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abstractions not enforced when compiling 
and linking with adversarial low-level code

• all source-level security guarantees are lost
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HACL* library Firefox web browser

ASM ASM

Insecure interoperability: linked code can read and write
data and code, jump to arbitrary instructions, smash the stack, ...

~100.000 LOC in F* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

160x

, in practice
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We need secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning
– linked adversarial target code cannot break the security of 

compiled program any more than some linked source code

– no "low-level" attacks
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• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

• When context passes in bad input value (e.g. ill-typed):

– lunch the missiles - breaks Robust Safety Preservation

– or loop forever - breaks Robust Liveness Preservation

– or leak secret inputs - breaks Robust NI Preservation

• Yet this doesn't break full abstraction or compiler correctness!

• Full abstraction only ensures code confidentiality

– no integrity, no safety, no data confidentiality, ...
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back-translating
context

∀CT∃CS∀P∀t...

[New et al,ICFP'16] 
generic technique
applicable
back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

[Jeffrey & Rathke, ESOP'05]
[Patrignani et al,TOPLAS'15]

for simple translation from statically to dynamically typed 
language with first-order functions and I/O

strongest
criterion

achievable
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Some open problems

• Practically achieving
secure interoperability with lower-level code

– more realistic languages and compilation chains

• Verifying robust satisfaction for source programs

– program logics, logical relations, partial semantics, ...

• Different traces for source and target semantics

– connected by some arbitrary relation

– mappings between source and target properties

– interesting even for correct compilation
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