Beyond Labels: Permissiveness for Dynamic Information Flow Enforcement

Elisavet Kozyri^{*}, Fred B. Schneider^{*}, Andrew Bedford[†], Josée Desharnais[†]and Nadia Tawbi[†] Cornell University ^{*}, Laval University[†]

32nd IEEE Computer Security Foundations Symposium

An observation

The designer of a

- dynamic,
- flow-sensitive,
- permissive, and
- sound

information flow mechanism is forced to think about:

```
.
label
label
label
label
label
```

This paper

- Enforcement mechanisms for label chains.
 - Block executions that are deemed unsafe.
 - No leak through enforcement actions (label chains deduction, blocking).
 - Strong threat model: *observation* produced on updates to variables and labels during normally terminated and blocked executions.
- Theorems that relate length of label chains to permissiveness.

More observations on variables and ⇒ Increased labels in chains

Example

if m>0 then w:=h else w:=l end; m:=w; l:=2

- Lattice of labels: $L \sqsubset M \sqsubset H$
- Constants are tagged with L.
- Anchor variable 1 is tagged with fixed L; m with M; h with H.
- *Flexible* variable w is tagged with a *flow-sensitive* label.

A dynamic analysis

m leaks to:

- Principals reading variable 1.
- Principals reading the flow-sensitive label of w.

Strong Threat Model

Metalabels represent sensitivity of labels

But, what is the sensitivity of the metalabel of w?

Label chains

 \bullet A variable $\mathbf x$ is associated with label chain

$$T^{i+1}(x)$$
 is the sensitivity of $T^{i}(x)$.

- Flexible variable: the entire label chain is updated at every assignment
- Anchor variable: T(x) is fixed $\langle \ell_1, \bot, ..., \bot, ... \rangle$
- Monotonically decreasing: $\ell_1 \sqsupseteq \ell_2 \sqsupseteq \cdots \sqsupseteq \ell_i \sqsupseteq \cdots$

Why monotonically decreasing label chains?

Consider, instead, a non-monotonically decreasing label chain for $\times:$ $\langle L\,,H\,,\,...\,\rangle$

- \bullet Principals assigned label L are authorized to read the value in ${\bf x}.$
- When read access to x succeeds, these principals conclude that T(x)=L.
- So, principals assigned L learn the value of T(x), even though the sensitivity of T(x) is H.

Enforcer ∞-Enf: assignment to flexible variable

 $T^{i}(w) \coloneqq T^{i}(e) \sqcup T^{i}(ctx) \sqcup \cdots \sqcup T^{2}(ctx) \sqcup T(ctx)$ in ctx

Enforcer ∞-Enf: assignment to flexible variable

 $\forall i: \ T^{i}(w) \coloneqq T^{i}(e) \ \sqcup \ T^{i}(ctx) \sqcup \cdots \sqcup T^{2}(ctx) \sqcup T(ctx)$

But, due to monotonically decreasing label chains, simplifies to:

$$\forall i: T^i(w) \coloneqq T^i(e) \sqcup T(ctx)$$

Enforcer ∞-Enf: assignment to anchor variable

Enforcer ∞-Enf: assignment to anchor variable

$$\boldsymbol{G} \quad \Rightarrow \quad (T(e) \sqcup T(ctx) \sqcup T(\boldsymbol{G}) \sqsubseteq T(a))$$

Given monotonically decreasing label chains, a solution for G is : • $T(e) \sqcup T(ctx) \sqsubseteq T(a)$

Enforcer ∞-Enf: assignment to anchor variable

Given monotonically decreasing label chains, a solution for G is :

• $T(e) \sqcup T(ctx) \sqsubseteq T(a)$

∞-Enf satisfies Block-safe Noninterference (BNI)

No leak through variables, label chains, and blocking.

Termination Insensitive NonInterference

 $\tau = trace_E(C, M)$ terminates normally $\tau' = trace_E(C, M')$ terminates normally

Termination Sensitive NonInterference

$$\tau = trace_E(C, M)$$

$$\tau' = trace_E(C, M')$$

Enforcer k-Enf

For $k \ge 2$:

- k-Enf is based on ∞ -Enf to compute the first k labels of chains.
- *k*-Enf conservatively approximates the sensitivity of T^k(x) to be itself:
 T^{k+1}(x) = T^k(x).
- k-Enf generates observations for the first k labels.
- [Thm] k-Enf satisfies BNI.
- k-Enf conservatively approximates
 - $\langle \ell_1, \ell_2, \dots, \ell_k, \ell_{k+1}, \dots \rangle$ with
 - $\langle \ell_1, \ell_2, \dots, \ell_k, \ell_k \rangle$.

What is it lost when shorter chains approximate longer chains?

Permissiveness

- An enforcer E is *at least as permissive as* an enforcer E', iff
 - Traces of E are at least as long as E', and
 - E produces at most as restrictive label chains as E'.
- So, E generates at least as many observations on variables and labels as E'.

Permissiveness is lost when shorter chains approximate longer chains

- Assume enforcers E and E' satisfy BNI.
- E produces label chain Ω for flexible variable w at a particular program point.
- E' produces label chain Ω ' for w at that program point.

$$\begin{array}{cccc} \Omega: & \langle \boldsymbol{\ell}_1, \boldsymbol{\ell}_2, \dots, \boldsymbol{\ell}_i^{\neg} \boldsymbol{\ell}_{i+1}, \dots, \boldsymbol{\ell}_k \rangle & \stackrel{k-precise \text{ with}}{\boldsymbol{\ell}_i \sqsupset \boldsymbol{\ell}_{i+1}} \\ & \Pi & \Pi \\ \\ \text{Loss of} & \boldsymbol{\Omega}': & \langle \boldsymbol{\ell}_1, \boldsymbol{\ell}_2, \dots, \boldsymbol{\ell}_i, & \boldsymbol{\ell}_i, \dots, \boldsymbol{\ell}_i \rangle & i-dependent \\ \text{permissiveness} \end{array}$$

Does such an Ω arise?

Ω:
$$\langle \ell_1, \ell_2, \dots, \ell_i, \ell_{i+1}, \dots, \ell_k \rangle$$

 $\begin{pmatrix} k - precise with \\ \ell_i \sqsupset \ell_{i+1} \end{pmatrix}$

- Arbitrary initialization.
 - Ω can be associated with flexible variable w at initialization.
- Common initialization.
 - All flexible variables are initially associated with $\langle \bot, \bot, ..., \bot \rangle$.
 - [Thm] We have designed an enforcer that can associate Ω with w during execution of a command.
 - Optimization of *k*-Enf.

So, Ω can arise!

- Assume enforcers E and E' satisfy BNI.
- E produces label chain Ω for flexible variable w at a particular program point.
- E' produces label chain Ω ' for w at that program point.

$$\Omega: \quad \langle \ell_1, \ell_2, \dots, \ell_i, \ell_{i+1}, \dots, \ell_k \rangle \qquad \begin{array}{c} k \text{-precise with} \\ \ell_i \sqsupset \ell_{i+1} \end{array}$$

$$\Omega: \quad \langle \ell_1, \ell_2, \dots, \ell_i, \quad \ell_i, \dots, \ell_i \rangle \qquad i\text{-dependent}$$
Loss of
$$\Omega: \quad \langle \ell_1, \ell_2, \dots, \ell_i, \quad \ell_i, \dots, \ell_i \rangle \qquad i\text{-dependent}$$
permissiveness

[Thm] E' cannot be as permissive as E.

Changing threat model

- Strong threat model:
 - Principals observe updates to variables and labels in chains.
- Weakened threat model:
 - Principals only observe updates to variables.

How does the relation between permissiveness and label chain length change?

Weakened threat model

- [Thm] Enforcers that use label chains of length one are not at least as permissive as 2-Enf for lattice ({L, M, H}, ⊑).
 - With 2-Enf, the second label in a label chain enables the decision to block assignments to be more permissive.
- Open question: Are label chains with more than two elements useful under the weakened threat model?

Two-level lattice

- For the weakened threat model, one label is enough:
 - [Thm] Permissiveness is not lost comparing to 2-Enf.

Η

Ш

From 30,000 feet...

- To increase permissiveness, we add metadata.
- But metadata might encode sensitive information.
- To prevent leaks without harming permissiveness, add more metadata.
- But storage is finite.
- So, there are storage VS permissiveness trade-offs.

Summary: longer label chains provide increased permissiveness

		Chain length > 1	Chain length > 2
Strong	Arbitrary Initialization		
	Common Initialization		
Weakened (common initialization)	3-level lattice		
	2-level lattice	X	X