
Securing Cross-App Interactions in IoT Platforms

Musard Balliu, Massimo Merro and Michele PasquaB

32nd IEEE Computer Security Foundations Symposium (CSF) - Hoboken, USA
June 27, 2019

B michele.pasqua@univr.it

Introduction

M. Pasqua CSF 2019

Scenario

Platforms for IoT Apps

Physical devices Smart devices Digital services

Internet Internet

IoT apps platforms: IFTTT, Stringify, Microsoft Flow, etc

M. Pasqua CSF 20191 15

Scenario

Platforms for IoT Apps

Physical devices

Smart devices Digital services

Internet Internet

IoT apps platforms: IFTTT, Stringify, Microsoft Flow, etc

M. Pasqua CSF 20191 15

Scenario

Platforms for IoT Apps

Physical devices

Smart devices

Digital services

Internet Internet

IoT apps platforms: IFTTT, Stringify, Microsoft Flow, etc

M. Pasqua CSF 20191 15

Scenario

Platforms for IoT Apps

Physical devices Smart devices Digital services

Internet Internet

IoT apps platforms: IFTTT, Stringify, Microsoft Flow, etc

M. Pasqua CSF 20191 15

Scenario

Platforms for IoT Apps

Physical devices Smart devices Digital services

Internet Internet

IoT apps platforms: IFTTT, Stringify, Microsoft Flow, etc

M. Pasqua CSF 20191 15

Scenario

Platforms for IoT Apps

Physical devices Smart devices Digital services

Internet Internet

IoT apps platforms: IFTTT, Stringify, Microsoft Flow, etc

M. Pasqua CSF 20191 15

How it works

Trigger/action paradigm

App

20◦

App

Filter code before actions execution

Third-parties apps development (malicious apps)

M. Pasqua CSF 20192 15

How it works

Trigger/action paradigm

App

22◦

trigger action

App

Filter code before actions execution

Third-parties apps development (malicious apps)

M. Pasqua CSF 20192 15

How it works

Trigger/action paradigm

App

22◦

trigger action

AppApp

22◦

trigger action

App

trigger

action

Filter code before actions execution

Third-parties apps development (malicious apps)

M. Pasqua CSF 20192 15

How it works

Trigger/action paradigm

App

22◦

trigger action

AppApp

22◦

trigger action

App

trigger

action

Filter code before actions execution

Third-parties apps development (malicious apps)

M. Pasqua CSF 20192 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post
(friends) H H (friends)

new post
(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post
(friends) H H (friends)

new post
(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post
(friends) H H (friends)

new post
(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post
(friends) H H (friends)

new post
(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post
(friends) H H (friends)

new post
(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post

(friends) H H (friends)

new post
(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post

(friends) H H (friends)

new post
(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post

(friends) H H (friends)

new post

(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post
(friends) H H (friends)

new post
(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Vulnerabilities: Safety and Security

Safety: unintended cross-app interactions

�if the temperature is above 22◦ then open the window�

interaction!

�if I leave my work location then turn on the heater at home�

Security: con�dentiality violations (information �ows)

new post
(friends) H H (friends)

new post
(friends) H L (colleagues)

M. Pasqua CSF 20193 15

Goal: Securing IoT Apps

A formal framework for proving safety and security of IoT platforms

1 Formal model: formal language for IoT platforms
I process calculus approach

2 Semantic conditions: safety and security requirements de�nition
I bisimulation-based algebraic laws

3 Enforcement mechanisms: su�cient syntactic conditions
I safety: syntactic constraints for triggers and actions
I security: �ow-sensitive type system

Future enforcement mechanisms can be proven sound w.r.t. our semantic conditions

M. Pasqua CSF 20194 15

Goal: Securing IoT Apps

A formal framework for proving safety and security of IoT platforms

1 Formal model: formal language for IoT platforms
I process calculus approach

2 Semantic conditions: safety and security requirements de�nition
I bisimulation-based algebraic laws

3 Enforcement mechanisms: su�cient syntactic conditions
I safety: syntactic constraints for triggers and actions
I security: �ow-sensitive type system

Future enforcement mechanisms can be proven sound w.r.t. our semantic conditions

M. Pasqua CSF 20194 15

Goal: Securing IoT Apps

A formal framework for proving safety and security of IoT platforms

1 Formal model: formal language for IoT platforms
I process calculus approach

2 Semantic conditions: safety and security requirements de�nition
I bisimulation-based algebraic laws

3 Enforcement mechanisms: su�cient syntactic conditions
I safety: syntactic constraints for triggers and actions
I security: �ow-sensitive type system

Future enforcement mechanisms can be proven sound w.r.t. our semantic conditions

M. Pasqua CSF 20194 15

Goal: Securing IoT Apps

A formal framework for proving safety and security of IoT platforms

1 Formal model: formal language for IoT platforms
I process calculus approach

2 Semantic conditions: safety and security requirements de�nition
I bisimulation-based algebraic laws

3 Enforcement mechanisms: su�cient syntactic conditions
I safety: syntactic constraints for triggers and actions
I security: �ow-sensitive type system

Future enforcement mechanisms can be proven sound w.r.t. our semantic conditions

M. Pasqua CSF 20194 15

Goal: Securing IoT Apps

A formal framework for proving safety and security of IoT platforms

1 Formal model: formal language for IoT platforms
I process calculus approach

2 Semantic conditions: safety and security requirements de�nition
I bisimulation-based algebraic laws

3 Enforcement mechanisms: su�cient syntactic conditions
I safety: syntactic constraints for triggers and actions
I security: �ow-sensitive type system

Future enforcement mechanisms can be proven sound w.r.t. our semantic conditions

M. Pasqua CSF 20194 15

The Calculus

M. Pasqua CSF 2019

A Calculus for IoT Apps: Features (contd.)

Collection of apps belonging to the same user

M. Pasqua CSF 20195 15

A Calculus for IoT Apps: Features (contd.)

Collection of apps belonging to the same user

Discover[DclD on PldD] ‖ Alexa[DclA on PldA] ‖ CallDev[DclC on PldC] ‖ Spotify[DclS on PldS]

User

M. Pasqua CSF 20195 15

A Calculus for IoT Apps: Features (contd.)

Collection of apps belonging to the same user

Discover[DclD on PldD] ‖ Alexa[DclA on PldA] ‖ CallDev[DclC on PldC] ‖ Spotify[DclS on PldS]

User

M. Pasqua CSF 20195 15

A Calculus for IoT Apps: Features (contd.)

Physical and Logical resources are cloud services

M. Pasqua CSF 20196 15

A Calculus for IoT Apps: Features (contd.)

Physical and Logical resources are cloud services

MyApp[facebookRW ; tempR ; lightW on Pld]

M. Pasqua CSF 20196 15

A Calculus for IoT Apps: Features (contd.)

Physical and Logical resources are cloud services

MyApp[facebookRW ; tempR ; lightW on Pld]

M. Pasqua CSF 20196 15

A Calculus for IoT Apps: Features (contd.)

Physical and Logical resources are cloud services

MyApp[facebookRW ; tempR ; lightW on Pld]

M. Pasqua CSF 20196 15

A Calculus for IoT Apps: Features (contd.)

Cloud and local view of services

M. Pasqua CSF 20196 15

A Calculus for IoT Apps: Features (contd.)

Cloud and local view of services

Apps retain a local view of cloud services

M. Pasqua CSF 20196 15

A Calculus for IoT Apps: Features (contd.)

Triggers

local services di�er from the cloud ones
activation condition check

Global look-up

retrieves the values of cloud services

Isolated execution

computations a�ect only local services

Actions

update cloud services with local info

�x X • listen(smoke) ;

smoke← read(smoke) ;

if (smoke = yes) then {
alarm← On ; lights← On ;

update(alarm, lights)

} ; X

SmokeAlarmSmokeAlarm

M. Pasqua CSF 20197 15

A Calculus for IoT Apps: Features (contd.)

Triggers

local services di�er from the cloud ones
activation condition check

Global look-up

retrieves the values of cloud services

Isolated execution

computations a�ect only local services

Actions

update cloud services with local info

�x X • listen(smoke) ;

smoke← read(smoke) ;

if (smoke = yes) then {
alarm← On ; lights← On ;

update(alarm, lights)

} ; X

SmokeAlarmSmokeAlarm

M. Pasqua CSF 20197 15

A Calculus for IoT Apps: Features (contd.)

Triggers

local services di�er from the cloud ones
activation condition check

Global look-up

retrieves the values of cloud services

Isolated execution

computations a�ect only local services

Actions

update cloud services with local info

�x X • listen(smoke) ;

smoke← read(smoke) ;

if (smoke = yes) then {
alarm← On ; lights← On ;

update(alarm, lights)

} ; X

SmokeAlarmSmokeAlarm

M. Pasqua CSF 20197 15

A Calculus for IoT Apps: Features (contd.)

Triggers

local services di�er from the cloud ones
activation condition check

Global look-up

retrieves the values of cloud services

Isolated execution

computations a�ect only local services

Actions

update cloud services with local info

�x X • listen(smoke) ;

smoke← read(smoke) ;

if (smoke = yes) then {
alarm← On ; lights← On ;

update(alarm, lights)

} ; X

SmokeAlarmSmokeAlarm

M. Pasqua CSF 20197 15

A Calculus for IoT Apps: Features (contd.)

Triggers

local services di�er from the cloud ones
activation condition check

Global look-up

retrieves the values of cloud services

Isolated execution

computations a�ect only local services

Actions

update cloud services with local info

�x X • listen(smoke) ;

smoke← read(smoke) ;

if (smoke = yes) then {
alarm← On ; lights← On ;

update(alarm, lights)

} ; X

SmokeAlarmSmokeAlarm

M. Pasqua CSF 20197 15

Safety Condition

M. Pasqua CSF 2019

Safety: Cross-App Interactions

app1 noninteracting with app2:

≈H

Hiding bisimulation

≈H hides the observables contained in H

Observables are modi�cations of the cloud

We need to hide the updates (writes) made by app1

app1 ‖ app2 ≈Happ1
app2

M. Pasqua CSF 20198 15

Safety: Cross-App Interactions

app1 noninteracting with app2:

≈H

Hiding bisimulation

≈H hides the observables contained in H

Observables are modi�cations of the cloud

We need to hide the updates (writes) made by app1

app1 ‖ app2 ≈Happ1
app2

M. Pasqua CSF 20198 15

Safety: Cross-App Interactions

app1 noninteracting with app2:

≈H

Hiding bisimulation

≈H hides the observables contained in H

Observables are modi�cations of the cloud

We need to hide the updates (writes) made by app1

app1 ‖ app2 ≈Happ1
app2

M. Pasqua CSF 20198 15

Safety: Cross-App Interactions

app1 noninteracting with app2:

≈H

Hiding bisimulation

≈H hides the observables contained in H

Observables are modi�cations of the cloud

We need to hide the updates (writes) made by app1

app1 ‖ app2 ≈Happ1
app2

M. Pasqua CSF 20198 15

Safety: Cross-App Interactions

app1 noninteracting with app2:

≈H

Hiding bisimulation

≈H hides the observables contained in H

Observables are modi�cations of the cloud

We need to hide the updates (writes) made by app1

app1 ‖ app2 ≈Happ1
app2

M. Pasqua CSF 20198 15

Safety: Cross-App Interactions

app1 noninteracting with app2:

≈H

Hiding bisimulation

≈H hides the observables contained in H

Observables are modi�cations of the cloud

We need to hide the updates (writes) made by app1

app1 ‖ app2 ≈Happ1
app2

M. Pasqua CSF 20198 15

Safety: Cross-App Interactions

app1 noninteracting with app2:

≈H

Hiding bisimulation

≈H hides the observables contained in H

Observables are modi�cations of the cloud

We need to hide the updates (writes) made by app1

S ‖ R ≈HS R

M. Pasqua CSF 20198 15

Enforcement: Syntactic Constraints for Triggers and Actions (contd.)

Example of a simple syntactic enforcement mechanism

app1 noninteracting with app2:

apps do not update common services actions(app1) ∩ actions(app2) = ∅
app1 does not trigger app2 actions(app1) ∩ triggers(app2) = ∅

Soundness: the syntactic enforcement implies the semantic safety condition

M. Pasqua CSF 20199 15

Enforcement: Syntactic Constraints for Triggers and Actions (contd.)

Example of a simple syntactic enforcement mechanism

app1 noninteracting with app2:

apps do not update common services actions(app1) ∩ actions(app2) = ∅
app1 does not trigger app2 actions(app1) ∩ triggers(app2) = ∅

Soundness: the syntactic enforcement implies the semantic safety condition

M. Pasqua CSF 20199 15

Enforcement: Syntactic Constraints for Triggers and Actions (contd.)

�x X • listen(smoke) ;

smoke← read(smoke) ;

if (smoke = yes) then {
alarm← On ; lights← On ;

update(alarm, lights)

} ; X

SmokeAlarmSmokeAlarm

�x X • listen(heat) ;

heat← read(heat) ;

if (heat ≥ 45) then {
waterV← Open ;

update(waterV)

} ; X

SprinksSprinks

Semantic safety: Sprinks ‖ SmokeAlarm ≈HSprinks
SmokeAlarm

We can state safety syntactically:

apps do not update common services {waterV} ∩ {alarm, lights} = ∅
Sprinks does not trigger SmokeAlarm {waterV} ∩ {smoke} = ∅

M. Pasqua CSF 201910 15

Enforcement: Syntactic Constraints for Triggers and Actions (contd.)

�x X • listen(smoke) ;

smoke← read(smoke) ;

if (smoke = yes) then {
alarm← On ; lights← On ;

update(alarm, lights)

} ; X

SmokeAlarmSmokeAlarm

�x X • listen(heat) ;

heat← read(heat) ;

if (heat ≥ 45) then {
waterV← Open ;

update(waterV)

} ; X

SprinksSprinks

Semantic safety: Sprinks ‖ SmokeAlarm ≈HSprinks
SmokeAlarm

We can state safety syntactically:

apps do not update common services {waterV} ∩ {alarm, lights} = ∅
Sprinks does not trigger SmokeAlarm {waterV} ∩ {smoke} = ∅

M. Pasqua CSF 201910 15

Enforcement: Syntactic Constraints for Triggers and Actions (contd.)

�x X • listen(smoke) ;

smoke← read(smoke) ;

if (smoke = yes) then {
alarm← On ; lights← On ;

update(alarm, lights)

} ; X

SmokeAlarmSmokeAlarm

�x X • listen(heat) ;

heat← read(heat) ;

if (heat ≥ 45) then {
waterV← Open ;

update(waterV)

} ; X

SprinksSprinks

Semantic safety: Sprinks ‖ SmokeAlarm ≈HSprinks
SmokeAlarm

We can state safety syntactically:

apps do not update common services {waterV} ∩ {alarm, lights} = ∅
Sprinks does not trigger SmokeAlarm {waterV} ∩ {smoke} = ∅

M. Pasqua CSF 201910 15

Security Condition

M. Pasqua CSF 2019

Security: Information Flows (contd.)

Services with di�erent security clearance

private public

7

Security policy:

lattice of security levels 〈SL,4〉
security levels assignment Σ to services

σ-equivalence ≡σ: stores agree on services with security levels 4 σ

M. Pasqua CSF 201911 15

Security: Information Flows (contd.)

Services with di�erent security clearance

private public

7

Security policy:

lattice of security levels 〈SL,4〉
security levels assignment Σ to services

σ-equivalence ≡σ: stores agree on services with security levels 4 σ

M. Pasqua CSF 201911 15

Security: Information Flows (contd.)

Services with di�erent security clearance

private public

7

Security policy:

lattice of security levels 〈SL,4〉
security levels assignment Σ to services

σ-equivalence ≡σ: stores agree on services with security levels 4 σ

M. Pasqua CSF 201911 15

Security: Information Flows (contd.)

Noninterference:

∀G,G′ ∈ S . G ≡σ G′ ⇒ 〈G,L〉 . S ≈ 〈G′,L〉 . S

ignore �presence� leakage hide updates greater than σ

ignore �termination� leakage [Demange and Sands, ESOP 2009]

�x X • listen(tw) ; tw← read(tw) ;

fb← tw ; update(fb) ; X

Tw2FbTw2Fb

�x X • listen(fb) ; fb← read(fb) ;

ld← fb ; update(ld) ; X

Fb2LdFb2Ld

Σ(tw) = Σ(fb) = H and Σ(ld) = L

〈G,L⊥〉 . Tw2Fb ‖ Fb2Ld 6≈ti

HL
〈G′,L⊥〉 . Tw2Fb ‖ Fb2Ld

M. Pasqua CSF 201912 15

Security: Information Flows (contd.)

Noninterference:

∀G,G′ ∈ S . G ≡σ G′ ⇒ 〈G,L〉 . S ≈Hσ 〈G′,L〉 . S

ignore �presence� leakage

hide updates greater than σ

ignore �termination� leakage [Demange and Sands, ESOP 2009]

�x X • listen(tw) ; tw← read(tw) ;

fb← tw ; update(fb) ; X

Tw2FbTw2Fb

�x X • listen(fb) ; fb← read(fb) ;

ld← fb ; update(ld) ; X

Fb2LdFb2Ld

Σ(tw) = Σ(fb) = H and Σ(ld) = L

〈G,L⊥〉 . Tw2Fb ‖ Fb2Ld 6≈ti

HL
〈G′,L⊥〉 . Tw2Fb ‖ Fb2Ld

M. Pasqua CSF 201912 15

Security: Information Flows (contd.)

Noninterference:

∀G,G′ ∈ S . G ≡σ G′ ⇒ 〈G,L〉 . S ≈ti

Hσ
〈G′,L〉 . S

ignore �presence� leakage

hide updates greater than σ

ignore �termination� leakage [Demange and Sands, ESOP 2009]

�x X • listen(tw) ; tw← read(tw) ;

fb← tw ; update(fb) ; X

Tw2FbTw2Fb

�x X • listen(fb) ; fb← read(fb) ;

ld← fb ; update(ld) ; X

Fb2LdFb2Ld

Σ(tw) = Σ(fb) = H and Σ(ld) = L

〈G,L⊥〉 . Tw2Fb ‖ Fb2Ld 6≈ti

HL
〈G′,L⊥〉 . Tw2Fb ‖ Fb2Ld

M. Pasqua CSF 201912 15

Security: Information Flows (contd.)

Noninterference:

∀G,G′ ∈ S . G ≡σ G′ ⇒ 〈G,L〉 . S ≈ti

Hσ
〈G′,L〉 . S

ignore �presence� leakage hide updates greater than σ

ignore �termination� leakage [Demange and Sands, ESOP 2009]

�x X • listen(tw) ; tw← read(tw) ;

fb← tw ; update(fb) ; X

Tw2FbTw2Fb

�x X • listen(fb) ; fb← read(fb) ;

ld← fb ; update(ld) ; X

Fb2LdFb2Ld

Σ(tw) = Σ(fb) = H and Σ(ld) = L

〈G,L⊥〉 . Tw2Fb ‖ Fb2Ld 6≈ti

HL
〈G′,L⊥〉 . Tw2Fb ‖ Fb2Ld

M. Pasqua CSF 201912 15

Security: Information Flows (contd.)

Noninterference:

∀G,G′ ∈ S . G ≡σ G′ ⇒ 〈G,L〉 . S ≈ti

Hσ
〈G′,L〉 . S

ignore �presence� leakage hide updates greater than σ

ignore �termination� leakage [Demange and Sands, ESOP 2009]

�x X • listen(tw) ; tw← read(tw) ;

fb← tw ; update(fb) ; X

Tw2FbTw2Fb

�x X • listen(fb) ; fb← read(fb) ;

ld← fb ; update(ld) ; X

Fb2LdFb2Ld

Σ(tw) = Σ(fb) = H and Σ(ld) = L

〈G,L⊥〉 . Tw2Fb ‖ Fb2Ld 6≈ti

HL
〈G′,L⊥〉 . Tw2Fb ‖ Fb2Ld

M. Pasqua CSF 201912 15

Security: Information Flows (contd.)

Noninterference:

∀G,G′ ∈ S . G ≡σ G′ ⇒ 〈G,L〉 . S ≈ti

Hσ
〈G′,L〉 . S

ignore �presence� leakage hide updates greater than σ

ignore �termination� leakage [Demange and Sands, ESOP 2009]

�x X • listen(tw) ; tw← read(tw) ;

fb← tw ; update(fb) ; X

Tw2FbTw2Fb

�x X • listen(fb) ; fb← read(fb) ;

ld← fb ; update(ld) ; X

Fb2LdFb2Ld

Σ(tw) = Σ(fb) = H and Σ(ld) = L

〈G,L⊥〉 . Tw2Fb ‖ Fb2Ld 6≈ti

HL
〈G′,L⊥〉 . Tw2Fb ‖ Fb2Ld

M. Pasqua CSF 201912 15

Security: Information Flows (contd.)

Noninterference:

∀G,G′ ∈ S . G ≡σ G′ ⇒ 〈G,L〉 . S ≈ti

Hσ
〈G′,L〉 . S

ignore �presence� leakage hide updates greater than σ

ignore �termination� leakage [Demange and Sands, ESOP 2009]

�x X • listen(tw) ; tw← read(tw) ;

fb← tw ; update(fb) ; X

Tw2FbTw2Fb

�x X • listen(fb) ; fb← read(fb) ;

ld← fb ; update(ld) ; X

Fb2LdFb2Ld

Σ(tw) = Σ(fb) = H and Σ(ld) = H

〈G,L⊥〉 . Tw2Fb ‖ Fb2Ld ≈ti

HL
〈G′,L⊥〉 . Tw2Fb ‖ Fb2Ld

M. Pasqua CSF 201912 15

Enforcement: Security Type System (contd.)

Enforcement

�ow-sensitive security type system [Hunt and Sands, POPL 2006]

input/output check-points

Information �ows are allowed only if they do not a�ect the cloud

M. Pasqua CSF 201913 15

Enforcement: Security Type System (contd.)

Enforcement

�ow-sensitive security type system [Hunt and Sands, POPL 2006]

input/output check-points

Information �ows are allowed only if they do not a�ect the cloud

M. Pasqua CSF 201913 15

Enforcement: Security Type System (contd.)

Enforcement

�ow-sensitive security type system [Hunt and Sands, POPL 2006]

input/output check-points

Information �ows are allowed only if they do not a�ect the cloud

M. Pasqua CSF 201913 15

Enforcement: Security Type System (contd.)

Enforcement

�ow-sensitive security type system [Hunt and Sands, POPL 2006]

input/output check-points

Information �ows are allowed only if they do not a�ect the cloud

M. Pasqua CSF 201913 15

Enforcement: Security Type System (contd.)

Type system parametric in an initial (�xed) security typing Σ

Judgments (for apps) of the form: pc ` Γ{Pld}Γ′ no �ows from σ � pc to pc

Γ, Γ′: typings before and after Pld only services �pc in Γ′ may be changed by Pld

(Assign)
Γ ` e : σ

pc ` Γ
{
x← e

}
Γ[x 7→ σ t pc]

(Update)
Γ(x) 4 Σ(x)

pc ` Γ
{
update(x)

}
Γ

(Var)
Γ(y) = σ

Γ ` y : σ

(Read)
Σ(y) = σ

Γ ` read(y) : σ

look-up
local

cloud

Soundness: well-typed systems are noninterfering

M. Pasqua CSF 201914 15

Enforcement: Security Type System (contd.)

Type system parametric in an initial (�xed) security typing Σ

Judgments (for apps) of the form: pc ` Γ{Pld}Γ′ no �ows from σ � pc to pc

Γ, Γ′: typings before and after Pld only services �pc in Γ′ may be changed by Pld

(Assign)
Γ ` e : σ

pc ` Γ
{
x← e

}
Γ[x 7→ σ t pc]

(Update)
Γ(x) 4 Σ(x)

pc ` Γ
{
update(x)

}
Γ

(Var)
Γ(y) = σ

Γ ` y : σ

(Read)
Σ(y) = σ

Γ ` read(y) : σ

look-up
local

cloud

Soundness: well-typed systems are noninterfering

M. Pasqua CSF 201914 15

Enforcement: Security Type System (contd.)

Type system parametric in an initial (�xed) security typing Σ

Judgments (for apps) of the form: pc ` Γ{Pld}Γ′ no �ows from σ � pc to pc

Γ, Γ′: typings before and after Pld only services �pc in Γ′ may be changed by Pld

(Assign)
Γ ` e : σ

pc ` Γ
{
x← e

}
Γ[x 7→ σ t pc]

(Update)
Γ(x) 4 Σ(x)

pc ` Γ
{
update(x)

}
Γ

(Var)
Γ(y) = σ

Γ ` y : σ

(Read)
Σ(y) = σ

Γ ` read(y) : σ

look-up
local

cloud

Soundness: well-typed systems are noninterfering

M. Pasqua CSF 201914 15

Enforcement: Security Type System (contd.)

Type system parametric in an initial (�xed) security typing Σ

Judgments (for apps) of the form: pc ` Γ{Pld}Γ′ no �ows from σ � pc to pc

Γ, Γ′: typings before and after Pld only services �pc in Γ′ may be changed by Pld

(Assign)
Γ ` e : σ

pc ` Γ
{
x← e

}
Γ[x 7→ σ t pc]

(Update)
Γ(x) 4 Σ(x)

pc ` Γ
{
update(x)

}
Γ

(Var)
Γ(y) = σ

Γ ` y : σ

(Read)
Σ(y) = σ

Γ ` read(y) : σ

look-up
local

cloud

Soundness: well-typed systems are noninterfering

M. Pasqua CSF 201914 15

Conclusion

M. Pasqua CSF 2019

Contributions

Foundational framework for securing cross-app interactions

Calculus for apps in IoT platforms

Semantics condition for safe cross-app interactions
I Enforcement: syntactic constraints for triggers and actions (Sound)
I Extensions: implicit interactions and priorities between services

Semantic condition for nonintereference in a system of apps
I Enforcement: security �ow-sensitive type system (Sound)

Thanks for attention!

M. Pasqua CSF 201915 15

Contributions

Foundational framework for securing cross-app interactions

Calculus for apps in IoT platforms

Semantics condition for safe cross-app interactions
I Enforcement: syntactic constraints for triggers and actions (Sound)
I Extensions: implicit interactions and priorities between services

Semantic condition for nonintereference in a system of apps
I Enforcement: security �ow-sensitive type system (Sound)

Thanks for attention!

M. Pasqua CSF 201915 15

Contributions

Foundational framework for securing cross-app interactions

Calculus for apps in IoT platforms

Semantics condition for safe cross-app interactions
I Enforcement: syntactic constraints for triggers and actions (Sound)
I Extensions: implicit interactions and priorities between services

Semantic condition for nonintereference in a system of apps
I Enforcement: security �ow-sensitive type system (Sound)

Thanks for attention!

M. Pasqua CSF 201915 15

Contributions

Foundational framework for securing cross-app interactions

Calculus for apps in IoT platforms

Semantics condition for safe cross-app interactions
I Enforcement: syntactic constraints for triggers and actions (Sound)
I Extensions: implicit interactions and priorities between services

Semantic condition for nonintereference in a system of apps
I Enforcement: security �ow-sensitive type system (Sound)

Thanks for attention!

M. Pasqua CSF 201915 15

Contributions

Foundational framework for securing cross-app interactions

Calculus for apps in IoT platforms

Semantics condition for safe cross-app interactions
I Enforcement: syntactic constraints for triggers and actions (Sound)
I Extensions: implicit interactions and priorities between services

Semantic condition for nonintereference in a system of apps
I Enforcement: security �ow-sensitive type system (Sound)

Thanks for attention!

M. Pasqua CSF 201915 15

Bonus slides

M. Pasqua CSF 2019

Safety extension: Implicit Interactions

Implicit interactions: semantically-related services with di�erent syntax

�x X • listen(temp) ;

temp← read(temp) ;

if (temp < 17) then {
therm← +3 ; update(therm)

} ; X

ThermTherm

�x X • listen(temp) ;

temp← read(temp) ;

if (temp > 22) then {
win← Open ; update(win)

} ; X

WinWin

implicit interaction

Dependency policy ∆ ⊆ Services× Services

y ∈ clo(∆, x), non-deterministic update on y

Parametric LTS and hiding bisimulation

M. Pasqua CSF 2019

Safety extension: Implicit Interactions

Implicit interactions: semantically-related services with di�erent syntax

�x X • listen(temp) ;

temp← read(temp) ;

if (temp < 17) then {
therm← +3 ; update(therm)

} ; X

ThermTherm

�x X • listen(temp) ;

temp← read(temp) ;

if (temp > 22) then {
win← Open ; update(win)

} ; X

WinWin

implicit interaction

Dependency policy ∆ ⊆ Services× Services

y ∈ clo(∆, x), non-deterministic update on y

Parametric LTS and hiding bisimulation

M. Pasqua CSF 2019

Safety extension: Implicit Interactions

Implicit interactions: semantically-related services with di�erent syntax

�x X • listen(temp) ;

temp← read(temp) ;

if (temp < 17) then {
therm← +3 ; update(therm)

} ; X

ThermTherm

�x X • listen(temp) ;

temp← read(temp) ;

if (temp > 22) then {
win← Open ; update(win)

} ; X

WinWin

implicit interaction

Dependency policy ∆ ⊆ Services× Services

y ∈ clo(∆, x), non-deterministic update on y

Parametric LTS and hiding bisimulation

M. Pasqua CSF 2019

Safety extension: Implicit Interactions

Implicit interactions: semantically-related services with di�erent syntax

�x X • listen(temp) ;

temp← read(temp) ;

if (temp < 17) then {
therm← +3 ; update(therm)

} ; X

ThermTherm

�x X • listen(temp) ;

temp← read(temp) ;

if (temp > 22) then {
win← Open ; update(win)

} ; X

WinWin

implicit interaction

Dependency policy ∆ ⊆ Services× Services

y ∈ clo(∆, x), non-deterministic update on y

Parametric LTS and hiding bisimulation

M. Pasqua CSF 2019

Safety extension: Priorities

The user intentionally allows some interactions

Priority policy:

lattice of priority levels 〈PL,v〉
priorities assignment Π to services

Noninteraction up-to priority level p ∈ PL
Indistinguishable behavior observing services at priority level greater than p

We hide the updates of services lower than, or equal to, p

Parametric LTS and hiding bisimulation

M. Pasqua CSF 2019

Safety extension: Priorities

The user intentionally allows some interactions

Priority policy:

lattice of priority levels 〈PL,v〉
priorities assignment Π to services

Noninteraction up-to priority level p ∈ PL
Indistinguishable behavior observing services at priority level greater than p

We hide the updates of services lower than, or equal to, p

Parametric LTS and hiding bisimulation

M. Pasqua CSF 2019

Safety extension: Priorities

The user intentionally allows some interactions

Priority policy:

lattice of priority levels 〈PL,v〉
priorities assignment Π to services

Noninteraction up-to priority level p ∈ PL
Indistinguishable behavior observing services at priority level greater than p

We hide the updates of services lower than, or equal to, p

Parametric LTS and hiding bisimulation

M. Pasqua CSF 2019

