideal protocol, we settled on: 
• calling ideal protocols ideal functionalities, and 
• calling protocols real functionalities 

• Thus a functionality is either a real or ideal functionality
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Universal Composable Security
• A real functionality RF UC-emulates an ideal functionality IF 

iff, there is an efficient, black box simulator Sim, such that, for 
all efficient adversaries Adv, and for all efficient environments 
Env, Env can’t tell if it is interacting with 
• RF/Adv (the real game), or 
• IF/Sim(Adv) (the ideal game) 

• More precisely, the environment yields a boolean judgment, 
and we want the absolute value of the difference between the 
probabilities of the environment returning true in the real and 
ideal games to be small 

• This definition is the same when the second functionality is 
also a real functionality 

• UC-emulation is trivially transitive: the simulators compose



Universal Composable Security
• The UC Composition Theorem says that: 

• if S UC-emulates R, and Q is a functionality using R, 

then if we change Q to use S instead of R (this is the UC 
composition operator), the result will UC-emulate Q
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Sequence of Games Approach
• In general, it takes some number of steps to connect real and 

ideal games 
• Each step establishes an upper bound on the ability of the 

environment to discriminate between the two games 
• The sum of these upper bounds is an upper bound on the 

ability of the environment to discriminate between the real 
and ideal games 

• Steps may be proved by reductions, up-to bad reasoning, 
code motion, …

b1 b2 b3



Proof Mechanization
• Several frameworks have been developed for mechanizing 

cryptographic security proofs in the sequence of games 
approach: 
• CryptoVerif (Blanchet) is semi-automated, guided by hints 
• FCF (Petcher & Morrisett) is embedded in Coq 
• CryptHOL (Basin, Lochbihler & Sefidgar) is embedded in 

Isabelle/HOL 
• EasyCrypt (Barthe, Grégoire, Strub, …, Stoughton, …) is a 

standalone proof assistant, with a fairly small and well-
studied TCB 

• We’re using EasyCrypt partly because it directly handles 
modules — including abstract ones like adversaries — with 
their own local, private state



EasyCrypt’s Modules
• Modules consist of global variables and procedures 
• Modules may be parameterized, e.g., by adversaries or 

environments 
• Procedures are written in a simple imperative language, with 

while loops and random assignments (choosing values from 
probability sub-distributions)



EasyCrypt’s Logics
• EasyCrypt has four logics: 

• a Probabilistic Relational Hoare Logic (pRHL) for proving 
relations between pairs of games 

• a Probabilisitic Hoare logic (pHL) for proving probabilistic 
facts about single games 

• an ordinary Hoare logic (HL) 
• an ambient higher-order logic for proving mathematical 

facts and connecting judgements from the other logics



EasyCrypt’s Proofs and Theories
• Proofs are structured as sequences of lemmas  
• Lemmas are proved using tactics, as in Coq 
• EasyCrypt theories may be used to group definitions, 

modules and lemmas together 
• Theories may be specialized via cloning



UC in EasyCrypt
• We are in the early stages of researching how UC security 

may be mechanized in EasyCrypt 
• A major challenge is how to deal with UC’s coroutine style of 

communication in EasyCrypt’s procedural programming 
language 

• Our approach is to give functionalities, the adversary and 
parts of the environment addresses (lists of integers), and to 
build abstractions that route messages to their destinations 
• The empty list, [], is the root address of the environment



UC in EasyCrypt
• On top of the addressing system, we have a simple naming 

scheme based on ports (α, i), where α is an address, and i is 
an integer (a port index) 
• ([], 0) is the environment’s default port 
• Each of a functionality’s parties has some number of ports 

• Messages can be 
• “direct” — providing functionality inputs or reporting 

functionality outputs; or 
• “adversarial” — communication between environment and 

adversary, or functionality and adversary



Functionalities in EasyCrypt
• We realize functionalities as modules 

• The parties of a functionality live within a single module 
• Functionalities may have sub-functionalities, with sub-

addresses 
• A parent functionality can choose which messages from 

the environment to forward to its sub-functionalities 
• Modules in EasyCrypt may be parameterized, allowing the 

UC composition operator to be realized as module 
application 

• Multiple instances of functionalities can be statically created 
using EasyCrypt’s cloning mechanism
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Secure Message Communication

As a case study, we proved the security of secure message 
communication in a UC style, via a one-time pad agreed by the 
parties using Diffie-Hellman key exchange
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Secure Message Communication

As a case study, we proved the security of secure message 
communication in a UC style, via a one-time pad agreed by the 
parties using Diffie-Hellman key exchange
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Secure Message Communication
• Two protocol parties: 1 and 2 

• P1 wants to securely transmit plain text t to P2 
• P1 and P2 use Diffie-Hellman key exchange to agree on a 

key, k — (see next slide) 
• P1 transmits e = inj t ^^ k to P2 — adversary observes 

but can’t corrupt 
• P2 gets decryption of e as proj (e ^^ inv k)



Diffie-Hellman Key Exchange
• P1 and P2 both have their own randomly generated secrets 

q1, q2 : exp 
• P1 sends g^q1 to P2, which sends g^q2 to P1 — adversary 

observes these transmissions 
• P1 then computes (g^q2)^q1 = g^(q2 *q1) = g^(q1*q2) 

as the shared key, k 
• P2 then computes (g^q1)^q2 = g^(q1*q2) as the shared 

key, k
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Ideal Forwarding Functionality
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Key Exchange Security

To prove the security of key exchange, we must formulate a 
simulator, KESim, and connect the real and ideal games via a 
sequence of intermediate games:
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Key Exchange Simulator
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Key Exchange Sequence of Games
• Use EasyCrypt’s eager/lazy sampling to move choices of 

random exponents to beginning of game 
• Reduce to Decisional Diffie-Hellman (DDH) assumption 

• Constructed DDH adversary parameterized by Env and 
Adv 

• Now the agreed upon key is g ^ q3, for a random q3 
• Use eager/lazy sampling to delay generation of exponents 
• Connect this hybrid game with ideal game
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One-time Pad Step
• Next, we must define the SMC simulator SMCSim, and 

connect 
• SMCReal(KEIdeal)/Adv’ 
• SMCIdeal/SMCSim(Adv’) 

where the input guard must exclude port index 3 
• This is done using EasyCrypt’s random sampling tactic 

• uses an isomorphism on the uniform distribution on 
exponents involving the plain text to be communicated 

• We then apply the above when Adv’ = KESim(Adv)



Overall Security Theorem
• Combining the instance of the composition theorem with the 

one-time pad step yields the connection between 
• SMCReal(KEReal)/Adv 
• SMCIdeal/SMCSim(KESim(Adv)) 

where: 
• the input guard excludes 2 (from KESim) and 3 (from 
SMCSim) 

• the security upper bound is the DDH one, where the 
DDH adversary is applied to the composed environment



Lessons Learned
• SMC case study is complete, and validates our architecture 

and approach 
• But it was too much work to scale-up to more realistic 

systems without some improvements to EasyCrypt and 
supporting tools



Relational Invariants/Symbolic Evaluation
• Proofs use relational invariants allowing the related evolutions 

of real and ideal games to be tracked 
• Since the real and ideal worlds are structurally dissimilar, this 

means doing a lot of symbolic evaluation, essentially running 
code via tactics 

• We have proposed and are implementing a way of 
automating this

real

ideal



Realization of UC Composition Theorem
• In our case study, we proved an instance of the UC 

Composition Theorem, via the definition of the composed 
environment and bridging lemmas 

• We are now generalizing this work, producing a generic 
version of these definitions/proofs 

• To obtain needed instances of the composition theorem, we’ll 
then instantiate the generic definitions/proofs, and 
automatically generate some additional bridging definitions 
and proofs

Update from Paper



Dummy Adversary Lemma
• The same relational state may hold in two situations when the 

adversary is called: 
• when the adversary was called after the state was first 

established; or 
• when the adversary was invoked by the environment at 

stage when the state already held 
• See the paper for how we currently unify these two cases in 

our proofs 
• But we are working toward an improvement in which the user 

can think they are working in the so-called dummy adversary 
model — i.e., with an adversary that acts as instructed by the 
environment



Expressing Functionalities
• Defining real and ideal functionalities and simulators involves 

low-level message-routing code 
• This boilerplate can be automatically generated, given 

domain specific language (DSL) for expressing functionalities 
and simulators  

• DSL will be allow crypto theorists to more easily write and 
understand functionalities and simulators 

• DSL type-checking will catch errors like badly formed 
messages, e.g., ones with bad source addresses 

• Short term: translate DSL into existing EasyCrypt 
• Longer term: integrate it into EasyCrypt



Conclusions
• The successful completion of our case study shows the 

validity of our UC in EasyCrypt architecture and approach 
• But extensions and improvements to EasyCrypt and 

supporting tools will be needed for the approach to scale-up 
to realistic systems 

• The EasyCrypt code for our case study, and a link to the 
extended (ePrint) version of our paper are available on 
GitHub: 

github.com/easyuc/EasyUC


