Information Flow Control
for Distributed Trusted
Execution Environments

Anitha Gollamudi Owen Arden
Stephen Chong

el HARVARD

‘EE| UNIVERSITY

giaore. UNIVERSITY OF CALIFORNIA

‘_.'/. > —— —a (\\:.,.
AT TR
HZLA VT
{H 7008)
ATAY s TR S
..""{ 3’__ -] s .:.
1 -. .-‘ l j

Trusted Execution Environment
(TEE)

® Protected memory region for code
and data

® Offers isolated execution and remote
attestation

® Only host can communicate with TEE
® Hardware feature

® c.g. Intel SGX, ARM TrustZone

® Good fit for offering security in
distributed settings

TEEs #& Security Guarantees

TEEs # Security Guarantees

A Y., if secret
« 'F . send cipher on public
P — - else ()

I ———

TEEs # Security Guarantees

TEEs # Security Guarantees

/ | v, | it secret
...... .. R
Gl e 71 sy-er on public
S me
. else

Information Flow Control (IFC) techniques!

3

IFC for Distributed TEEsS:
Challenges

IFC for Distributed TEEsS:
Challenges

1. Choose right abstractions for crypto and TEEs
® Focus on application-level security
® Reflect the capabilities and limitations of TEEs
® c.g. TEE can communicate only with the host

® Implementable!

IFC for Distributed TEEsS:
Challenges

1. Choose right abstractions for crypto and TEEs
® Focus on application-level security
® Reflect the capabilities and limitations of TEEs
® c.g. TEE can communicate only with the host
® Implementable!

2. Enforce security

Contributions

Contributions

1. Distributed Flow-limited Authorization calculus for TEEs
(DFLATE)

® Supports distributed TEEs

® Design mapping to real system

Contributions

1. Distributed Flow-limited Authorization calculus for TEEs
(DFLATE)

® Supports distributed TEEs
® Design mapping to real system
2. A permissive security type system

® Enforces security (noninterference) for confidentiality
and integrity

DFLATE

® Simply typed lambda calculus extended with
® Communication primitives (send /receive /spawn)
® Abstractions for crypto and TEE

® Security types

Address Challenge #1

1. Choose right abstractions for crypto and TEEs

Communication

Alice (a) Bob (b)

send blue on ch, recv ch, as x in

Communication

»y “ A
|) ch,,

“
Alice (a) Bob (D)
send blue on ch,, recv ch,, as x in

Communication

Alice (a) Bob (b)

send blue on chy, recv ch,, as x in

Securing Communication

e channel

if secret
send blue on public

else ()

e ———

Securing Communication

if secre t
send blue on publ

else ()

e ——

1C
channe
x

Securing Communication

1C
channe
x

if secre t

send blue on publ
else ()

S — T—

Securing Communication

channel
1f secret
send blue on publ

ic
else ()

e ———

Security labels on channels prevent leaks due to
communication

Communication through trusted /untrusted nodes

Communication through trusted /untrusted nodes

° Bob can not learn /modify the content of the message
® Bob may learn the existence of the message

Bob can learn the message received from Alice

Communication through trusted /untrusted nodes

° Bob can not learn /modify the content of the message
® Bob may learn the existence of the message

Bob can learn the message received from Alice

Communication through trusted /untrusted nodes

° Bob can not learn /modify the content of the message
® Bob may learn the existence of the message

Bob can learn the message received from Alice

Communication through trusted /untrusted nodes

2a

2b

Carol must not learn the contents of the blue message

12

2a

2b

Carol must not learn the contents of the blue message

12

\?l_ /

Bob cannot learn/modify the orange message

Support for communication with enclaves

13

DFLATE abstracts crypto mechanisms
using protected expressions

14

Protected Expression

Protected Expression

Protected Expression

- ch,,
(1, 42)
“ Protected

expression

Protected expressions abstract
encryption and signing

15

Protected Expression

(n,42) hastype a says int

16

Operating on Protected
Expressions

recv ch, as enc in

send (1, 42) on ch,, bind x = enc in

(f x)

Bind abstracts
decryption and signature verification

17

Operating on Protected
Expressions

recv ch,, as enc in

send (g 42) on chy,
(f x)

Bind abstracts
decryption and signature verification

17

Secure Bind

recv ch, as enc in

send (1, 42) on ch,, bind x = enc in

(f %)

To successtully decrypt,
Alice must authorize Bob

18

Bob = Alice

Principals delegate authority using acts-for (>)

19

Bob = Alice

Principals delegate authority using acts-for (>)

19

Delegation of Authority

assume b > a in recv ch,, as enc in
send (1, 42) on ch,, bind x = enc in
(f x)

20

Delegation of Authority

n/l'_
S5 ,\

1)
~

-4
" \

&
L

X “chy,
Q (na 42)

-

assume b Z aln recv ch, as enc in

send (1, 42) on ch b(l;ld) x = enc in
X

20

Delegation of Authority

assume b > a 1n recv ch, as enc in

send (1, 42) on ch b(l;ld) x = enc in
X

Assume abstracts key sharing among principals

20

N

b must not learn / modify the content of the message

b may learn the existence of the message

Bob can learn the message received from Alice

21

N

b must not learn / modify the content of the message

b may learn the existence of the message

Bob can learn the message received from Alice

21

® Bob must not learn /modify the content of the message
® Bob may learn the existence of the message

Bob can learn the message received from Alice

Types enable reasoning about Bob’s power

21

Secure Bind (2)

assume b > a in recv ch,, as enc in
send (17, 42) on chy, bind x = enc in
(f x)

22

Secure Bind (2)

recv ch,, as enc in

assume b > a in
send (17, 42) on ch,, blnd X = enc in

Bob must not leak the decrypted value

22

Secure Bind (2)

ass: recv ch,, as enc in
S ac7 bind x = enc in
(f x)

The output type of bind must protect Alice

23

Secure Bind (2)

recv ch,, as enc in
d E T bind x = enc in
(f x)

The output type of bind must protect Alice

23

- I |
,?a says T

Y |
, ?a says r

Carol must not learn the contents of the blue message

Type system ensures that Bob uses the decrypted
value securely

assume t > a in
send (1, blue) on ch,

recv ch,, as x TEE! {

send x on ch,
send v on chy,

}

recv ch,, as x’in

Abstracting TEE

25

assume t > c in
recv chy,. as x in

assumet > c in

recv ch, as x TEEt {

assume > a in

send (17, blue) on S%Hd X on Chbt

recv chy,. as x in

send v on chy,

}
Abstracting TEE

recv ch,, as x'in

25

Computation
principal

assume ¢ > a in assume ¢ > ¢ in

recv Chab dsS X TEEt {
send (7, blue) on &gbnd X 0on Chbt e

recv chy,. as x in

send v on ch,

}
Abstracting TEE

recv ch,, as x'in

25

assume > a in
send (1, blue) on ch,

recv ch, as x TEE! {

send ch,, x then
send v on chy,

J

recv chy, as x'in

Abstracting TEE

20

assume t > ¢ in
recv chy,, as x in

assume f = c in

assume A ; d in recv Chab as x TEEt {
recv chy,. as x 1n

send (1, blue) on ch jend o, «then

recv chy, as x'in send v on cfy,

J

Abstracting TEE

20

Bob cannot learn/modify the orange message

27

Bob cannot learn/modify the orange message

27

Implementing
DFLATE

Design

® DFLATE abstractions are implementable!

29

Design

® DFLATE abstractions are implementable!
® TEEs can be implemented by Intel SGX enclaves
® SGX provides remote attestation

® SGX enclave communicates through the host

29

Design

® DFLATE abstractions are implementable!

® TEEs can be implemented by Intel SGX enclaves
® SGX provides remote attestation
® SGX enclave communicates through the host

® Protected expressions can be implemented using public key encryption and
digital signatures

® However, this requires access to the corresponding signing /decryption
keys

e Key distribution, especially for enclaves, is non-trivial

29

Key Distribution

® A global key master has key pairs for all principals

® Key master provisions the nodes and enclaves with
necessary private keys

30

Key Distribution

Key Master

To obtain keys, a node proves its identity to
the key master

Key Distribution

T R "\
Shwvieee “.

SEGIIIE -\
| 71{1 .{('dfé’ - D
e N o Y

‘‘‘‘‘‘

................
pv A N ~r A :

Key Master

To obtain keys, a node proves its identity to
the key master

Key Distribution

- SECURE 2N
& D Ny ”
& Ce’?t? lecate .
. : J :r‘.r/.- ,__." \

Key Master

To obtain keys, a node proves its identity to
the key master

Key Distribution

 SECURE AN
Coaiifoate
- Ceztefreate
2 ' ';-‘"/.. b i
.(--1 1 ViAaAYS .' l:: =)

- " 1
g - L
(] -
,"." 1Y
[1/ 3

Key Master

To obtain keys, a node proves its identity to
the key master

Key Distribution

Key Master

To obtain keys, an enclave attests itself to
the key master

Key Distribution

Key Master

To obtain keys, an enclave attests itself to
the key master

Key Distribution

; ? / Key Master

To obtain keys, an enclave attests itself to
the key master

2.

Address Challenge #2

Enforce security

Security

® Formal definition of security is noninterference (NI)

® Confidentiality NI: private inputs can’t influence public
outputs

® Integrity NI: Low integrity inputs can’t influence high
integrity outputs

® Type system enforces security

34

Example Revisited

Ah, secret is 1

» yf secret
.=+ " send cipher on public

/ | — ———

35

Example Revisited

. . yf secret
"~ E _ . send cip public
O — /

Program is ill-typed

35

Confidentiality Theorem

Secret inputs
from Alice

Confidentiality Theorem

Public outputs
S

Secret inputs \\n o=

from Alice

36

Confidentiality Theorem

\

ti t
Secret inputs l Public outputs

from Alice

36

Integrity Theorem

Untrusted inputs
from Bob .

Trusted outputs
to Carol

——— e —

37

Integrity Theorem

Untrusted inputs

Trusted outputs
from Bob |

to Carol

37

Compromised-node
Noninterference

38

Compromised-node
Noninterference

Trace for blue execution

A

38

Compromised-node
Noninterference

Trace for blue execution

A

¢
. . race for green execution
A
_— ‘

Traces observed (by Bob) for executions with

different secret inputs are equal

Compromised-node
Noninterference

39

Compromised-node
Noninterference

Trace for blue execution

A

39

Compromised-node
Noninterference

Trace for blue execution

A

race for green execution

Traces observed can be different

39

Confidentiality vs Integrity
GGuarantees

® Asymmetry due to the ability to suppress messages

® Faithfully models the expressive power of the integrity
attacker

e Without undermining the guarantees of cryptography
and TEEs

40

Conclusion

® DFLATE: A programming model for distributed TEEs
® Design for implementing the abstractions in DFLATE

® DFLATE enforces confidentiality and integrity

41

Backup Slides

Nested Protection

Nested Protection

Nested Protection

(7719 (1, 42)) has type b says a says int

43

send ch, (n, my,,,) recv ch, as x in
send ch,. x

44

send ch, (n, my,,,) assume b > a in
recv ch, as x in

send chy,, x

45

send ch) (. m) assume b > a 1n

recv ch, as x in

Malicious
declassification

send ch,,. x

45

>)
send ch) (. m) assume b > a 1n

recv ch, as x in

Malicious
declassification

send ch,,. x

Type system prevents malicious
declassifications and endorsements

45

assume b =
recv ch,, as

send ch_, (n, my,.)

send ch,,. x

Insufficient authority to add delegation

46

