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Topic of the talk
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How can we compare systems that
unavoidably leak some information?



I. Leakage that happens intentionally

• eg: extract statistics from a dataset

• Problem: inference of personal information

• eg: “what is the median age of cancer patients”
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II. Leakage due to side channels

• ge: OpenSSL timing attack [BonehBrumley03]

• Also: cache misses, power, radiation, faults, …

• Completely preventing such channels is costly/impossible
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III. Leakage in exchange to a service

• eg: Location Based Services

- Retrieval of Points Of Interest (POI)

- Dating

- Finding friends / social networks

- …
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Channels

Simple probabilistic model of the behavior of a system

• Input : secret event

• Output : observable event

• Channel matrix: Cxy is the probability that x produces y

Channel
secret

x

observation

y
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Channels

Simple probabilistic model of the behavior of a system

• Input : secret event

• Output : observable event

• Channel matrix: Cxy is the probability that x produces y

y1 · · · yn
x1 C11 · · · C1n

...
. . .

xm Cm1 · · · Cmn
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Fundamental question
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How can we quantify information leakage in such systems?

Quantitative Information Flow (QIF)

Study of different leakagemeasures, quantifying the adver-
sary’s success in achieving some goal.

(A) = probability to fully guess the secret = 0.2

(A) = exp. error of optimal location infer. = 400m



Another fundamental question
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When can we say that a system B is safer than A ? (A ⊑ B )

• Can we safely replace A by B ?

• Needs to be robust wrt different adversaries!

• Needs to be robust wrt different contexts!

( A ) ≥ ( B )

( A ) ≤ ( B )
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Example : Differential Privacy

• ε·d(x, x′) : now much do we want to distinguish x and x′?

- d : “kind” of privacy, ε : “amount” of privacy

• d-privacy

C satisfies ε·d-privacy iff
Cx y
Cx′y

≤ e ε·d(x,x′) ∀x, x′, y

• Differential privacy

- Hamming dH(x, x′) : # of users with different value in dbs x, x′
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Example : Differential Privacy

• Oblivious mechanism H ◦ f

- Compute f then apply noise mechanism H to the real answer

- ε·dE-privacy can be proven for H alone

• A variety of noise mechanisms, eg

- RR ε : randomized response

- TG ε : geometric (truncated)
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Both satisfy ε·dE-privacy (same ε)
Are they equivalent ?



Example : Differential Privacy

Are TG ε and RR ε equivalent ?

• f : minimum age of people in the database

- RR ε ◦ f is ε-diff. private

- TG ε ◦ f is not ε-diff. private

- We cannot replace RR ε by TG ε in this context!

• In the other direction

- We can prove that TG ε ⊑ RR ε (for a suitable⊑)
- For any query f :

· if TG ε ◦ f is ε-diff. private
· then RR ε ◦ f is also ε-diff. private

- RR ε is safer than TG ε
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Example : Differential Privacy

In the context of local differential privacy

• Noise applied to the data

• We can construct mechanisms A and B such that

- A is log 3-LDP

- B is log 2-LDP so B looks safer

• But B is not safer for all adversaries

- fully guess the secret x (A) ≥ (B)

- guess whether x = x0 or not (A) ≤ (B)

How we can apply QIF to this problem?
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QIF : Vulnerability

• Prior π on the secrets

- probabilistic knowledge of the adversary

• Vulnerability V(π)

- how happy the adversary is to have π

- eg. Bayes vulnerability : prob. of correctly guessing the secret

• Axiomatic view

- V can be any continuous convex function

- All of them expressible in the g-leakage framework
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QIF : Posterior vulnerability

With probability p(y) the vulnerability of the system becomes V(δy)

Channel
prior
π

posterior

δy, with pb p(y)
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Average-case

(C) = V[π,C] =
∑

y p(y)V(δ
y)

Max-case

(C) = Vmax[π,C] = maxp(y)>0 V(δy)



QIF : Comparing channels

• Leakage order

A ⊑avg
G B iff V[π,A] ≥ V[π,B] ∀π,V

Intuitive but hard to verify

• Refinement order

A ⊑avg B iff AR = B for some R

Structural property of the channels

Theorem [CSF’12, POST’14]

⊑avg ⇔ ⊑avg
G
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Is refinement enough?

• Refinement is robust

- A ⊑avg B ⇒ no adversary prefers B

- A ̸⊑avg B ⇒ at least one adversary V prefers B
· And we can compute V !

• But what if we care about the max-case Vmax?

- A ⊑avg B ⇒ ?

- A ̸⊑avg B ⇒ ?

• What if we care only about differential privacy

- A max-case measure!

This work answers these questions (and some more)
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Max-case refinement

• We can easily define a max-case leakage order

A ⊑max
Q B iff Vmax[π,A] ≥ Vmax[π,B] ∀π,V

Again, intuitive but hard to verify

• Max-case refinement order

A ⊑max B iff RÃ = B̃ for some R

Again, structural property of the channels

Theorem

⊑max ⇔ ⊑max
Q
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Max-case refinement

• Max-case refinement is robust

- A ⊑max B ⇒ no max-case adversary prefers B

- A ̸⊑max B ⇒ at least one max-case adversary V prefers B

· And we know such a V

• We can also show: ⊑avg ⇒ ⊑max (strictly)

- So⊑avg also provides max-case guarantees!

- But it might be too strong

• What about differential privacy?

- A ⊑max B ⇒ ?

- A ̸⊑max B ⇒ ?
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Differential privacy vs QIF

• DP is a max-case notion

- Treats every y equally, independently from its probability

- Can we express it as a QIF measure?

Theorem

C satisfies ε·d-privacy iff Vmax
d [πu,C] ≤ ε

for a suitably constructed Vd.

• So⊑max imposes a DP order

- But is it too strong?
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Privacy-based refinement

• We can also easily define a privacy-based order

A ⊑prv
M B iff A sat. d-privacy ⇒ B sat. d-privacy ∀d

Again, intuitive but hard to verify

• Privacy-case refinement order

A ⊑prv B iff dA ≥ dB

Again, structural property of the channels

Theorem

⊑prv ⇔ ⊑prv
M
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Privacy-based refinement

• Privacy-case refinement is robust

- A ⊑prv B ⇒ no DP adversary prefers B

- A ̸⊑prv B ⇒ at least one DP adversary d prefers B

· And we know such a d

• We can also show: ⊑max ⇒ ⊑prv (strictly)

- So⊑avg,⊑max also provide privacy guarantees!

- But they might be too strong
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Privacy-based refinement

What about query composition?

Theorem

A ⊑prv B ⇔ A ◦ f ⊑prv B ◦ f for all queries f

Not true if we compare A,B on a single d
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Comparison of leakage/refinement orders

Leakage orders Refinement orders

⊑avg
G ⇔ ⊑avg

⇓ ⇓

⊑max
Q ⇔ ⊑max

⇓ ⇓

⊑prv
M ⇔ ⊑prv

⇐ ⇒

⊑prv
d

All implications are strict
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Application: comparing DP mechanisms

Same family, different ε

C ε ⊑avg C ε′ iff ε ≥ ε′ for C ∈ {G, TG,RR, E}

• Decreasing ε is safe in a very strong sense

• But surprisingly, for the “overly truncated” geometric:

- OTG ε ̸⊑avg OTG ε′

- OTG ε ̸⊑max OTG ε′

- OTG ε ⊑prv OTG ε′ still holds!
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Application: comparing DP mechanisms

Different families, same ε

TG ̸⊑avg RR TG ̸⊑max RR TG⊑prv RR

RR ̸⊑avg TG RR ̸⊑max TG RR ̸⊑prv TG

TG ̸⊑avg E TG ̸⊑max E TG⊑prv E

E ̸⊑avg TG E ̸⊑max TG E ̸⊑prv TG

RR ̸⊑avg E RR ̸⊑max E RR ̸⊑prv E

E ̸⊑avg RR E ̸⊑max RR E ̸⊑prv RR
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Other results

Verification

• ⊑avg,⊑max,⊑prv can be verified in time polynomial in the size of C

• We obtain counterexamples when they fail

Lattice properties

• It is known that⊑avg is not a lattice

• But⊑max is !

- A ∨max B : intersection of the convex-hull of posteriors

• So is⊑prv

- A ∨prv B : sup in the lattice of metrics
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Shameful advertisement

We have a QIF book!

• Ask me for a draft

Postdoc / Research Assistant positions

• HYPATIA

- Statistical utility from noisy data

- Optimal privacy-utility trade-off

- Generation of optimal mechanism via ML

• DATAiA

- Analysis of privacy threats in ML
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Conclusion

• QIF provides rich, robust tools for comparing leaky systems

• Leakage-based (intruitive) and structural (verifiable) characterizations

• DP: (mostly) safe to decrease εwithin a family, but not to change family

Future directions

• Comparison with other channel orders

• Study the behavior under different contexts

• Conditions for refinement in different models

• Use refinement to verify complex programs

Questions?
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