
�1

Automated	Verification	of	
Accountability	in	Security	Protocols	

Robert	Künnemann,	Ilkan	Esiyok	and	Michael	Backes

Part	I:	What	we	talk	about	
when	we	talk	about	
accountability

Ontology

�3

Accountability for φ

AgentsProtocol

defines	"normal"	behaviour

Accountability
mechanism Punishment

may	break	𝜑

implements

identifies	misbehaving

informs

identifies	/	excludes	/	sues		
/	slashes	reputation	of

hold	accountable	(for	𝜑)

¬honest(A,B,C)
<latexit sha1_base64="e11sNhs9lN6NaQ/ygpy7uMH/qQE=">AAACB3icbVA9SwNBEN3zM8avqGWaxSAohHCngpYxaSwjmCgkIextJsni3t6xOyeEI4Wlv8RSbcTWH2Hhv3EvuUKjDwYe780wM8+PpDDoul/OwuLS8spqbi2/vrG5tV3Y2W2ZMNYcmjyUob71mQEpFDRRoITbSAMLfAk3/l099W/uQRsRqmscR9AN2FCJgeAMrdQrFDsKhrQTMBwJTEahAoOTw4tyrVw/6hVKbsWdgv4lXkZKJEOjV/js9EMeB6CQS2ZM23MjLLOTbsI0Ci5hku/EBiLG79gQ2pYqFoDpJtM/JvTAKn06CLUthXSq/pxIWGDMOPBtZ3qwmfdS8T+vHePgvJsIFcUIis8WDWJJMaRpKLQvNHCUY0sY18LeSvmIacbRRpe3OXjzX/8lreOK51a8q9NStZYlkiNFsk8OiUfOSJVckgZpEk4eyBN5Ia/Oo/PsvDnvs9YFJ5vZI7/gfHwDG3yYHA==</latexit><latexit sha1_base64="e11sNhs9lN6NaQ/ygpy7uMH/qQE=">AAACB3icbVA9SwNBEN3zM8avqGWaxSAohHCngpYxaSwjmCgkIextJsni3t6xOyeEI4Wlv8RSbcTWH2Hhv3EvuUKjDwYe780wM8+PpDDoul/OwuLS8spqbi2/vrG5tV3Y2W2ZMNYcmjyUob71mQEpFDRRoITbSAMLfAk3/l099W/uQRsRqmscR9AN2FCJgeAMrdQrFDsKhrQTMBwJTEahAoOTw4tyrVw/6hVKbsWdgv4lXkZKJEOjV/js9EMeB6CQS2ZM23MjLLOTbsI0Ci5hku/EBiLG79gQ2pYqFoDpJtM/JvTAKn06CLUthXSq/pxIWGDMOPBtZ3qwmfdS8T+vHePgvJsIFcUIis8WDWJJMaRpKLQvNHCUY0sY18LeSvmIacbRRpe3OXjzX/8lreOK51a8q9NStZYlkiNFsk8OiUfOSJVckgZpEk4eyBN5Ia/Oo/PsvDnvs9YFJ5vZI7/gfHwDG3yYHA==</latexit><latexit sha1_base64="e11sNhs9lN6NaQ/ygpy7uMH/qQE=">AAACB3icbVA9SwNBEN3zM8avqGWaxSAohHCngpYxaSwjmCgkIextJsni3t6xOyeEI4Wlv8RSbcTWH2Hhv3EvuUKjDwYe780wM8+PpDDoul/OwuLS8spqbi2/vrG5tV3Y2W2ZMNYcmjyUob71mQEpFDRRoITbSAMLfAk3/l099W/uQRsRqmscR9AN2FCJgeAMrdQrFDsKhrQTMBwJTEahAoOTw4tyrVw/6hVKbsWdgv4lXkZKJEOjV/js9EMeB6CQS2ZM23MjLLOTbsI0Ci5hku/EBiLG79gQ2pYqFoDpJtM/JvTAKn06CLUthXSq/pxIWGDMOPBtZ3qwmfdS8T+vHePgvJsIFcUIis8WDWJJMaRpKLQvNHCUY0sY18LeSvmIacbRRpe3OXjzX/8lreOK51a8q9NStZYlkiNFsk8OiUfOSJVckgZpEk4eyBN5Ia/Oo/PsvDnvs9YFJ5vZI7/gfHwDG3yYHA==</latexit><latexit sha1_base64="e11sNhs9lN6NaQ/ygpy7uMH/qQE=">AAACB3icbVA9SwNBEN3zM8avqGWaxSAohHCngpYxaSwjmCgkIextJsni3t6xOyeEI4Wlv8RSbcTWH2Hhv3EvuUKjDwYe780wM8+PpDDoul/OwuLS8spqbi2/vrG5tV3Y2W2ZMNYcmjyUob71mQEpFDRRoITbSAMLfAk3/l099W/uQRsRqmscR9AN2FCJgeAMrdQrFDsKhrQTMBwJTEahAoOTw4tyrVw/6hVKbsWdgv4lXkZKJEOjV/js9EMeB6CQS2ZM23MjLLOTbsI0Ci5hku/EBiLG79gQ2pYqFoDpJtM/JvTAKn06CLUthXSq/pxIWGDMOPBtZ3qwmfdS8T+vHePgvJsIFcUIis8WDWJJMaRpKLQvNHCUY0sY18LeSvmIacbRRpe3OXjzX/8lreOK51a8q9NStZYlkiNFsk8OiUfOSJVckgZpEk4eyBN5Ia/Oo/PsvDnvs9YFJ5vZI7/gfHwDG3yYHA==</latexit>

honest(A)) accountability for '
<latexit sha1_base64="vp7ehmTyGYYbREad5ss3K1l6otU=">AAACLHicbVBNSyNBEO3x26yrUY9eGoPgwhJmdgU9Rr14VDEqZEKo6dRkGnu6h+4aNQz5Ox79JR5VEPHq73ASc/DrnR7vVVH1XpQp6cj3n7yJyanpmdm5+cqvhd+LS9XllVNnciuwKYwy9jwCh0pqbJIkheeZRUgjhWfRxf7QP7tE66TRJ9TPsJ1CT8tYCqBS6lQbYQqUSCoSo9HRYHP3Dw+PZS8hsNZc8ZDwmgoQwuSaIJJKUp/HxvJBeAk2S2SnWvPr/gj8OwnGpMbGOOxUH8KuEXmKmoQC51qBn9Ff+N8uwJIUCgeVMHeYgbiAHrZKqiFF1y5GYQd8o1S6oxdio4mP1I8bBaTO9dOonBxGc1+9ofiT18op3mkXUmc5oRbvh+JccTJ82BzvSouCVL8kIKwsf+UiAQuCyn4rZQ/B19Tfyem/euDXg6OtWmNv3MgcW2PrbJMFbJs12AE7ZE0m2A27Yw/s0bv17r1n7+V9dMIb76yyT/Be3wDaNKkh</latexit><latexit sha1_base64="vp7ehmTyGYYbREad5ss3K1l6otU=">AAACLHicbVBNSyNBEO3x26yrUY9eGoPgwhJmdgU9Rr14VDEqZEKo6dRkGnu6h+4aNQz5Ox79JR5VEPHq73ASc/DrnR7vVVH1XpQp6cj3n7yJyanpmdm5+cqvhd+LS9XllVNnciuwKYwy9jwCh0pqbJIkheeZRUgjhWfRxf7QP7tE66TRJ9TPsJ1CT8tYCqBS6lQbYQqUSCoSo9HRYHP3Dw+PZS8hsNZc8ZDwmgoQwuSaIJJKUp/HxvJBeAk2S2SnWvPr/gj8OwnGpMbGOOxUH8KuEXmKmoQC51qBn9Ff+N8uwJIUCgeVMHeYgbiAHrZKqiFF1y5GYQd8o1S6oxdio4mP1I8bBaTO9dOonBxGc1+9ofiT18op3mkXUmc5oRbvh+JccTJ82BzvSouCVL8kIKwsf+UiAQuCyn4rZQ/B19Tfyem/euDXg6OtWmNv3MgcW2PrbJMFbJs12AE7ZE0m2A27Yw/s0bv17r1n7+V9dMIb76yyT/Be3wDaNKkh</latexit><latexit sha1_base64="vp7ehmTyGYYbREad5ss3K1l6otU=">AAACLHicbVBNSyNBEO3x26yrUY9eGoPgwhJmdgU9Rr14VDEqZEKo6dRkGnu6h+4aNQz5Ox79JR5VEPHq73ASc/DrnR7vVVH1XpQp6cj3n7yJyanpmdm5+cqvhd+LS9XllVNnciuwKYwy9jwCh0pqbJIkheeZRUgjhWfRxf7QP7tE66TRJ9TPsJ1CT8tYCqBS6lQbYQqUSCoSo9HRYHP3Dw+PZS8hsNZc8ZDwmgoQwuSaIJJKUp/HxvJBeAk2S2SnWvPr/gj8OwnGpMbGOOxUH8KuEXmKmoQC51qBn9Ff+N8uwJIUCgeVMHeYgbiAHrZKqiFF1y5GYQd8o1S6oxdio4mP1I8bBaTO9dOonBxGc1+9ofiT18op3mkXUmc5oRbvh+JccTJ82BzvSouCVL8kIKwsf+UiAQuCyn4rZQ/B19Tfyem/euDXg6OtWmNv3MgcW2PrbJMFbJs12AE7ZE0m2A27Yw/s0bv17r1n7+V9dMIb76yyT/Be3wDaNKkh</latexit><latexit sha1_base64="vp7ehmTyGYYbREad5ss3K1l6otU=">AAACLHicbVBNSyNBEO3x26yrUY9eGoPgwhJmdgU9Rr14VDEqZEKo6dRkGnu6h+4aNQz5Ox79JR5VEPHq73ASc/DrnR7vVVH1XpQp6cj3n7yJyanpmdm5+cqvhd+LS9XllVNnciuwKYwy9jwCh0pqbJIkheeZRUgjhWfRxf7QP7tE66TRJ9TPsJ1CT8tYCqBS6lQbYQqUSCoSo9HRYHP3Dw+PZS8hsNZc8ZDwmgoQwuSaIJJKUp/HxvJBeAk2S2SnWvPr/gj8OwnGpMbGOOxUH8KuEXmKmoQC51qBn9Ff+N8uwJIUCgeVMHeYgbiAHrZKqiFF1y5GYQd8o1S6oxdio4mP1I8bBaTO9dOonBxGc1+9ofiT18op3mkXUmc5oRbvh+JccTJ82BzvSouCVL8kIKwsf+UiAQuCyn4rZQ/B19Tfyem/euDXg6OtWmNv3MgcW2PrbJMFbJs12AE7ZE0m2A27Yw/s0bv17r1n7+V9dMIb76yyT/Be3wDaNKkh</latexit>

Why	Accountability

�4

honest(A,B,C)) '
<latexit sha1_base64="Bubuh2p/pBJCCOfcTa6d9AV/83c=">AAACF3icbVC7SgNBFJ31bXxFLW0Gg6AYwq4KWvpoLKOYRMiGcHcyyQ7Oziwzd5Ww5CMs/RJLtRFbCwv/xt0kha8DA4dz7uXOOUEshUXX/XQmJqemZ2bn5gsLi0vLK8XVtbrViWG8xrTU5joAy6VQvIYCJb+ODYcokLwR3JzlfuOWGyu0usJ+zFsR9JToCgaYSe3irh8BhgLTUCtucbB9Uj4tn+1Q/1L0QgRj9B31b8HEoSi0iyW34g5B/xJvTEpkjGq7+OF3NEsirpBJsLbpuTGWYb+VgkHBJB8U/MTyGNgN9HgzowoiblvpMNeAbmVKh3a1yZ5COlS/b6QQWduPgmwyT2F/e7n4n9dMsHvUSoWKE+SKjQ51E0lR07wk2hGGM5T9jAAzIvsrZSEYYJhVmffg/U79l9T3Kp5b8S4OSsen40bmyAbZJNvEI4fkmJyTKqkRRu7JI3kmL86D8+S8Om+j0QlnvLNOfsB5/wJhwJ67</latexit><latexit sha1_base64="Bubuh2p/pBJCCOfcTa6d9AV/83c=">AAACF3icbVC7SgNBFJ31bXxFLW0Gg6AYwq4KWvpoLKOYRMiGcHcyyQ7Oziwzd5Ww5CMs/RJLtRFbCwv/xt0kha8DA4dz7uXOOUEshUXX/XQmJqemZ2bn5gsLi0vLK8XVtbrViWG8xrTU5joAy6VQvIYCJb+ODYcokLwR3JzlfuOWGyu0usJ+zFsR9JToCgaYSe3irh8BhgLTUCtucbB9Uj4tn+1Q/1L0QgRj9B31b8HEoSi0iyW34g5B/xJvTEpkjGq7+OF3NEsirpBJsLbpuTGWYb+VgkHBJB8U/MTyGNgN9HgzowoiblvpMNeAbmVKh3a1yZ5COlS/b6QQWduPgmwyT2F/e7n4n9dMsHvUSoWKE+SKjQ51E0lR07wk2hGGM5T9jAAzIvsrZSEYYJhVmffg/U79l9T3Kp5b8S4OSsen40bmyAbZJNvEI4fkmJyTKqkRRu7JI3kmL86D8+S8Om+j0QlnvLNOfsB5/wJhwJ67</latexit><latexit sha1_base64="Bubuh2p/pBJCCOfcTa6d9AV/83c=">AAACF3icbVC7SgNBFJ31bXxFLW0Gg6AYwq4KWvpoLKOYRMiGcHcyyQ7Oziwzd5Ww5CMs/RJLtRFbCwv/xt0kha8DA4dz7uXOOUEshUXX/XQmJqemZ2bn5gsLi0vLK8XVtbrViWG8xrTU5joAy6VQvIYCJb+ODYcokLwR3JzlfuOWGyu0usJ+zFsR9JToCgaYSe3irh8BhgLTUCtucbB9Uj4tn+1Q/1L0QgRj9B31b8HEoSi0iyW34g5B/xJvTEpkjGq7+OF3NEsirpBJsLbpuTGWYb+VgkHBJB8U/MTyGNgN9HgzowoiblvpMNeAbmVKh3a1yZ5COlS/b6QQWduPgmwyT2F/e7n4n9dMsHvUSoWKE+SKjQ51E0lR07wk2hGGM5T9jAAzIvsrZSEYYJhVmffg/U79l9T3Kp5b8S4OSsen40bmyAbZJNvEI4fkmJyTKqkRRu7JI3kmL86D8+S8Om+j0QlnvLNOfsB5/wJhwJ67</latexit><latexit sha1_base64="Bubuh2p/pBJCCOfcTa6d9AV/83c=">AAACF3icbVC7SgNBFJ31bXxFLW0Gg6AYwq4KWvpoLKOYRMiGcHcyyQ7Oziwzd5Ww5CMs/RJLtRFbCwv/xt0kha8DA4dz7uXOOUEshUXX/XQmJqemZ2bn5gsLi0vLK8XVtbrViWG8xrTU5joAy6VQvIYCJb+ODYcokLwR3JzlfuOWGyu0usJ+zFsR9JToCgaYSe3irh8BhgLTUCtucbB9Uj4tn+1Q/1L0QgRj9B31b8HEoSi0iyW34g5B/xJvTEpkjGq7+OF3NEsirpBJsLbpuTGWYb+VgkHBJB8U/MTyGNgN9HgzowoiblvpMNeAbmVKh3a1yZ5COlS/b6QQWduPgmwyT2F/e7n4n9dMsHvUSoWKE+SKjQ51E0lR07wk2hGGM5T9jAAzIvsrZSEYYJhVmffg/U79l9T3Kp5b8S4OSsen40bmyAbZJNvEI4fkmJyTKqkRRu7JI3kmL86D8+S8Om+j0QlnvLNOfsB5/wJhwJ67</latexit>

Why	is	it	so	hard?

�5

(can imitate protocol)

(e.g., PeerReview)

This work
verdict(t) = {A | Had A followed spec, then 𝜑}

soundness: verdict(t) ⊆ corrupted(t)

completeness: verdict(t) ⊇ corrupted(t)

verdict(t) = {A | t|A observably different from spec}

no complete view in the internet :(

verdict(t) = {A | A performed action outside spec causing ¬𝜑}

Out-of-spec action causing ¬𝜑 does not
mean the out-of-spec process is a cause.

(Counterexample: A is buggy CA. Emits slightly
malformed certificate, which is used in attack, but

malformedness is irrelevant. Had A followed the spec,
same attack would have happened.)

Causation

▪ Event(s)	A	caused	¬𝜑	iff	
▪ A	and	¬𝜑,	in	fact,	happened.	

▪ In	any	counterfactual	where		
A	happens,	¬𝜑	happens.	

▪ A	is	subset-minimal.

�6

▪ "Umbrella"	caused	"not	wet",	as	
▪ I	had	an	umbrella	and	did	not	
get	wet.	

▪ As	long	as	I	have	my	umbrella,	
I	cannot	get	wet.	

▪ Without	the	umbrella,	I	could	
get	wet.

Causation

▪ Event(s)	A	caused	¬𝜑	iff	
▪ A	and	¬𝜑,	in	fact,	happened.	

▪ In	any	counterfactual	where		
A	happens,	¬𝜑	happens.	

▪ A	is	subset-minimal.

�7

▪ Output	all	sets	of	parties	S,	s.t.	
▪ t	⊧	¬𝜑	and	corrupted(t)⊇S	

▪ there	is	related	t'	s.t.	t'	⊧	¬𝜑		
and	corrupt(t')=S,	

▪ S	is	subset-minimal.

Part	II:	Accountability	in	
terms	of	trace	properties

Case	1:	weakest	possible	relation

▪ Consider	t'	is	related	to	t	iff	corrupt(t')	⊆	corrupt(t)	

▪ Idea:	verdict	function	defined	as	

▪ cases	are	exhaustive	and	exclusive,	and	for	each	i:	
▪ sufficiency:	Agents	in	Vi	can	produce	violating	trace	
▪ verifiability:	Vi=∅	⟺	𝜑	
▪ minimality:	can't	do	with	less	than	S∈Vi	

▪ uniqueness:	whenever	ωi	is	observed,	parties	in	Vi	are	corrupted	
▪ completeness:	(omitted)

�9

agreement on how they should relate. We slightly change the
previous monitoring example and discuss why the relation
is important.

Example 2. Assume that the monitor supports a second
mechanism to handle requests. Here, a doctor D1 can also
sign his unusual request and ask his chief of medicine C

to approve it. Assume in trace t, both D1 and C collude
and use this mechanism to effectuate an unusual request,
violating '. Intuitively, one would expect the apv, relying on
logs, to give the verdict ttD1, Cuu. However, D1 could have
used the first mechanism for this request. Hence, there is a
counterfactual trace t1 where only D1 is dishonest. If rpt, t

1
q,

then the more intuitive verdict ttD1, Cuu is not minimal, but
apvP,',rptq “ ttD1uu is minimal, shifting the blame to D1

alone. The intuitive response would be: ‘But that is not what
happened!’, which is precisely what r needs to capture.

We will discuss three approaches for relating factual
and counterfactual traces:

‚ by control-flow: rcpt, t
1
q iff t and t

1 have similar
control-flow. Several works in the causality literature
relate traces by their control-flow [11, 22, 23]. For sim-
plicity, the notion we present (cf. Section 7) captures
only the control-flow of trusted parties, i.e., parties
guaranteed to be never controlled by the adversary. In
case of the example, the control-flow of the trusted
monitor would distinguish these two mechanisms.

‚ by kind of violation: rkpt, t
1
q iff t and t

1 describe
the same kind of violations. This approach is, e.g.,
used in criminal law to solve causal problems where
the classical ‘what-if‘ test fails, e.g., a person was
poisoned, but shot before the poison took effect. ([12,
p. 188]; see also [27, p. 46]). This relation is informal
and depends on intuition.

‚ weakest relation according to Def. 1: rwpt, t
1
q ñ

corruptedpP, t
1
q Ñ corruptedpP, tq. This relation is

conceptually simple and suitable for many protocols in
which collusion is not an issue, i. e., verdicts contain
only singleton sets. Outside this class, it may give un-
intuitive a posteriori verdicts in cases where t requires
collusion, but one of the colluding parties could mount
a possibly very different attack by themselves.

In the next section, we will provide verification condi-
tions for rw. We will then provide more general verification
conditions that apply to arbitrary relations.

3. Verification conditions for rw

In this section, we define a set of verification conditions
parametric in a security property ' and a verdict function.
If these conditions are met, they provide a protocol with
accountability for ' w.r.t. the weakest condition on counter-
factuals rwpt, t

1
q ¨̈“ corruptedpt

1
q Ñ corruptedptq. Each

of these conditions is a trace property and can thus be
verified by off-the-shelf protocol verification tools. In our
case studies, we will use these verification conditions to ver-
ify accountability properties for the Certificate Transparency
protocol.

TABLE 1. VERIFICATION CONDITIONS for rw.

conditions formulae

Exhaustiveness (XH): @t. !1ptq _ ¨ ¨ ¨ _ !nptq

Exclusiveness (XC): @t, i, j. i ‰ j ùñ p!iptq ^ !jptqq

Sufficiency of each !i @S P Vi. Dt.
s.t. Vi ‰ H (SF!i,',S): 'ptq ^ corruptedptq “ S

Verifiability of each !i @t. !iptq ùñ

(V!i,Vi): pVi “ H ñ 'ptqq

Minimality of each Vi @S P Vi @S1
à S

(M',Vi): Et. 'ptq ^ corruptedptq “ S1

Uniqueness of each Vi @t. !iptq ùñ

(U!i,Vi):
î

SPVi
S Ñ corruptedptq

Completeness of each Vi @S Ñ
î

S1PVi
S1

@j. Vj “ tSu ùñ

(CVi): S P Vi.

(t is quantified over tracespP q)

The main idea: we assume the verdict function is de-
scribed as a case distinction over a set of trace properties
!1 to !n. Any of these observations !i is then assigned a
verdict Vi.

Definition 3 (verification conditions). Let verdict be a
verdict function of form:

verdictptq “

$
’&

’%

V1 if !1ptq

...
Vn if !nptq

and ' a predicate on traces. We define the verification
condition �',verdict as the conjunction of the formulae in
Table 1.

We briefly go over these conditions. The case distinction
needs to be exhaustive (XH) and exclusive (XC), because
verdict functions are total. For any observation !i that leads
to a non-empty verdict, any set of parties S in this verdict
needs to be able to produce a violating trace on their own
(SF!i,',S). However, removing any element from S should
make it impossible to produce a violation (M',Vi), due to the
minimality requirement in Def. 1. If an observation leads to
the empty verdict, it needs to imply the security property ',
because accountability implies verifiability (V!i,Vi). When-
ever an observation !i is made, all parties that appear in the
ensuing verdict have necessarily been corrupted (U!i,Vi).
This ensures uniqueness; if there was a second sufficient
and minimal verdict, part of the verdict would correspond
to a trace that corrupts parties that do not appear in the
verdict (details in the proof of completeness, Appendix C).
Finally, if there is a singleton verdict (e.g., Vj “ ttB,Cuu)
containing only parties that appear in another composite
verdict (e.g., Vi “ ttA,Bu, tA,Cuu) then traces that give
the former are related to traces that give the latter (where,
at least, A, B and C were dishonest). Hence the singleton
verdict needs to be included. (CVi).

We show these conditions sound and complete in Ap-
pendix C. Practically, this means that any counter-example

Case	2:	arbitrary	relation

�10

▪ "But	that's	not	what	happened"	->	relation	r	between	t	and	t'	
▪ idea	for	translation:	cases	are	liftings	R	of	relation	r	
▪ combination	of	11	different	conditions,	including	lifting	condition:

Eve is authoritative for d Evil-TLD

Eve d resolves to 666
Evil-TLD could do

it on her own

verdict(t) =

8
><

>:

V1 if !1(t)

V2 if !2(t)

V3 if !3(t)
<latexit sha1_base64="0HQ7GheJ4SkfpREs5MrTCnVmPe4=">AAACfnicbZFRT9swEMedwAYLYxR4nISslbEibSVpEfAyCWkvPDKJFqSmihznUiwcJ7IviCrKl+C78cA34XFuCRKDnmTpr//9zmffxYUUBn3/0XGXlj98XFn95K19Xv+y0drcGpq81BwGPJe5voqZASkUDFCghKtCA8tiCZfxzZ9Z/vIWtBG5usBpAeOMTZRIBWdorah1H2YMrwVWFkoEx7qD+/S3F8YwEari9mZTe8MooHs0RLjDSqR0N8wzmLAosOxuTb0wtERvEdF7TfQXEf0XAlTStItabb/rz4O+F0Ej2qSJ86j1ECY5LzNQyCUzZhT4Bf5k/XHFNAouofbC0kDB+A2bwMhKxTIw42o+vpp+t05C01zbo5DO3dcVFcuMmWaxJWfDMm9zM3NRblRiejKuhCpKBMWfG6WlpJjT2S5oIjRwlFMrGNfCvpXya6YZR7sxz84hePvr92LY6wZ+N/h72D49aiaySr6Sb6RDAnJMTskZOScDwsmTs+P8cDoucffcX+7BM+o6Tc02+S/ck3+6RLs7</latexit><latexit sha1_base64="0HQ7GheJ4SkfpREs5MrTCnVmPe4=">AAACfnicbZFRT9swEMedwAYLYxR4nISslbEibSVpEfAyCWkvPDKJFqSmihznUiwcJ7IviCrKl+C78cA34XFuCRKDnmTpr//9zmffxYUUBn3/0XGXlj98XFn95K19Xv+y0drcGpq81BwGPJe5voqZASkUDFCghKtCA8tiCZfxzZ9Z/vIWtBG5usBpAeOMTZRIBWdorah1H2YMrwVWFkoEx7qD+/S3F8YwEari9mZTe8MooHs0RLjDSqR0N8wzmLAosOxuTb0wtERvEdF7TfQXEf0XAlTStItabb/rz4O+F0Ej2qSJ86j1ECY5LzNQyCUzZhT4Bf5k/XHFNAouofbC0kDB+A2bwMhKxTIw42o+vpp+t05C01zbo5DO3dcVFcuMmWaxJWfDMm9zM3NRblRiejKuhCpKBMWfG6WlpJjT2S5oIjRwlFMrGNfCvpXya6YZR7sxz84hePvr92LY6wZ+N/h72D49aiaySr6Sb6RDAnJMTskZOScDwsmTs+P8cDoucffcX+7BM+o6Tc02+S/ck3+6RLs7</latexit><latexit sha1_base64="0HQ7GheJ4SkfpREs5MrTCnVmPe4=">AAACfnicbZFRT9swEMedwAYLYxR4nISslbEibSVpEfAyCWkvPDKJFqSmihznUiwcJ7IviCrKl+C78cA34XFuCRKDnmTpr//9zmffxYUUBn3/0XGXlj98XFn95K19Xv+y0drcGpq81BwGPJe5voqZASkUDFCghKtCA8tiCZfxzZ9Z/vIWtBG5usBpAeOMTZRIBWdorah1H2YMrwVWFkoEx7qD+/S3F8YwEari9mZTe8MooHs0RLjDSqR0N8wzmLAosOxuTb0wtERvEdF7TfQXEf0XAlTStItabb/rz4O+F0Ej2qSJ86j1ECY5LzNQyCUzZhT4Bf5k/XHFNAouofbC0kDB+A2bwMhKxTIw42o+vpp+t05C01zbo5DO3dcVFcuMmWaxJWfDMm9zM3NRblRiejKuhCpKBMWfG6WlpJjT2S5oIjRwlFMrGNfCvpXya6YZR7sxz84hePvr92LY6wZ+N/h72D49aiaySr6Sb6RDAnJMTskZOScDwsmTs+P8cDoucffcX+7BM+o6Tc02+S/ck3+6RLs7</latexit><latexit sha1_base64="0HQ7GheJ4SkfpREs5MrTCnVmPe4=">AAACfnicbZFRT9swEMedwAYLYxR4nISslbEibSVpEfAyCWkvPDKJFqSmihznUiwcJ7IviCrKl+C78cA34XFuCRKDnmTpr//9zmffxYUUBn3/0XGXlj98XFn95K19Xv+y0drcGpq81BwGPJe5voqZASkUDFCghKtCA8tiCZfxzZ9Z/vIWtBG5usBpAeOMTZRIBWdorah1H2YMrwVWFkoEx7qD+/S3F8YwEari9mZTe8MooHs0RLjDSqR0N8wzmLAosOxuTb0wtERvEdF7TfQXEf0XAlTStItabb/rz4O+F0Ej2qSJ86j1ECY5LzNQyCUzZhT4Bf5k/XHFNAouofbC0kDB+A2bwMhKxTIw42o+vpp+t05C01zbo5DO3dcVFcuMmWaxJWfDMm9zM3NRblRiejKuhCpKBMWfG6WlpJjT2S5oIjRwlFMrGNfCvpXya6YZR7sxz84hePvr92LY6wZ+N/h72D49aiaySr6Sb6RDAnJMTskZOScDwsmTs+P8cDoucffcX+7BM+o6Tc02+S/ck3+6RLs7</latexit>

R

Part	III:	Implementation

Part	III	Implementation

�12

SAPIC calculus
+ verdict function
+ accountability lemmas

SAPIC
multiset rewrite rules
+ lemmas

tamarin-prover
attack / verification

/ timeout

☑ weakest	possible	relation	
☑ arbitrary	relation	(lifting	lemma	offset	to	user)	
☑ control-flow	relation:	
‣ two-trace	lemma:	for	all	t,	t',	if	t	in	related	ωi	and	

ωj,	control-flow	is	the	same		
‣ translate	process	so	it	can	run	"twice",	producing	

two	traces	in	sequence		

Part	IV	case	studies

�13

Automated Verification of Accountability in
Security Protocols

Robert Künnemann, Ilkan Esiyok and Michael Backes
CISPA Helmholtz Center for Information Security

Saarland Informatics Campus

Abstract—Accountability is a recent paradigm in security pro-

tocol design which aims to eliminate traditional trust assumptions

on parties and hold them accountable for their misbehavior. It

is meant to establish trust in the first place and to recognize

and react if this trust is violated. In this work, we discuss a

protocol-agnostic definition of accountability: a protocol provides

accountability (w.r.t. some security property) if it can identify all

misbehaving parties, where misbehavior is defined as a deviation

from the protocol that causes a security violation.

We provide a mechanized method for the verification of

accountability and demonstrate its use for verification and attack

finding on various examples from the accountability and causal-

ity literature, including Certificate Transparency and Kroll’s

Accountable Algorithms protocol. We reach a high degree of

automation by expressing accountability in terms of a set of

trace properties and show their soundness and completeness.

I. CASE STUDIES FOR rw

In this section and Section ??, we demonstrate the feasibility
of our verification approach on various case studies in different
settings. We first concentrate on cases where the weakest
counterfactual relation rw is sufficient, including practical
examples like Certificate Transparency and OCSP-Stapling.

We implemented our translation from accountability prop-
erties to conditions in SAPiC1, which provides support for
arbitrary relations (leaving the proofs for RLR,!i,!j ,Vi,Vj and
RSR,Vi“tSu to the user), the relation rc (as described in Sec-
tion ??) and the weakest possible relation rw (Section ??). Our
fork retains full compatibility with the classic SAPiC seman-
tics, with the extension for liveness properties [2] and operates
without any substantial changes to Tamarin. By default, our
fork preserves multiset rewrite rules contained in its input,
and can thus also serve as a preprocessor for accountability
protocols encoded in Tamarin’s multiset rewriting calculus.

Our findings are summarized in Table I. For each case
study, we give the type (X for successful verification, 7 if
we discovered an attack), the number of lemmas generated by
our translation, the number of additional helping lemmas2 and
the time needed to verify all lemmas (even if an attack was
found). Verification was performed on a 2,7 GHz Intel Core
i5 with 8GB RAM.

1Currently available in the development branch of Tamarin and to be
included in the next release: https://github.com/tamarin-prover/tamarin-prover.

2SAPiC, as well as tamarin, are sound and complete, but the underlying
verification problem is undecidable [1]. Therefore, analyses in SAPiC/Tamarin
sometimes employ helping lemmas to help the verification procedure termi-
nate. Just like security properties, they are stated by the user and verified by
the tool.

TABLE I
CASE STUDIES AND RESULTS.

lemmas # helping
protocol type generated lemmas time

Certificate Transp.
model by Bruni et al X,rw 31 0 41s
extended model X,rw 21 0 50s

OCSP Stapling
trusted resp. X,rw 7 3 945s
untrusted resp. 7,rw 7 3 12s

Centralized monitor
faulty 7,rc 17 0 5s
fixed X,rc 17 0 3s
replication X,rc 17 0 7s

Accountable alg.
modified-1 X,rc 27 1 5792s
modified-2 X,rc 27 1 2047s

(X): verification (7): attack (rw): weak relation (rc): control-flow r.

REFERENCES

[1] Martı́n Abadi and Véronique Cortier. “Deciding knowl-
edge in security protocols under equational theories”. In:
Theoretical Computer Science 387.1-2 (2006).

[2] Michael Backes et al. “A Novel Approach for Reason-
ing about Liveness in Cryptographic Protocols and its
Application to Fair Exchange”. In: EuroS&P. 2017.

[3] Benedikt Schmidt et al. “Automated Analysis of Diffie-
Hellman Protocols and Advanced Security Properties”.
In: CSF. 2012.

APPENDIX

A. Operational semantics

Frames and deduction: Before giving the formal semantics
of SAPiC, we introduce the notions of frame and deduction.
A frame consists of a set of fresh names ñ and a substitution
�, and is written ⌫ñ.�. Intuitively, a frame represents the
sequence of messages that have been observed by an adversary
during a protocol execution and secrets ñ generated by the
protocol, a priori unknown to the adversary. Deduction models
the capacity of the adversary to compute new messages from
the observed ones.

Definition 1 (Deduction). We define the deduction relation

⌫ñ.� $ t as the smallest relation between frames and terms

defined by the deduction rules in Figure 1.

Conclusion

▪ Accountability	is	identifying	misbehaving	parties	
▪ "misbehaving	party"	=	"party	whose	deviation	caused	¬𝜑"	
▪ This	definition	is	practical	and	can	be	verified	automatically	

▪ Ongoing	work:		
▪ integrate	SAPIC	calculus	and	translation	in	tamarin-prover	
▪ see	development	branch	

▪ support	arbitrary	number	of	parties	
▪ accountability	in	the	decentralised	setting	
▪ central	adversary	is	not	w.l.o.g.!	

▪ accountability	in	the	cryptographic	setting	

▪ trace	properties:	👍 	indistinguishability:	🤔

�14

�15

Thank	you!

Why	is	it	so	hard?

�16

soundness: verdict(t) ⊆ dishonest(t)

completeness: verdict(t) ⊇ dishonest(t)

verdict(t) = {P | t|P observably different from spec}

no complete view in the internet :(

verdict(t) = {P | action by P and outside spec caused ¬𝜑}

If P followed spec, she might still cause ¬𝜑!

provocation

This work: {P | Had P followed spec, then 𝜑}

(can imitate protocol)

(e.g., PeerReview)

Case	1:	weakest	possible	relation

▪ Consider	t'	is	related	to	t	iff	corrupt(t')	⊆	corrupt(t)	

▪ Idea:	verdict	function	defined	as	

▪ cases	are	exhaustive	and	exclusive	
▪ sufficiency:	S∈Vi	⇒	∃t.	corrupted(t)=S	and	¬𝜑(t)	

▪ verifiability:	Vi=∅	⟺	𝜑	
▪ minimality:	can't	do	with	less	than	S∈Vi	

▪ uniqueness:	whenever	ωi	is	observed,	parties	in	Vi	are	corrupted	
▪ completeness:	(..	left	out	..)

�17

agreement on how they should relate. We slightly change the
previous monitoring example and discuss why the relation
is important.

Example 2. Assume that the monitor supports a second
mechanism to handle requests. Here, a doctor D1 can also
sign his unusual request and ask his chief of medicine C

to approve it. Assume in trace t, both D1 and C collude
and use this mechanism to effectuate an unusual request,
violating '. Intuitively, one would expect the apv, relying on
logs, to give the verdict ttD1, Cuu. However, D1 could have
used the first mechanism for this request. Hence, there is a
counterfactual trace t1 where only D1 is dishonest. If rpt, t

1
q,

then the more intuitive verdict ttD1, Cuu is not minimal, but
apvP,',rptq “ ttD1uu is minimal, shifting the blame to D1

alone. The intuitive response would be: ‘But that is not what
happened!’, which is precisely what r needs to capture.

We will discuss three approaches for relating factual
and counterfactual traces:

‚ by control-flow: rcpt, t
1
q iff t and t

1 have similar
control-flow. Several works in the causality literature
relate traces by their control-flow [11, 22, 23]. For sim-
plicity, the notion we present (cf. Section 7) captures
only the control-flow of trusted parties, i.e., parties
guaranteed to be never controlled by the adversary. In
case of the example, the control-flow of the trusted
monitor would distinguish these two mechanisms.

‚ by kind of violation: rkpt, t
1
q iff t and t

1 describe
the same kind of violations. This approach is, e.g.,
used in criminal law to solve causal problems where
the classical ‘what-if‘ test fails, e.g., a person was
poisoned, but shot before the poison took effect. ([12,
p. 188]; see also [27, p. 46]). This relation is informal
and depends on intuition.

‚ weakest relation according to Def. 1: rwpt, t
1
q ñ

corruptedpP, t
1
q Ñ corruptedpP, tq. This relation is

conceptually simple and suitable for many protocols in
which collusion is not an issue, i. e., verdicts contain
only singleton sets. Outside this class, it may give un-
intuitive a posteriori verdicts in cases where t requires
collusion, but one of the colluding parties could mount
a possibly very different attack by themselves.

In the next section, we will provide verification condi-
tions for rw. We will then provide more general verification
conditions that apply to arbitrary relations.

3. Verification conditions for rw

In this section, we define a set of verification conditions
parametric in a security property ' and a verdict function.
If these conditions are met, they provide a protocol with
accountability for ' w.r.t. the weakest condition on counter-
factuals rwpt, t

1
q ¨̈“ corruptedpt

1
q Ñ corruptedptq. Each

of these conditions is a trace property and can thus be
verified by off-the-shelf protocol verification tools. In our
case studies, we will use these verification conditions to ver-
ify accountability properties for the Certificate Transparency
protocol.

TABLE 1. VERIFICATION CONDITIONS for rw.

conditions formulae

Exhaustiveness (XH): @t. !1ptq _ ¨ ¨ ¨ _ !nptq

Exclusiveness (XC): @t, i, j. i ‰ j ùñ p!iptq ^ !jptqq

Sufficiency of each !i @S P Vi. Dt.
s.t. Vi ‰ H (SF!i,',S): 'ptq ^ corruptedptq “ S

Verifiability of each !i @t. !iptq ùñ

(V!i,Vi): pVi “ H ñ 'ptqq

Minimality of each Vi @S P Vi @S1
à S

(M',Vi): Et. 'ptq ^ corruptedptq “ S1

Uniqueness of each Vi @t. !iptq ùñ

(U!i,Vi):
î

SPVi
S Ñ corruptedptq

Completeness of each Vi @S Ñ
î

S1PVi
S1

@j. Vj “ tSu ùñ

(CVi): S P Vi.

(t is quantified over tracespP q)

The main idea: we assume the verdict function is de-
scribed as a case distinction over a set of trace properties
!1 to !n. Any of these observations !i is then assigned a
verdict Vi.

Definition 3 (verification conditions). Let verdict be a
verdict function of form:

verdictptq “

$
’&

’%

V1 if !1ptq

...
Vn if !nptq

and ' a predicate on traces. We define the verification
condition �',verdict as the conjunction of the formulae in
Table 1.

We briefly go over these conditions. The case distinction
needs to be exhaustive (XH) and exclusive (XC), because
verdict functions are total. For any observation !i that leads
to a non-empty verdict, any set of parties S in this verdict
needs to be able to produce a violating trace on their own
(SF!i,',S). However, removing any element from S should
make it impossible to produce a violation (M',Vi), due to the
minimality requirement in Def. 1. If an observation leads to
the empty verdict, it needs to imply the security property ',
because accountability implies verifiability (V!i,Vi). When-
ever an observation !i is made, all parties that appear in the
ensuing verdict have necessarily been corrupted (U!i,Vi).
This ensures uniqueness; if there was a second sufficient
and minimal verdict, part of the verdict would correspond
to a trace that corrupts parties that do not appear in the
verdict (details in the proof of completeness, Appendix C).
Finally, if there is a singleton verdict (e.g., Vj “ ttB,Cuu)
containing only parties that appear in another composite
verdict (e.g., Vi “ ttA,Bu, tA,Cuu) then traces that give
the former are related to traces that give the latter (where,
at least, A, B and C were dishonest). Hence the singleton
verdict needs to be included. (CVi).

We show these conditions sound and complete in Ap-
pendix C. Practically, this means that any counter-example

Conclusion

▪ Accountability	via	causation	works	and	can	be	verified	automatically	

▪ Ongoing	work:		
▪ integrate	SAPIC	calculus	and	translation	in	tamarin-prover		
▪ support	arbitrary	number	of	parties	

▪ Accountability	in	the	decentralised	setting	(unpublished	work)	
▪ original	definition	in	decentralised	setting,	parties	deviate	
individually	

▪ provocation	problem	→	centralised	setting	is	not	w.l.o.g.!	
▪ optimality	requirement:	deviating	parties	exchange	no	more	
information	than	necessary.	conjectured	to	be	equal	to	centralised	
setting.

�18

