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INTRODUCTION




COMPILATION AND SECURITY

Semantic correctness at the core of compilers
m Optimizing compilers like gcc or LLVM
m Formally verified: CompCert, Vellvm, CakeML ...

Correctness is not enough for security ’
m Not suited against side-channel attacks
m Timing, power analysis, data remanence ...

"The Correctness-Security Gap in Compiler Optimization, D'Silva et al. [2015]



DEAD STORE ELIMINATION 1S NOT SECURE’

m Sensitive data should not remain in memory

m Erasure is performed on sensitive data

m Dead Store Elimination (DSE) may break erasure
m Bug reports of LLVM, gcc, OpenSSL ...

def crypt(key, t):| pgg |def crypt(key, t):

c = key " t y = key " t
key = o skip
return c return c

"Dead Store Elimination (Still) Considered Harmful, Yang et al. [2017]



INFORMATION-FLOW PRESERVATION

Attackers should not learn more information from the
transformed program than from the source program

Contributions and content of the talk
m Formal definition of an IFP' transformation
m Proof technique to certify that a transformation is IFP
m Implementation of an IFP Register Allocation

"Information-Flow Preserving



GETTING FAMILIAR WITH IFP

Effects we want to avoid:
m Data remanence

Dead Store
def p1(x): Elimination def p2(x):
X =0 » skip
e return e return
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GETTING FAMILIAR WITH IFP

Effects we want to avoid:
m Data remanence
m Lifetime extension
m Worsening of leakage

Common
Subexpression def p2(x .
def pi(x,y): Elimination tmg E ),(yz y
Eix+y+"' P a=tmp ...
= X +y + b:tmp+...
e return o return




GETTING FAMILIAR WITH IFP

Effects we want to avoid:
m Data remanence
m Lifetime extension
m Worsening of leakage
m Duplication

Register def p2(ri):
def pi(x): | Allocation stacki = ri
> ...
e return ri = stacka
e return




DEFINITION OF IFP




EXECUTION MODEL

m Trace based execution model
m Memory states: data observable by attackers

Execution

. Program of p
Initial memory with mo Trace t
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ATTACKER MODEL

m Attackers have access to program’s code
m Attackers observe n bits in the trace

Trace t
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ATTACKER MODEL

m Attackers have access to program’s code

m Attackers observe n bits in the trace




RATIONALE FOR MULTIPLE ATTACKERS

def p2(x,y):
def pi(x,y): etmg ixxyz v
a=X+y+... ) a:tmp+...
b=x+y+ ... b = tmp + ...
e return e return

Haha! I've learned
the value x +y

S S

oo-bit oco-bit

m equally insecure for a strong attacker




RATIONALE FOR MULTIPLE ATTACKERS

def p2(x,y):
def pa(x,y): etmg ixxyz v
a=X+y+... ) a:tmp+...
b=x+y+ ... Bl = tp o
° return e return
Nothingon x +y
@ lcangeta \ @
bit of x + y!
oco-bit  1-bit 1-bit  oco-bit

m equally insecure for a strong attacker

m p1is secure for the 1-bit attacker




ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

)+

'Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]




ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

Remark:

Big/coarse attacker
knowledge means that there
is few information on mgo

D+ -0 S

'Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]




IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

auea

source

Haha!
I've learned
value of x

transformed
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IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

Sorry mate, you
could already
find it up here

Haha!
I've learned
value of x

source

transformed

(I Fe) &




IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,). Vn. Jw € Q(t;, t,). Vo,.  Kh(pq,w(0,)) € K2(p., 0,)



IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,). Vn. Jw € Q(t;, t,). Vo,.  Kh(pq,w(0,)) € K2(p., 0,)

Source program p;,
Transformed program p,

P

P2




IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,)| Vn. Jw € Q(t;, t,). Vo,.  Kh(p,,w(02)) € K2(p,,0,)

{For any execution from }

the same initial memory m,
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, tr, 1) (V] Fw € Q(t:, 1,). V0, K3 (py,(02)) € K&(p2, 02)

For attackers with any
observation capabilities
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:

V(mo, ty, t,). Vn.|Fw € Q(t;, t,).| Vo,. Kh(p,,w(0,)) € K2(p,,0,)

[Exists lockstep pairings of observations from t, to tJ
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(Mo, 1, t,). Vn. Jw € Q(t1,t2). K& (pa,w(05)) C K(p,, 0,)

[For any observation o, of size n on the trace tgj
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, tr, 12). V. Jw € Q(tr, 15). V0, (K (p1,w(02)) € K (2, 05) )

KC, derived from w(0,)
is a subset of
KC, derived from o,




PROOF TECHNIQUE




SUFFICIENT CONDITION FOR AN IFP TRANSFORMATION

m Lockstep pairings from memory address of the trace t,
m Each address of t, is paired to:

» a lockstep address of t; OR
> a constant

S ¥(Mo, th, 1,). Vs, i. tz[i](az):{gi[(i]a(:;i(az)) ::Z;Egjigidress

2
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TRANSLATION VALIDATION FOR REGIS-
TER ALLOCATION




REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
> Erasure may not be applied to both locations

Example with a 2-register machine:

def p2(ri1,r2,stack_salt):

stack k = ra
def pi(k,t,salt): r1 = stack_salt

tmp=t+Sa1~t ) r1=r2+;1
k = tmp + k

r2 = stack_k
return k

r2 = ri + r2

return r2




REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
> Erasure may not be applied to both locations

Example with a 2-register machine:

def para—s ack _salt):
def pi(k,t,salt):

tmp = t 1. ' : -
K E tmlo[Secret value is duplicated ] ri
return and not erased on the stack K_k

I r2 = ri + r2
return r2




VALIDATION AND PATCHING TOOLCHAIN

m Validator verifies the sufficient condition

m Detected leakage are patched

P+

—

Source

P2

Trans-
formed

Validator

1\

performs
Analysis

validated ‘

Ps

rechecks

patches p,

rejected




COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt ) ‘1= 12 + 1
k = tm k -
tmp + r2 = stack_k

e return k

r2 = ri + r2
e return r2

R« r1
t r2
salt « stack_salt
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COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

etmp - ¢+ salt | | 1P Stacksalt
k = tm k ~
tmp + r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <+ r1
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salt <+ stack_salt
kR« stack_k
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e tmp = t + salt ) ‘1= 12 + 1
k = tm k -
tmp_* r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <« r
R« r2

salt <« stack_salt
7?7« stack_R




COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt ) ‘1= 12 + 1
k = tm k -
tmp + r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <« r
R« r2
salt <« stack_salt
Leakage| 7 <« stack_k




PATCHING LEAKAGE

Leakage are patched with constant values

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt): ri1 = stack_salt
e tmp = t + salt 3 ri = r2 + ri

k = tmp + k r2 = stack_k
e return k r2 = ri + r2

| stack_k = of
e return r2

tmp <+ r
R« r2

salt « stack_salt
0 < stack_R




EXPERIMENTS

m Observation points are placed at function calls and returns
m On the verified compiler CompCert’

m We measure the impact of patching on the programs

m Correctness is ensured by CompCert original validator

m Patching of duplication was not implemented here

"Formal Certification of a Compiler Back-end, Leroy [2006]
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RELATED WORK AND CONCLUSION




RELATED WORK

m Securing a compiler transformation’?

» preserve programs that do not leak
> does not differentiate between degrees of leakage

m Preservation of side-channel countermeasures3
» framework to preserve security properties
> different leakage model
» use a 2-simulation property

"Securing a Compiler Transformation, Deng and Namjoshi [2016]
2Securing the SSA Transform, Deng and Namjoshi [2017]
3Secure Compilation of Side-Channel Countermeasures, Barthe et al. [2018]



FUTURE WORK

m Development

» Extend our property to other compilation passes
> Improve performance with more precise patching

m Improve IFP property

> current property is bound by observation points
> extend to attackers that can make observations at any time



Thank you for listening

Contact me!
alexandre.dang@inria.fr
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