INFORMATION-FLOW PRESERVATION

IN COMPILER TRANSFORMATIONS

FREDERIC BESSON
ALEXANDRE DANG
THOMAS JENSEN

INRIA RENNES

CSF 2019

INTRODUCTION

COMPILATION AND SECURITY

Semantic correctness at the core of compilers
m Optimizing compilers like gcc or LLVM
m Formally verified: CompCert, Vellvm, CakeML ...

Correctness is not enough for security ’
m Not suited against side-channel attacks
m Timing, power analysis, data remanence ...

"The Correctness-Security Gap in Compiler Optimization, D'Silva et al. [2015]

DEAD STORE ELIMINATION 1S NOT SECURE’

m Sensitive data should not remain in memory

m Erasure is performed on sensitive data

m Dead Store Elimination (DSE) may break erasure
m Bug reports of LLVM, gcc, OpenSSL ...

def crypt(key, t):| pgg |def crypt(key, t):

c = key " t y = key " t
key = o skip
return c return c

"Dead Store Elimination (Still) Considered Harmful, Yang et al. [2017]

INFORMATION-FLOW PRESERVATION

Attackers should not learn more information from the
transformed program than from the source program

Contributions and content of the talk
m Formal definition of an IFP' transformation
m Proof technique to certify that a transformation is IFP
m Implementation of an IFP Register Allocation

"Information-Flow Preserving

GETTING FAMILIAR WITH IFP

Effects we want to avoid:
m Data remanence

Dead Store
def p1(x): Elimination def p2(x):
X =0 » skip
e return e return

GETTING FAMILIAR WITH IFP

Effects we want to avoid:
m Data remanence
m Lifetime extension

de: E1)((xz. | code motion de: Ezixi. N
X = 0 p— o cyil()

eevil() X = 0

e return a ereturn a

GETTING FAMILIAR WITH IFP

Effects we want to avoid:
m Data remanence
m Lifetime extension
m Worsening of leakage

Common
Subexpression def p2(x .
def pi(x,y): Elimination tmg E),(yz y
Eix+y+"' P a=tmp ...
= X +y + b:tmp+...
e return o return

GETTING FAMILIAR WITH IFP

Effects we want to avoid:
m Data remanence
m Lifetime extension
m Worsening of leakage
m Duplication

Register def p2(ri):
def pi(x): | Allocation stacki = ri
> ...
e return ri = stacka
e return

DEFINITION OF IFP

EXECUTION MODEL

m Trace based execution model
m Memory states: data observable by attackers

Execution

. Program of p
Initial memory with mo Trace t

AL B N (1 (3 (D

ATTACKER MODEL

m Attackers have access to program’s code
m Attackers observe n bits in the trace

Trace t

EEES-

ATTACKER MODEL

m Attackers have access to program’s code
m Attackers observe n bits in the trace

Trace t

FEEEE

ATTACKER MODEL

m Attackers have access to program’s code
m Attackers observe n bits in the trace

Trace t

(L@ oo

ATTACKER MODEL

m Attackers have access to program’s code
m Attackers observe n bits in the trace

Trace t

BES };j::"'@*b‘t
\@2-bit

ATTACKER MODEL

m Attackers have access to program’s code

m Attackers observe n bits in the trace

ATTACKER MODEL

m Attackers have access to program’s code

m Attackers observe n bits in the trace

RATIONALE FOR MULTIPLE ATTACKERS

def p2(x,y):
def pi(x,y): etmg ixxyz v
a=X+y+...) a:tmp+...
b=x+y+ ... b = tmp + ...
e return e return

Haha! I've learned
the value x +y

S S

oo-bit oco-bit

m equally insecure for a strong attacker

RATIONALE FOR MULTIPLE ATTACKERS

def p2(x,y):
def pa(x,y): etmg ixxyz v
a=X+y+...) a:tmp+...
b=x+y+ ... Bl = tp o
° return e return
Nothingon x +y
@ lcangeta \ @
bit of x + y!
oco-bit 1-bit 1-bit oco-bit

m equally insecure for a strong attacker

m p1is secure for the 1-bit attacker

ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

)+

'Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

Remark:

Big/coarse attacker
knowledge means that there
is few information on mgo

D+ -0 S

'Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

auea

source

Haha!
I've learned
value of x

transformed

(I Fe) &

IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

Sorry mate, you
could already
find it up here

Haha!
I've learned
value of x

source

transformed

(I Fe) &

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,). Vn. Jw € Q(t;, t,). Vo,. Kh(pq,w(0,)) € K2(p., 0,)

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,). Vn. Jw € Q(t;, t,). Vo,. Kh(pq,w(0,)) € K2(p., 0,)

Source program p;,
Transformed program p,

P

P2

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,)| Vn. Jw € Q(t;, t,). Vo,. Kh(p,,w(02)) € K2(p,,0,)

{For any execution from }

the same initial memory m,

+ 3 — (D
+ B — (D
2

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, tr, 1) (V] Fw € Q(t:, 1,). V0, K3 (py,(02)) € K&(p2, 02)

For attackers with any
observation capabilities

+

|

P

P2

e

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:

V(mo, ty, t,). Vn.|Fw € Q(t;, t,).| Vo,. Kh(p,,w(0,)) € K2(p,,0,)

[Exists lockstep pairings of observations from t, to tJ

+

|

P

P2

t
— &9
w
w
CaN-
2

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(Mo, 1, t,). Vn. Jw € Q(t1,t2). K& (pa,w(05)) C K(p,, 0,)

[For any observation o, of size n on the trace tgj

+

|

P

P2

— :t1:
w(02)
ICHR
2

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, tr, 12). V. Jw € Q(tr, 15). V0, (K (p1,w(02)) € K (2, 05))

KC, derived from w(0,)
is a subset of
KC, derived from o,

PROOF TECHNIQUE

SUFFICIENT CONDITION FOR AN IFP TRANSFORMATION

m Lockstep pairings from memory address of the trace t,
m Each address of t, is paired to:

» a lockstep address of t; OR
> a constant

S ¥(Mo, th, 1,). Vs, i. tz[i](az):{gi[(i]a(:;i(az)) ::Z;Egjigidress

2

)LI |(W 1

] — .a.l.a.

TRANSLATION VALIDATION FOR REGIS-
TER ALLOCATION

REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
> Erasure may not be applied to both locations

Example with a 2-register machine:

def p2(ri1,r2,stack_salt):

stack k = ra
def pi(k,t,salt): r1 = stack_salt

tmp=t+Sa1~t) r1=r2+;1
k = tmp + k

r2 = stack_k
return k

r2 = ri + r2

return r2

REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
> Erasure may not be applied to both locations

Example with a 2-register machine:

def para—s ack _salt):
def pi(k,t,salt):

tmp = t 1. ' : -
K E tmlo[Secret value is duplicated] ri
return and not erased on the stack K_k

I r2 = ri + r2
return r2

VALIDATION AND PATCHING TOOLCHAIN

m Validator verifies the sufficient condition

m Detected leakage are patched

P+

—

Source

P2

Trans-
formed

Validator

1\

performs
Analysis

validated ‘

Ps

rechecks

patches p,

rejected

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) ‘1= 12 + 1
k = tm k -
tmp + r2 = stack_k

e return k

r2 = ri + r2
e return r2

R« r1
t r2
salt « stack_salt

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) ‘1= 12 + 1
k = tm k -
tmp + r2 = stack_k

e return k

r2 = ri + r2
e return r2

R« r

t <« r2
salt « stack_salt

kR <« stack_k

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) R
k = tm k -
tmp + r2 = stack_k

e return k

r2 = ri + r2
e return r2

salt «+ r1
t r2
salt « stack_salt
kR <« stack_k

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

etmp - ¢+ salt | | 1P Stacksalt
k = tm k ~
tmp + r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <+ r1
t <« r2
salt <+ stack_salt
kR« stack_k

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

etmp - ¢+ salt | | 1P Stacksalt
k = tm k -
tmp + r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <« r
R+ r2

salt <+ stack_salt
kR« stack_k

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) ‘1= 12 + 1
k = tm k -
tmp_* r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <« r
R« r2

salt <« stack_salt
7?7« stack_R

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) ‘1= 12 + 1
k = tm k -
tmp + r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <« r
R« r2
salt <« stack_salt
Leakage| 7 <« stack_k

PATCHING LEAKAGE

Leakage are patched with constant values

def p2(ri,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt): ri1 = stack_salt
e tmp = t + salt 3 ri = r2 + ri

k = tmp + k r2 = stack_k
e return k r2 = ri + r2

| stack_k = of
e return r2

tmp <+ r
R« r2

salt « stack_salt
0 < stack_R

EXPERIMENTS

m Observation points are placed at function calls and returns
m On the verified compiler CompCert’

m We measure the impact of patching on the programs

m Correctness is ensured by CompCert original validator

m Patching of duplication was not implemented here

"Formal Certification of a Compiler Back-end, Leroy [2006]

O
=
I
=
&
L
)
=
<
2
=
O
=
o
>
)
<
Ll
=

[Time overhead

- Ulluad

- YdUsqgew e
- dsyy

gy

L 9A3Isy

L QEocu

- SP10o3dNUy
- SIsy|

- €eys

- 1eJd1dads
-4

- .VNcwmca._m
L mwwh_\fmc._a
r Leys

- Apoqu

- soe

F Ydewa

- 329siq
-104q[epuew
- SHQgaAs sy
M3y

- Udnyuuey

80 1

T
o
o

T

o
<

abejuadiad

20 A

0 DDD,:,:________:IDEIEIDDDDH

- ulluad

- YdUsgewe
- dsyy

- auy

ACINT

3 QEocu

- SP1303dNUy
- SISl

r€eys

- [eJ1309ds

r 34

3 VNSMMCQ._W

L mwwb\cm:._n
- Teys

- Apoqu

- Sop

- Ydewn
-339s1q
-101q[epuew
- S3gons)sy

F M3y

- UIMyjuuey

Ufrrr_,ﬂJﬂ_ﬂLllﬂﬂlﬂﬂﬂL

[Executed instructions overhead

[Time overhead

T T T
o o o o
©o < o~

abejuadiad

0

O
=
I
=
&
L
)
=
<
2
=
O
=
o
>
)
<
Ll
=

RELATED WORK AND CONCLUSION

RELATED WORK

m Securing a compiler transformation’?

» preserve programs that do not leak
> does not differentiate between degrees of leakage

m Preservation of side-channel countermeasures3
» framework to preserve security properties
> different leakage model
» use a 2-simulation property

"Securing a Compiler Transformation, Deng and Namjoshi [2016]
2Securing the SSA Transform, Deng and Namjoshi [2017]
3Secure Compilation of Side-Channel Countermeasures, Barthe et al. [2018]

FUTURE WORK

m Development

» Extend our property to other compilation passes
> Improve performance with more precise patching

m Improve IFP property

> current property is bound by observation points
> extend to attackers that can make observations at any time

Thank you for listening

Contact me!
alexandre.dang@inria.fr

	Introduction
	Definition of IFP
	Proof technique
	Translation Validation for Register Allocation
	Related work and Conclusion
	References

