
Journey Beyond Full Abstraction:
Exploring Robust Property Preservation

for Secure Compilation

Carmine
Abate

Deepak
Garg

Marco
Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS Stanford
& CISPA

Inria ParisInria Paris Inria Paris

Rob
Blanco

Inria Paris

Good programming languages provide
helpful abstractions for writing more secure code

2

Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, interfaces,
correctness and security specifications, ...

2

Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, interfaces,
correctness and security specifications, ...

2

abstractions not enforced when compiling
and linking with adversarial low-level code

Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, interfaces,
correctness and security specifications, ...

2

abstractions not enforced when compiling
and linking with adversarial low-level code

• all source-level security guarantees are lost

HACL* verified cryptographic library, in practice

3

HACL* library

~100.000 LOC in F*

HACL* verified cryptographic library, in practice

3

HACL* library Firefox web browser

~100.000 LOC in F* 16.000.000+ LOC in C/C++ 160x

, in practice

HACL* verified cryptographic library, in practice

3

HACL* library Firefox web browser

ASM ASM

~100.000 LOC in F* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

160x

, in practice

HACL* verified cryptographic library, in practice

3

HACL* library Firefox web browser

ASM ASM

Insecure interoperability: linked code can read and write
data and code, jump to arbitrary instructions, smash the stack, ...

~100.000 LOC in F* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

160x

, in practice

We need secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code

4

We need secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

4

We need secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning

4

We need secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning
– linked adversarial target code cannot break the security of

compiled program any more than some linked source code

4

We need secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning
– linked adversarial target code cannot break the security of

compiled program any more than some linked source code

– no "low-level" attacks

4

Robustly preserving security

5

Robustly preserving security

source
context

source secure
program

5

source
context∀

Robustly preserving security

source
context

source secure
program

5

source
context∀

Robustly preserving security

source
context

target
context

source

compiled

compiler

secure

secure

program

program

5

source
context∀

target
context∀

⇒

Robustly preserving security

source
context

target
context

source

compiled

compiler

secure

secure

program

program

no extra powerprotected

5

But what should "secure" mean?

source
context∀

target
context∀

⇒

6

What properties should we robustly preserve?

6

What properties should we robustly preserve?

trace properties
(safety & liveness)

6

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

6

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

6

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

6

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

No one-size-fits-all security criterion

6

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

No one-size-fits-all security criterion

6

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

No one-size-fits-all security criterion

6

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

6

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

Robust Trace Property Preservation

7

source
context

target
context

source
program

compiled
program

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source programs.
∀π trace property.

⇒

⇝t⇒ t∈π

property-based characterization

⇝t⇒ t∈π

what one might want to achieve

Robust Trace Property Preservation

7

source
context

target
context

source
program

compiled
program

source
context∃

target
context∃

.

.

compiler

∀source programs.
∀(bad/attack) trace t.

⇒

source
context

target
context

source
program

compiled
program

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source programs.
∀π trace property.

⇒

⇝t⇒ t∈π

property-based characterization

⇝t⇒ t∈π

property-free characterization

⇔

⇝t

⇝t

back-
translation

what one might want to achieve how one can prove it

8

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of the proof difficulty is manifest in
property-free characterization

8

back-translating
finite trace prefix
∀P∀CT∀m≤t∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of the proof difficulty is manifest in
property-free characterization

8

back-translating
finite trace prefix
∀P∀CT∀m≤t∃CS...

back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of the proof difficulty is manifest in
property-free characterization

8

back-translating
finite trace prefix
∀P∀CT∀m≤t∃CS...

back-translating
prog & context
∀P∀CT∃CS∀t...

back-translating
context

∀CT∃CS∀P∀t...

back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of the proof difficulty is manifest in
property-free characterization

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

9

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully studied the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

9

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully studied the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

• Introduced relational (hyper)properties (new classes!)

9

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully studied the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

• Introduced relational (hyper)properties (new classes!)

• Clarified relation to full abstraction ...

9

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully studied the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

• Introduced relational (hyper)properties (new classes!)

• Clarified relation to full abstraction ...

• Embraced and extended proof techniques ...

9

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully studied the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

• Introduced relational (hyper)properties (new classes!)

• Clarified relation to full abstraction ...

• Embraced and extended proof techniques ...

9
https://github.com/secure-compilation/exploring-robust-property-preservation

https://github.com/secure-compilation/exploring-robust-property-preservation

Where is Full Abstraction?

10

(i.e. robust behavioral equivalence preservation)

without internal nondeterminism,
full abstraction is here

Where is Full Abstraction?

10

(i.e. robust behavioral equivalence preservation)

without internal nondeterminism,
full abstraction is here

Where is Full Abstraction?

10

doesn't imply any other criterion

(i.e. robust behavioral equivalence preservation)

Full abstraction does not imply
any other criterion in our diagram

11

Full abstraction does not imply
any other criterion in our diagram

• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

11

Full abstraction does not imply
any other criterion in our diagram

• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

• When context passes in bad input value (e.g. ill-typed):

11

Full abstraction does not imply
any other criterion in our diagram

• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

• When context passes in bad input value (e.g. ill-typed):

– lunch the missiles - breaks Robust Safety Preservation

11

Full abstraction does not imply
any other criterion in our diagram

• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

• When context passes in bad input value (e.g. ill-typed):

– lunch the missiles - breaks Robust Safety Preservation

– or loop forever - breaks Robust Liveness Preservation

11

Full abstraction does not imply
any other criterion in our diagram

• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

• When context passes in bad input value (e.g. ill-typed):

– lunch the missiles - breaks Robust Safety Preservation

– or loop forever - breaks Robust Liveness Preservation

– or leak secret inputs - breaks Robust NI Preservation

11

Full abstraction does not imply
any other criterion in our diagram

• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

• When context passes in bad input value (e.g. ill-typed):

– lunch the missiles - breaks Robust Safety Preservation

– or loop forever - breaks Robust Liveness Preservation

– or leak secret inputs - breaks Robust NI Preservation

• Yet this doesn't break full abstraction or compiler correctness!

11

Full abstraction does not imply
any other criterion in our diagram

• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

• When context passes in bad input value (e.g. ill-typed):

– lunch the missiles - breaks Robust Safety Preservation

– or loop forever - breaks Robust Liveness Preservation

– or leak secret inputs - breaks Robust NI Preservation

• Yet this doesn't break full abstraction or compiler correctness!

• Full abstraction only ensures code confidentiality

– no integrity, no safety, no data confidentiality, ...

11

Embraced and extended™ proof techniques

12

for simple translation from statically to dynamically typed
language with first-order functions and I/O

Embraced and extended™ proof techniques

12

back-translating
context

∀CT∃CS∀P∀t...

[New et al,ICFP'16]

for simple translation from statically to dynamically typed
language with first-order functions and I/O

strongest
criterion

achievable

Embraced and extended™ proof techniques

12

back-translating
context

∀CT∃CS∀P∀t...

[New et al,ICFP'16]
generic technique
applicable
back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

[Jeffrey & Rathke, ESOP'05]
[Patrignani et al,TOPLAS'15]

for simple translation from statically to dynamically typed
language with first-order functions and I/O

strongest
criterion

achievable

Some open problems

• Practically achieving
secure interoperability with lower-level code

– more realistic languages and compilation chains

13

Some open problems

• Practically achieving
secure interoperability with lower-level code

– more realistic languages and compilation chains

• Verifying robust satisfaction for source programs

– program logics, logical relations, partial semantics, ...

13

Some open problems

• Practically achieving
secure interoperability with lower-level code

– more realistic languages and compilation chains

• Verifying robust satisfaction for source programs

– program logics, logical relations, partial semantics, ...

• Different traces for source and target semantics

– connected by some arbitrary relation

– mappings between source and target properties

– interesting even for correct compilation

13

My dream: secure compilation at scale

14

HACL*language

My dream: secure compilation at scale

14

HACL*

C language
+ components
+ memory safety

language

My dream: secure compilation at scale

14

HACL*

C language
+ components
+ memory safety

language

My dream: secure compilation at scale

14

HACL*

memory safe
C component

legacy C
component

ASM
component

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

language

My dream: secure compilation at scale

14

HACL*

memory safe
C component

legacy C
component

ASM
component

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

language

My dream: secure compilation at scale

14

HACL*

memory safe
C component

legacy C
component

ASM
component

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

language

Journey Beyond Full Abstraction

• First to explore space of secure compilation criteria
based on robust property preservation

• Carefully studied the criteria and their relations

– Property-free characterizations

– implications, collapses, separations results

• Introduced relational (hyper)properties (new classes!)

• Clarified relation to full abstraction ...

• Embraced and extended proof techniques ...

15
https://github.com/secure-compilation/exploring-robust-property-preservation

https://github.com/secure-compilation/exploring-robust-property-preservation

