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Trusted Execution Environment
(TEE)

® Protected memory region for code
and data

® Offers isolated execution and remote
attestation

® Only host can communicate with TEE
® Hardware feature

® c.g. Intel SGX, ARM TrustZone

® Good fit for offering security in
distributed settings
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Information Flow Control (IFC) techniques!
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Contributions

1. Distributed Flow-limited Authorization calculus for TEEs
(DFLATE)

® Supports distributed TEEs
® Design mapping to real system
2. A permissive security type system

® Enforces security (noninterference) for confidentiality
and integrity



DFLATE

® Simply typed lambda calculus extended with
® Communication primitives (send /receive /spawn)
® Abstractions for crypto and TEE

® Security types



Address Challenge #1

1. Choose right abstractions for crypto and TEEs



Communication

Alice (a) Bob (b)

send blue on ch, recv ch, as x in
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Securing Communication
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Securing Communication

channel
1f secret
send blue on publ

ic
else ()

e ———

Security labels on channels prevent leaks due to
communication
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Bob can learn the message received from Alice
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Carol must not learn the contents of the blue message
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Carol must not learn the contents of the blue message
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Bob cannot learn/modify the orange message

Support for communication with enclaves
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DFLATE abstracts crypto mechanisms
using protected expressions
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Protected Expression

- ch,,
(1, 42)
“ Protected

expression

Protected expressions abstract
encryption and signing
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Protected Expression

(n,42) hastype a says int
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Operating on Protected
Expressions

recv ch, as enc in

send (1, 42) on ch,, bind x = enc in

(f x)

Bind abstracts
decryption and signature verification
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Operating on Protected
Expressions

recv ch,, as enc in

send (g 42) on chy,
(f x)

Bind abstracts
decryption and signature verification
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Secure Bind

recv ch, as enc in

send (1, 42) on ch,, bind x = enc in

(f %)

To successtully decrypt,
Alice must authorize Bob

18



Bob = Alice

Principals delegate authority using acts-for (>)
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Bob = Alice

Principals delegate authority using acts-for (>)
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Delegation of Authority

assume b > a in recv ch,, as enc in
send (1, 42) on ch,, bind x = enc in
(f x)
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Delegation of Authority
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Delegation of Authority

assume b > a 1n recv ch, as enc in

send (1, 42) on ch b(l;ld) x = enc in
X

Assume abstracts key sharing among principals
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Bob can learn the message received from Alice
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b must not learn / modify the content of the message

b may learn the existence of the message

Bob can learn the message received from Alice
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® Bob must not learn /modify the content of the message
® Bob may learn the existence of the message

Bob can learn the message received from Alice

Types enable reasoning about Bob’s power
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Secure Bind (2)

assume b > a in recv ch,, as enc in
send (17, 42) on chy, bind x = enc in
(f x)
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Secure Bind (2)

recv ch,, as enc in

assume b > a in
send (17, 42) on ch,, blnd X = enc in

Bob must not leak the decrypted value
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Secure Bind (2)

ass: recv ch,, as enc in
S ac7 bind x = enc in
(f x)

The output type of bind must protect Alice
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Secure Bind (2)

recv ch,, as enc in
d E T bind x = enc in
(f x)

The output type of bind must protect Alice
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- I |
,?a says T

Y |
, ?a says r

Carol must not learn the contents of the blue message

Type system ensures that Bob uses the decrypted
value securely



assume t > a in
send (1, blue) on ch,

recv ch,, as x TEE! {

send x on ch,
send v on chy,

}

recv ch,, as x’in

Abstracting TEE

25

assume t > c in
recv chy,. as x in



assumet > c in

recv ch, as x TEEt {

assume > a in

send (17, blue) on S%Hd X on Chbt

recv chy,. as x in

send v on chy,

}
Abstracting TEE

recv ch,, as x'in
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Computation
principal

assume ¢ > a in assume ¢ > ¢ in

recv Chab dsS X TEEt {
send (7, blue) on &gbnd X 0on Chbt e

recv chy,. as x in

send v on ch,

}
Abstracting TEE

recv ch,, as x'in
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assume > a in
send (1, blue) on ch,

recv ch, as x TEE! {

send ch,, x then
send v on chy,

J

recv chy, as x'in

Abstracting TEE
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assume t > ¢ in
recv chy,, as x in



assume f = c in

assume A ; d in recv Chab as x TEEt {
recv chy,. as x 1n

send (1, blue) on ch jend o, «then

recv chy, as x'in send v on cfy,

J

Abstracting TEE
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Bob cannot learn/modify the orange message
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Bob cannot learn/modify the orange message
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Implementing
DFLATE



Design

® DFLATE abstractions are implementable!
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Design

® DFLATE abstractions are implementable!

® TEEs can be implemented by Intel SGX enclaves
® SGX provides remote attestation
® SGX enclave communicates through the host

® Protected expressions can be implemented using public key encryption and
digital signatures

® However, this requires access to the corresponding signing /decryption
keys

e Key distribution, especially for enclaves, is non-trivial
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Key Distribution

® A global key master has key pairs for all principals

® Key master provisions the nodes and enclaves with
necessary private keys

30



Key Distribution

Key Master

To obtain keys, a node proves its identity to
the key master



Key Distribution
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the key master



Key Distribution
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Key Master

To obtain keys, a node proves its identity to
the key master



Key Distribution

Key Master

To obtain keys, an enclave attests itself to
the key master



Key Distribution

Key Master

To obtain keys, an enclave attests itself to
the key master



Key Distribution

; ? / Key Master

To obtain keys, an enclave attests itself to
the key master
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Address Challenge #2

Enforce security



Security

® Formal definition of security is noninterference (NI)

® Confidentiality NI: private inputs can’t influence public
outputs

® Integrity NI: Low integrity inputs can’t influence high
integrity outputs

® Type system enforces security

34



Example Revisited

Ah, secret is 1

» yf secret
.=+ " send cipher on public

/ | — ———
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Example Revisited

. . yf secret
"~ E _ . send cip public
O — /

Program is ill-typed
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Confidentiality Theorem

Secret inputs
from Alice




Confidentiality Theorem

Public outputs
S

Secret inputs \\n o=

from Alice
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Confidentiality Theorem

\

ti t
Secret inputs l Public outputs

from Alice
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Integrity Theorem

Untrusted inputs
from Bob .

Trusted outputs
to Carol

——— e —
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Integrity Theorem

Untrusted inputs

Trusted outputs
from Bob |

to Carol
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Compromised-node
Noninterference
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Compromised-node
Noninterference

Trace for blue execution

A
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Compromised-node
Noninterference

Trace for blue execution

A

¢
. . race for green execution
A
_— ‘

Traces observed (by Bob) for executions with

different secret inputs are equal



Compromised-node
Noninterference
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Compromised-node
Noninterference

Trace for blue execution

A
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Compromised-node
Noninterference

Trace for blue execution

A

race for green execution

Traces observed can be different

39



Confidentiality vs Integrity
GGuarantees

® Asymmetry due to the ability to suppress messages

® Faithfully models the expressive power of the integrity
attacker

e Without undermining the guarantees of cryptography
and TEEs

40



Conclusion

® DFLATE: A programming model for distributed TEEs
® Design for implementing the abstractions in DFLATE

® DFLATE enforces confidentiality and integrity
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Backup Slides



Nested Protection




Nested Protection




Nested Protection

(7719 (1, 42)) has type b says a says int

43



send ch, (n, my,,,) recv ch, as x in
send ch,. x
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send ch, (n, my,,,) assume b > a in
recv ch, as x in

send chy,, x
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send ch ) (. m ) assume b > a 1n

recv ch, as x in

Malicious
declassification

send ch,,. x
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> )
send ch ) (. m ) assume b > a 1n

recv ch, as x in

Malicious
declassification

send ch,,. x

Type system prevents malicious
declassifications and endorsements
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assume b =
recv ch,, as

send ch_, (n, my,.)

send ch,,. x

Insufficient authority to add delegation
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