i University of Stuttgart

----------- Institute of
Information Security

= "‘ﬂ
‘ﬂ;_ X

- J .
.I
w
Y T

& P

WIM: An Expressive |
Formal Model of the %
Web Infrastructure

= Ralf Kiisters

2019-06-27

|




Many Web Attacks...
Malicious
L ¥ Attacks on #CDNS
SQL

_ ’Single Sign-on Browser
Cross-Site

. . Server Injection
eques
Attacks on
Forgery _
Browser SeSS|on
DN? _ Browser Management
| eaks of Reblndlng Serl Malicious
Sensitive iframes

Data
BI’OWSGI’ M|SS|ng
DNS Checks
. Server Other
Clickjacking Cross-Site i o
Scripting Injection

Attacks

e ) Browser Browser

Man-in-the Attacks on
middle Cookies
Attacks

2019-06-27 Ralf Kiisters



The web is complex ...

> Network of heterogeneous components

> Large number of complex standards developed Browser

at a high pace by many separate organizations Browser

Server

. and web applications as well.

Server

> More features, more interaction

> Many bugs and errors

2019-06-27 Ralf Kiisters



Finding Vulnerabilities: Current Practice

Expert review Penetration testing

of standards and using tools or manual

implementations analysis

i

CHECKLIST

M e
ion_Swappin

Missing Checks

Cross-Origin Attacks

@ Insecure Connection

Man-in-the-middle

4

2019-06-27 Ralf Kiisters




Downsides

> |t is easy to miss attacks, even for experts
> Pentesting focuses on known attacks
> Finding new attack types depends on the creativity of the experts

> Both methods do not guarantee security, not even for a limited set of attacks

Can we develop a more systematic way of finding
- vulnerabilities, and even prove security

(in @ meaningful model of the web infrastructure as a whole)?

2019-06-27 Ralf Kusters 5




Our Model-Based Approach

— Attacks

|

V

Fixes

security
properties /
/4

application-specific
For instance:

Single Sign-On Standards
and Applications
web infrastructure model (OAuth, OIDC, Financial-
grade API, etc.)

model

2019-06-27 Ralf Kusters 6




This approach can vyield...
* new attacks and respective fixes

* strong security guarantees
excluding even unknown types of

attacks
security

properties

application-specific

model

WIM

web infrastructure model

2019-06-27 Ralf Kusters 7




An Expressive Formal Model of the Web Infrastructure

security
“ properties
&
m .
© application-specific
model
WIiM
web infrastructure model




An Expressive Formal Model of the Web Infrastructure

/ security \
%) .
properties

application-specific

model

web infrastructure model



Prior Web Models

7~ > [Kerschbaum 2007] T

Analysis of CSRF protection in the Alloy model checker i
strschama: diMTTP || method: d/DELETE

™" [Akhawe, Barth, Lam, Mitchell, Song 2010] e
First formal "web model", in Alloy, five case studies R —

|~ > [Bansal, Bhargavan, Maffeis et al. 2012, 2013, 2014] i
Formal web model with many web features, based on ProVerif tool, o = b
new attacks on encrypted cloud storage and OAuth 2.0 -

\_ Very limited web models

Limitations and constraints of tools (e.g., encoding of messages/terms and data structures)

Our approach: goal was a very detailed, close-to-standards web model, (started with) pen-and-paper.

2019-06-27 Ralf Kiisters 10




Further Related Work (Formal Analysis)

> [Kumar et al., 2011-2014]: Alloy-based with BAN logic

> [Bai et al., 2013]: AuthScan + ProVerif

> [Bohannon and Pierce, 2010]
— "Featherweight Firefox"
— Information Flow tracking in web browser core

~— No security policies by default
> [Sabelfeld et al. 2016]: Information-flow security for JavaScript and its APIs
> [Borger et al., 2012]

— Abstract State Machines

— Focus on web server, limited browser model

2019-06-27 Ralf Kiisters 11




The Web Infrastructure Model WIM

> Detailed, comprehensive, and precise formal model

Network interactions
Attacker behavior

DNS servers
Generic web server model

Web browsers

> Summarizes and condenses relevant standards

> Solid basis for security and privacy analyses

of web standards and applications

> Reference model

developers, researchers, teaching, and tool-based analysis

2019-06-27 Ralf Kiisters 12




WIM Network Model and Attackers

Dolev-Yao-Style Model:

Browser - Messages are terms

Browser

- Attacker, Browsers, Servers,

B . .
ity Scripts (honest or malicious)
are Dolev-Yao processes
- Not just a standard Dolev-Yao
vieb- model for protocol analysis, but
Server
rather covers web features,
close to web standards.
Web-

Server
’ Web-
‘ Server

2019-06-27 Ralf Kiisters




The Web Infrastructure Model WIM

> Detailed, comprehensive, and precise formal model

Network interactions
Attacker behaviour
DNS servers

Generic web server model
|Web browsers |

> Summarizes and condenses relevant standards

> Solid basis for security and privacy analyses

of web standards and applications

> Reference model

developers, researchers, teaching, and tool-based analysis

2019-06-27 Ralf Kiisters 14




WIM Web Browser Model

Including ...

* DNS, HTTP, HTTPS 4

tab

* window & document structure

* scripts

[;”&; [”“’ [g (honest ' and mahuous“&)
SR S 2N

(//i/ﬂgS ] N (//; \JS .
! 4 * web storage & cookies
8™
[ J

web messaging & XHR

ifrime iframe iframe iframe ° message headers
/\ (Origin, STS, Location, REM

\ * redirections
5l
%ﬂ Li\%é‘ * security policies VN
i’ O
* WebRTC

* dynamic corruption 5&

2019-06-27 Ralf Kiisters 15




WIM Web Browser Model - Example

quite complex rules

Algorithm 8 Web Browser Model: Process an HTTP response.

I: function PROCESSRESPONSE(response, reference, request, requestUrl, key, f, s')
2 if Set-Cookie € response.headers then
3: for each ¢ €'/ response headers [Set—Coukie], ¢ & Cookies do
4 let s".cookies [request. host]

:= AddCookie(s".cookies [request.host].¢)

5: if Strict-Transport-Security € response.headers A requestUrl.protocol = S then
6: let s'.sts := s".sts +V request.host
7 if Referer € request. headers then
8: let referrer := request headers[Referer]
9: else
10: let referrer := L
11: if Location € response headers /\ response.status € {303,307} then
12: let url := response.headers [Location]
13: if url.fragment = | then
14: let url.fragment := requestUrl.fragment
15: let method' = request.method
16: let body' := request.body
17: if Origin € request headers then
18: let origin := (request headers|Origin|, (request host,url.protocol))
19: else
20: let origin .= L
21: if response.status = 303 A request.method ¢ {GET,HEAD} then
22: let method' := GET
23: let body' := ()

2019-06-27 Ralf Kiisters 16




The Web Infrastructure Model WIM

> Detailed, comprehensive, and precise formal model

Network interactions
Attacker behaviour

DNS servers

Generic web server model
|Web browsers |

> Summarizes and condenses relevant standards

> Solid basis for security and privacy analyses

of web standards and applications

> Reference model

developers, researchers, teaching, and tool-based analysis

2019-06-27 Ralf Kiisters 17




> No language details
> No user interface details (e.g., no clickjacking attacks)
> No byte-level attacks (e.g., buffer overflows)

> Abstract view on cryptography and TLS

Model can in principle be extended to capture these aspects as well.

Trade-off: comprehensiveness vs. simplicity

2019-06-27 Ralf Kiisters 18




An Expressive Formal Model of the Web Infrastructure

/ security \
%) .
properties

application-specific

model

web infrastructure model



An Expressive Formal Model of the Web Infrastructure

application-specific

model

web infrastructure model




WIM Case Studies

> Web single sign-on (SSQO) systems

¥ . TripAdvisor - Registration - Mozilla Firefox . - + X
> Interesting 't :
€ | @ https://www.tripadvisor.com/Register Google B} » | & | Sl = ¥+ @ d O = R | . .
. ing Par r Clien
o tripadyvisor elying Farty (O Clie t)
(DI X D)) L() () () \/)
E— e

Q, What are y——
Facebook - Mozilla Firefox

9 Where are you going?
-

V ||ﬁally Zg)facebnnk.cnm g

¢ Google |

—rviartipte participar
Welcome back, Alice!
ﬂFa:ehnnk

—| High security requiremen
Ildentity Provider

Log in to use your Facebook account with TripAdvisor

Email or Phone: jlice@example.com

Password: XYY YYXYYXYY)
[ | Keep me logged in

Forgot your password?

Log i [N

Ralf Kiisters 21

2019-06-27



WIM Case Studies

' SPRESSO /
https://spresso.me

Mozilla BrowserlD OAuth 2.0 OpenlD Connect

> Discovered severe
attacks against

authentication

> After fixes: Proof of

security

> Special feature privacy:

broken beyond repair

Ralf Kiisters 23

2019-06-27




BrowserlD: Privacy Attack

Information is leaked by the window structure in the user's browser:

|dentity Provider . .
[https://identityprovider.com Cannot be fixed without a

y i major redesign of BrowserlD!

)

2

o Relying Party

i |

o || EECDY % postMessage
)]

O

<

BrowserID iframe

2019-06-27 Ralf Kiisters 24




WIM Case Studies

' SPRESSO
https://spresso.me

Mozilla BrowserlD OAuth 2.0 OpenlD Connect
\_ Y, P

> Discovered severe > Designed from scratch

attacks against
& > First formalized in

authentication

WIM, then
> After fixes: Proof of implemented
securit
Y > First SSO with proven
> Special feature privacy: privacy and security

broken beyond repair

Ralf Kiisters 25

2019-06-27




OAuth 2.0

> SSO framework used for authorization/authentication

> Specified by IETF (RFC6749), very widely used

(e-g.. ETIELEE)

> Many "variables":
optional parameters, public and confidential clients, etc.

> Four different modes of interaction (grants)

ect to rp.com with Access Token AT in URI fragy 3. Redirect to rp.com with Authorization Code AI < 5 3
. T . Ié
ccess URI (w/o token) JRequest URI with AC
3. retrieve d (authz) 4. resou
5. retrieve
il > (authn) 5. logged in ~___
<_ (authz) 6. resol < e
e — ——

Ralf Kiisters 26

2019-06-27




OAuth 2.0

Browser Tripadvisor Facebook

1. "Log in with Facebook"

2. Redirect to Facebook

3. user authentication

4. Redirect to Tripadvisor with Authorization Code AC in URI

5. Request URI with AC

6. retrieve AT using AC

7. retrieve data using AT

2019-06-27 Ralf Kiisters



OAuth 2.0

> SSO framework used for authorization/authentication

> Specified by IETF (RFC6749), very widely used T —

(c.¢.. NETITIE)

> Many "variables":

optional parameters, public and confidential clients, etc.

> Four different modes of interaction (grants)

/

ect to rp.com with Access Token AT in URI fragy 3. Redirect to rp.com with Authorization Code AI < 5 3
. T . Ié
ccess URI (w/o token) JRequest URI with AC
3. retrieve d (authz) 4. resou
5. retrieve
il > (authn) 5. logged in ~___
<_ (authz) 6. resol < e
e — ——

2019-06-27 Ralf Kiisters 28




OAuth 2.0: Security Properties

> Authentication security
Definition 56 (Authentication Property). Let OAuthWS" be an OAuth web system with a net- properties

work attacker. We say that OAuthWS" is secure w.r.t. authentication iff for every run p
of OAuthWS", every state (S7,E7,N7) in p, every r € Clients that is honest in S7, every
i € OAP, every g € dom(i), every u € S, every client service token of the form (n, (u,g))
recorded in S7(r).serviceTokens, and n being derivable from the attackers knowledge in S’
(i.e., n € dg(S’ (attacker))), then the browser b owning u is fully corrupted in S7 (i.e., the value
of isCorrupted is FULLCORRUPT), some 1’ € trustedClients(secretOfID((u, g))) is corrupted in S7,

or ¢ is corrupted in S7.

> Authorization
Definition 55 (Authorization Property). Let OAuthWS" be an OAuth web system with a net-

work attacker. We say that OAuthWS" is secure w.r.t. authorization iff for every run p of
OAuthWS", every state (S7, B/, N7) in p, every OAP i € OAP, every r € Clients U { L} with r
being honest in S7 unless r = L, every u € IDU {L}, for n = resourceOf(i,r,u), n is derivable

from the attackers knowledge in S7 (i.e., n € dy(S7(attacker))), it follows that
1. 7 is corrupted in S7, or

2. u # L and (i) the browser b owning u is fully corrupted in S/ or (ii) some ' €
trustedClients(secretOflD(u)) is corrupted in S7.

Ralf Kiisters 29

2019-06-27




OAuth 2.0: Security Properties

> Session Integrity for authentication ey
Definition 64 (Session Integrity for Authentication). Let OAuthWS"™ be an OAuth web system properties

with web attackers. We say that OAuthWS" is secure w.r.t. session integrity for authentication

iff for every run p of OAuthWS", every processing step Qiogin in p, every browser b that is
honest in Qlogin, every r € Clients that is honest in Qogin, every i € OAP, every identity (u,g),
the following holds true: If in Qogin & service token of the form (n, ((v/, ¢’), m)) for a domain
m € dom(7) and some n, u’, ¢’ is created in r (in Line 38 of Algorithm B.4) and n is sent to the

browser b, then
(a) there is an OAuth Session o € OASessions(p, b, r, 1), and

(b) if ¢ is honest in Qogin then Qlogin is in 0 and we have that

(selectedia(0, b, 7, (u, g)) V selectedyia(0, b, 7, (u, 9))) <= ((u,g) = (v, ¢)) .

> Session Integrity for authorization

(similar to above)

2019-06-27 Ralf Kusters 30




OAuth 2.0: New Attacks é

OAuth 2.0 had been analyzed many times before,

but not in a comprehensive formal model.

2019-06-27 Ralf Kiisters 31




Further Related Work (OAuth 2.0)

> [Bansal et al., 2012-2014]

> [Wang et al., 2013]
— "Explicating SDKs"
— Boogie/Corral

— Extraction of SDK logic, definition of security properties, addition of assume statements,

code verification.

> [Chari, Jutla, Roy, 2011]
— UC model analysis of OAuth Authorization Code Grant

— No web features

> Several empirical studies, focussed on typical implementation errors

2019-06-27 Ralf Kiisters 32




Further Related Work (OpenlD Connect)

> [Mladenov et al., 2016]
— Specific variant of the IDP Mix-Up attack

— No formal model
> [Li, Mitchell, 2016]

— Implementation errors in deployments of Google Sign-In

2019-06-27 Ralf Kusters 33




OAuth 2.0: New Attacks é

OAuth 2.0 had been analyzed many times before,

but not in a comprehensive formal model.

New attacks:

> 307 Redirect Attack

> ldentity Provider Mix-Up Attack (new class of attacks)

> State Leak Attack
> Naive Client Session Integrity Attack

> Across ldentity Provider State Reuse Attack

2019-06-27 Ralf Kiisters 34




OAuth 2.0: IDP Mix-U)7 Attack

Browser

"User will now

log in using
Attacker as IdP"

L *Log n i [P >
2. Redirect to

3. user authentication

4. Redirect to Tripadvisor with Authorization Code AC in URI

5. Request URI with AC

6. retrieve AT using AC

Simplified,

more variants discovered

2019-06-27 Ralf Kusters 35




OAuth 2.0: New Attacks é

OAuth 2.0 had been analyzed many times before,

but not in a comprehensive formal model.

New attacks:

> 307 Redirect Attack

> ldentity Provider Mix-Up Attack (new class of attacks)

> State Leak Attack
> Naive Client Session Integrity Attack

> Across ldentity Provider State Reuse Attack

2019-06-27 Ralf Kusters 36




OAuth: 307 Redirect Attack ()

Browser rp.com Some IdP

1. "Login with IdP."

2. user authentication

3. Redirect to rp.com with AT or AC

4. access URI >
< 5. retrieve data using AT >

Ralf Kiisters 37

2019-06-27




OAuth: 307 Redirect Attack (I1)

Browser D.COM ome IdP

2.a Request user authentication >
< 2.b Request user login
User enters

her login
data 2.c Send username & password

< 3. 307 Redirect to rp.com with AT or AC

4.a Request URI
+ username & password

HTTP Status Code 307:
Redirect repeats POST data

In new request

2019-06-27 Ralf Kusters 38




OAuth 2.0: Proof of Security

A

Proof based on our model of OAuth 2.0 with all grant types and options.
Assumptions:

> Adherence to web best practices

(e.g., regarding session handling)

> Adoption of our implementation guidelines

(e.g., no 3 party scripts on certain web pages)

> Fixes against previously known and new attacks

Theorem 1. Let OAuthWS™ be an OAuth web system with a network attacker, then OAutAMS" is secure
w.r.t. authorization and secure w.r.t. authentication. Let O4utAMS"™ be an OAuth web system with web

attackers, then OAuthM)S" is secure w.r.t. session integrity for authorization and authentication.

2019-06-27 Ralf Kusters 39




OAuth 2.0: Impact

> Disclosed OAuth attacks to the IETF Web Authorization Working Group in late 2015

> Emergency meeting with the working group four weeks later

> Initiated the OAuth Security Workshop (OSW) to foster the exchange between

researchers, standardization groups, and industry

> Joined the working group to codify the fixes into a new RFC:
OAuth 2.0 Security Best Current Practice
[draft-ietf-oauth-security-topics]

2019-06-27 Ralf Kiisters 40




WIM Case Studies

' SPRESSO
https://spresso.me

Mozilla BrowserlD \ OAuth 2.0 Y, QpenID Conne9
> Discovered severe > Designed from scratch *™ Found several new

attacks against attacks

thent; gt' > First formalized in
authentication
WIM, then > Developed fixes and

> After fixes: Proof of implemented implementation

authentication > First SSO with proven guidelines
> Special feature privacy: privacy and security > Proof of security

broken beyond repair

2019-06-27 Ralf Kiisters 41




OpenlD Connect

> OAuth 2.0 was built for authorization, not authentication
> OpenlD Connect: "ldentity Layer" for OAuth 2.0 to solve this

> Includes new extensions:

— Automatic discovery of identity providers
> Out of scope of plain OAuth 2.0

— Dynamic registration of clients at identity providers

~

> New token type ("id token")

> Cryptographic mechanisms, e.g., signed id token

2019-06-27 Ralf Kiisters 42




OpenlD Connect

Results:

> All newly discovered OAuth attacks apply to OpenlD Connect as well
> Implementation guidelines to avoid known attacks

> Proof of security (authentication, authorization, session integrity)

including discovery and dynamic registration extensions

Theorem 2 (Security of OpenID Connect). Let OIDCWS™ be an OIDC web system with a net-
work attacker. Then, OIDOWS" is secure w.r.t. authentication and authorization. Let OIDOWS"™
be an OIDC web system with web attackers. Then, OIDCWS" is secure w.r.t. session integrity

for authentication and authorization.

2019-06-27 Ralf Kiisters 43




WIM Case Studies

' SPRESSO
https://spresso.me

u
/’o" e

Mozilla BrowserlD OAuth 2.0 OpenlD Connect
N /
> Discovered severe > Designed from scratch *™ Found several new > Including extensions
attacks against attacks
thent; gt' > First formalized in > Developed best
authentication _ _ _
WIM, then > Developed fixes and practices against
> After fixes: Proof of implemented implementation known attacks
authentication uidelines
> First SSO with proven & > Proof of security
> Special feature privacy: privacy and security > Proof of security

broken beyond repair

Most recent case study: Financial-grade APl (FAPI)

2019-06-27 Ralf Kiisters 44




Motivation FAPI

> Authorization and authentication in high-risk scenarios

™ Laws and activities for opening financial services to third-party

providers

- nBanking UK: Financial-grade APl already l B
; | ed by major banks in the ! — $

Authorize app: I Y
PP I <L Financial-grade API I < l
P

oaches ! »

Access to banking account

other countries follow 'si

2019-06-27 Ralf Kiisters 45




Overview FAPI

OpenlD Financial-grade API:
— Hardened version of OAuth 2.0 for high-risk use-cases

~ New mechanisms: OAuth 2.0 Token Binding, OAuth 2.0 Mutual TLS, Proof Key for
Code Exchange, JWT Secured Authorization Response Mode

2019-06-27 Ralf Kiisters 46




FAPI: Attacker Model

m Brows

Possible leakages
according to
specification

_ Authorization $
Client

Server

1. Authorization request

< 2. Redirect authorization request + authenticate >

< 3. Authorization response with authorization code C

4. Redirect authorization resp

app client |

4| - f- d
5. Send C misconftigure
token endpoint
< 6. Send access token Al
o

Resource Server

2019-06-27

Ralf Kiisters



Overview FAPI

> OpenlD Financial-grade API:
— Hardened version of OAuth 2.0 for high-risk use-cases

~ New mechanisms: OAuth 2.0 Token Binding, OAuth 2.0 Mutual TLS, Proof Key for Code
Exchange, JWT Secured Authorization Response Mode

> Our Work: formal security analysis of the Financial-grade API
— Formal model of the Financial-grade API based on the Web Infrastructure Model
— Precise definition of security properties
~— During formal analysis: found several attacks bypassing the new mechanisms

~— Proof of security for the fixed Financial-grade API

> Collaborating with OpenlD Foundation to fix the standard

2019-06-27 Ralf Kiisters 48




WIM Case Studies

SPRESSO

https://spresso.me

Mozilla BrowserlD

> Discovered severe > Designed from scratch

attacks against
& > First formalized in

WIM, then

implemented

authentication

> After fixes: Proof of

authentication _ _
> First SSO with proven
> Special feature privacy: privacy and security

broken beyond repair

u
/’o" e

OAuth 2.0

OpenlD Connect

> Found several new > Including extensions

attacks
> Developed best

> Developed fixes and practices against
implementation known attacks

uidelines
& > Proof of security

> Proof of security

Most recent case study: Financial-grade APl (FAPI)

2019-06-27

Ralf Kiisters




An Expressive Formal Model of the Web Infrastructure

application-specific

model

web infrastructure model




WIM: An Expressive Formal Model of the Web Infrastructure

Thank you! > Most detailed and comprehensive formal

model of the web infrastructure so far

> Case studies with real-world impact

ko)
é? security \ > New classes of attacks

properties

rg? > Formal proofs of web security
U/ application-specific with very high level of detail

d | . . .
mode > Designed first privacy-preserving SSO

WIM system: SPRESSO

web infrastructure model

> Currently: mechanized model, in

collaboration with Bhargavan et al.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

