
Information-Flow Preservation
in Compiler Transformations

Frédéric Besson
Alexandre Dang
Thomas Jensen
Inria Rennes

CSF 2019



Introduction



Compilation and security

Semantic correctness at the core of compilers
Optimizing compilers like gcc or LLVM
Formally veri�ed: CompCert, Vellvm, CakeML . . .

Correctness is not enough for security 1

Not suited against side-channel attacks
Timing, power analysis, data remanence . . .

1The Correctness-Security Gap in Compiler Optimization, D’Silva et al. [2015]
1 / 19



Dead Store Elimination is not secure1

Sensitive data should not remain in memory
Erasure is performed on sensitive data
Dead Store Elimination (DSE) may break erasure
Bug reports of LLVM, gcc, OpenSSL . . .

def crypt(key, t):
c = key ^ t
key = 0
return c

def crypt(key, t):
c = key ^ t
skip
return c

DSE

1Dead Store Elimination (Still) Considered Harmful, Yang et al. [2017]
2 / 19



Information-Flow Preservation

Goal

Attackers should not learn more information from the
transformed program than from the source program

Contributions and content of the talk
Formal de�nition of an IFP1 transformation
Proof technique to certify that a transformation is IFP
Implementation of an IFP Register Allocation

1Information-Flow Preserving
3 / 19



Getting familiar with IFP

E�ects we want to avoid:
Data remanence

Lifetime extension
Worsening of leakage
Duplication

def p1(x):
x = 0
return

def p2(x):
skip
return• •

def p1(x):
a = x * ...
x = 0
evil()
return a

def p2(x):
a = x * ...
evil()
x = 0
return a

•
•

• •

def p1(x,y):
a = x + y + ...
b = x + y + ...
return

def p2(x,y):
tmp = x + y
a = tmp + ...
b = tmp + ...
return• •

def p1(x):
...
return

def p2(r1):
stack1 = r1
...
r1 = stack1
return

•
•

Dead Store
EliminationCode Motion

Common
Subexpression
Elimination
Register
Allocation

4 / 19



Getting familiar with IFP

E�ects we want to avoid:
Data remanence
Lifetime extension

Worsening of leakage
Duplication

def p1(x):
x = 0
return

def p2(x):
skip
return• •

def p1(x):
a = x * ...
x = 0
evil()
return a

def p2(x):
a = x * ...
evil()
x = 0
return a

•
•

• •

def p1(x,y):
a = x + y + ...
b = x + y + ...
return

def p2(x,y):
tmp = x + y
a = tmp + ...
b = tmp + ...
return• •

def p1(x):
...
return

def p2(r1):
stack1 = r1
...
r1 = stack1
return

•
•

Dead Store
EliminationCode Motion

Common
Subexpression
Elimination
Register
Allocation

4 / 19



Getting familiar with IFP

E�ects we want to avoid:
Data remanence
Lifetime extension
Worsening of leakage

Duplication

def p1(x):
x = 0
return

def p2(x):
skip
return• •

def p1(x):
a = x * ...
x = 0
evil()
return a

def p2(x):
a = x * ...
evil()
x = 0
return a

•
•

• •

def p1(x,y):
a = x + y + ...
b = x + y + ...
return

def p2(x,y):
tmp = x + y
a = tmp + ...
b = tmp + ...
return• •

def p1(x):
...
return

def p2(r1):
stack1 = r1
...
r1 = stack1
return

•
•

Dead Store
EliminationCode Motion

Common
Subexpression
Elimination
Register
Allocation

4 / 19



Getting familiar with IFP

E�ects we want to avoid:
Data remanence
Lifetime extension
Worsening of leakage
Duplication

def p1(x):
x = 0
return

def p2(x):
skip
return• •

def p1(x):
a = x * ...
x = 0
evil()
return a

def p2(x):
a = x * ...
evil()
x = 0
return a

•
•

• •

def p1(x,y):
a = x + y + ...
b = x + y + ...
return

def p2(x,y):
tmp = x + y
a = tmp + ...
b = tmp + ...
return• •

def p1(x):
...
return

def p2(r1):
stack1 = r1
...
r1 = stack1
return

•
•

Dead Store
EliminationCode Motion

Common
Subexpression
Elimination
Register
Allocation

4 / 19



Definition of IFP



Execution model

Trace based execution model
Memory states: data observable by attackers

m0

Initial memory

+ p

Program
Execution
of p

with m0

m1 m2 m3 . . .

Trace t

5 / 19



Attacker model

Attackers have access to program’s code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

6 / 19



Attacker model

Attackers have access to program’s code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

6 / 19



Attacker model

Attackers have access to program’s code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

6 / 19



Attacker model

Attackers have access to program’s code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

6 / 19



Attacker model

Attackers have access to program’s code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

6 / 19



Attacker model

Attackers have access to program’s code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

6 / 19



Rationale for multiple attackers

def p1(x,y):
a = x + y + ...
b = x + y + ...
return

def p2(x,y):
tmp = x + y
a = tmp + ...
b = tmp + ...
return• •

∞-bit ∞-bit

Haha! I’ve learned
the value x + y

1-bit 1-bit

Nothing on x + y

I can get a
bit of x + y!

equally insecure for a strong attacker

p1 is secure for the 1-bit attacker

7 / 19



Rationale for multiple attackers

def p1(x,y):
a = x + y + ...
b = x + y + ...
return

def p2(x,y):
tmp = x + y
a = tmp + ...
b = tmp + ...
return• •

∞-bit ∞-bit

Haha! I’ve learned
the value x + y

1-bit 1-bit

Nothing on x + y

I can get a
bit of x + y!

equally insecure for a strong attacker
p1 is secure for the 1-bit attacker

7 / 19



Attacker Knowledge 1

Attackers try to guess the initial memory used
Possible initial memories matching its observations

m0 + p

Attacker Knowledge

m0

m0

m0

Remark:
Big/coarse attacker
knowledge means that there
is few information on m0

1Gradual Release: Unifying Declassi�cation, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

8 / 19



Attacker Knowledge 1

Attackers try to guess the initial memory used
Possible initial memories matching its observations

m0 + p

Attacker Knowledge

m0

m0

m0

Remark:
Big/coarse attacker
knowledge means that there
is few information on m0

1Gradual Release: Unifying Declassi�cation, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

8 / 19



IFP transformation (1/2)

Intuition

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

transformed

source
Haha!
I’ve learned
value of x

Sorry mate, you
could already
�nd it up here

9 / 19



IFP transformation (1/2)

Intuition

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

transformed

source
Haha!
I’ve learned
value of x

Sorry mate, you
could already
�nd it up here

9 / 19



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

10 / 19



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

10 / 19



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

10 / 19



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

10 / 19



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

10 / 19



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

10 / 19



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

10 / 19



Proof technique



Sufficient condition for an IFP transformation

Lockstep pairings from memory address of the trace t2
Each address of t2 is paired to:
I a lockstep address of t1 OR
I a constant

∃α. ∀(m0, t1, t2). ∀a2, i. t2[i](a2) =
{
t1[i](αi(a2)) if αi(a2) ∈ Address
αi(a2) if αi(a2) ∈ Bit

m0

+

+

p1

p2 5

t1

t2

α α

11 / 19



Translation Validation for Regis-
ter Allocation



Register Allocation

Introduce spilling of values in the stack
Usually not IFP:
I Duplication on both stack and registers
I Erasure may not be applied to both locations

Example with a 2-register machine:

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

Secret value is duplicated
and not erased on the stack

12 / 19



Register Allocation

Introduce spilling of values in the stack
Usually not IFP:
I Duplication on both stack and registers
I Erasure may not be applied to both locations

Example with a 2-register machine:

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

Secret value is duplicated
and not erased on the stack

12 / 19



Validation and patching toolchain

Validator veri�es the su�cient condition
Detected leakage are patched

p1

p2

p3

Source

Trans-
formed

Validator Analysis IFP
performs validated

rejected

patches p2rechecks

13 / 19



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

14 / 19



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

14 / 19



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

14 / 19



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

14 / 19



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

14 / 19



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

14 / 19



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

14 / 19



Patching leakage

Leakage are patched with constant values

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
stack_k = 0
return r2

•

•

•

•

tmp ← r1
k ← r2
salt ← stack_salt
0 ← stack_k

15 / 19



Experiments

Observation points are placed at function calls and returns
On the veri�ed compiler CompCert1

We measure the impact of patching on the programs
Correctness is ensured by CompCert original validator
Patching of duplication was not implemented here

1Formal Certi�cation of a Compiler Back-end, Leroy [2006]
16 / 19



Measuring impact of patching

fa
nn

ku
ch fft
w

ns
ie

ve
bi

ts
m

an
de

lb
ro

t
bi

se
ct

vm
ac

h
ae

s
nb

od
y

sh
a1

bi
na

ry
tre

es
sip

ha
sh

24 fft
sp

ec
tra

l
sh

a3 lis
ts

kn
uc

le
ot

id
e

ch
om

p
ns

ie
ve fib

fft
sp

al
m

ab
en

ch
pe

rli
n

0

20

40

60

80

Pe
rc

en
ta

ge
Time overhead

17 / 19



Measuring impact of patching

fa
nn

ku
ch fft
w

ns
ie

ve
bi

ts
m

an
de

lb
ro

t
bi

se
ct

vm
ac

h
ae

s
nb

od
y

sh
a1

bi
na

ry
tre

es
sip

ha
sh

24 fft
sp

ec
tra

l
sh

a3 lis
ts

kn
uc

le
ot

id
e

ch
om

p
ns

ie
ve fib

fft
sp

al
m

ab
en

ch
pe

rli
n

0

20

40

60

80

Pe
rc

en
ta

ge
Time overhead
Executed instructions overhead

17 / 19



Related work and Conclusion



Related work

Securing a compiler transformation12
I preserve programs that do not leak
I does not di�erentiate between degrees of leakage

Preservation of side-channel countermeasures3
I framework to preserve security properties
I di�erent leakage model
I use a 2-simulation property

1Securing a Compiler Transformation, Deng and Namjoshi [2016]
2Securing the SSA Transform, Deng and Namjoshi [2017]
3Secure Compilation of Side-Channel Countermeasures, Barthe et al. [2018]

18 / 19



Future work

Development
I Extend our property to other compilation passes
I Improve performance with more precise patching

Improve IFP property
I current property is bound by observation points
I extend to attackers that can make observations at any time

19 / 19



Thank you for listening
Contact me!

alexandre.dang@inria.fr


	Introduction
	Definition of IFP
	Proof technique
	Translation Validation for Register Allocation
	Related work and Conclusion
	References

