

Automated Verification of Accountability in Security Protocols

Robert Künnemann, Ilkan Esiyok and Michael Backes

Part I: What we talk about when we talk about accountability

Ontology

Accountability for $\boldsymbol{\phi}$

Why Accountability

Causation

- Event(s) A caused $\neg \varphi$ iff
 - A and $\neg \varphi$, in fact, happened.
 - In any counterfactual where
 A happens, ¬φ happens.
 - A is subset-minimal.

- "Umbrella" caused "not wet", as
 - I had an umbrella and did not get wet.
 - As long as I have my umbrella, I cannot get wet.
 - Without the umbrella, I could get wet.

Causation

- Event(s) A caused $\neg \varphi$ iff
 - A and $\neg \varphi$, in fact, happened.
 - In any counterfactual where
 A happens, ¬φ happens.
 - A is subset-minimal.

- Output all sets of parties S, s.t.
 - $t \models \neg \phi$ and corrupted(t) \supseteq S
 - there is related t' s.t. t' ⊧ ¬φ and corrupt(t')=S,
 - S is subset-minimal.

Part II: Accountability in terms of trace properties

Case 1: weakest possible relation

- Consider t' is related to t iff corrupt(t') ⊆ corrupt(t)
- Idea: verdict function defined as

 $verdict(t) = \begin{cases} V_1 & \text{if } \omega_1(t) \\ \vdots \\ V_n & \text{if } \omega_n(t) \end{cases}$

- cases are **exhaustive** and **exclusive**, and for each i:
- sufficiency: Agents in V_i can produce violating trace
- verifiability: $V_i = \emptyset \iff \varphi$
- **minimality**: can't do with less than $S \in V_i$
- uniqueness: whenever ω_i is observed, parties in V_i are corrupted
- completeness: (omitted)

Case 2: arbitrary relation

- "But that's not what happened" -> relation r between t and t'
- idea for translation: cases are liftings R of relation r
- combination of 11 different conditions, including lifting condition:

$$verdict(t) = \begin{cases} V_1 & \text{if } \omega_1(t) \\ V_2 & \text{if } \omega_2(t) \end{cases} \mathbf{R} \\ V_3 & \text{if } \omega_3(t) \end{cases}$$

Part III: Implementation

Part III Implementation

- weakest possible relation
- □ arbitrary relation (lifting lemma offset to user)
 □ control-flow relation:
 - two-trace lemma: for all t, t', if t in related ω_i and ω_j, control-flow is the same
 - translate process so it can run "twice", producing two traces in sequence

Spe

by

protocol	type	# lemmas generated	# helping lemmas	time
Certificate Transp	7 1			
model by Bruni et al	$\sqrt{r_w}$	31	0	41s
extended model	\checkmark, r_w	21	0	50s
OCSP Stapling				
trusted resp.	\checkmark, r_w	7	3	945s
untrusted resp.	X, r_w	7	3	12s
Centralized monitor				
faulty	X, r_c	17	0	5s
fixed	\checkmark, r_c	17	0	3s
replication	\checkmark, r_c	17	0	7s
Accountable alg.				
modified-1	\checkmark, r_c	27	1	5792s
modified-2	\checkmark, r_c	27	1	2047s

(\checkmark): verification (\checkmark): attack (r_w): weak relation (r_c): control-flow r.

Conclusion

- Accountability is identifying misbehaving parties
- "misbehaving party" = "party whose deviation caused $\neg \phi$ "
- This definition is practical and can be verified automatically

Ongoing work:

- integrate SAPIC calculus and translation in tamarin-prover
 - see development branch
- support arbitrary number of parties
- accountability in the decentralised setting
 - central adversary is not w.l.o.g.!
- accountability in the cryptographic setting
 - trace properties: de indistinguishability: 😕

Thank you!

Case 1: weakest possible relation

- Consider t' is related to t iff corrupt(t') ⊆ corrupt(t)
- Idea: verdict function defined as

 $verdict(t) = \begin{cases} V_1 & \text{if } \omega_1(t) \\ \vdots \\ V_n & \text{if } \omega_n(t) \end{cases}$

- cases are exhaustive and exclusive
- sufficiency: $S \in V_i \Rightarrow \exists t. corrupted(t) = S and \neg \phi(t)$
- verifiability: $V_i = \emptyset \Leftrightarrow \varphi$
- **minimality**: can't do with less than $S \in V_i$
- uniqueness: whenever ω_i is observed, parties in V_i are corrupted
- ompleteness: (.. left out ..)

Conclusion

Accountability via causation works and can be verified automatically

Ongoing work:

- integrate SAPIC calculus and translation in tamarin-prover
- support arbitrary number of parties

Accountability in the decentralised setting (unpublished work)

- original definition in decentralised setting, parties deviate individually
- provocation problem \rightarrow centralised setting is not w.l.o.g.!
- optimality requirement: deviating parties exchange no more information than necessary. conjectured to be equal to centralised setting.