Deterministic Channel Design for Minimum Leakage

Arthur Américo, MHR. Khouzani, Pasquale Malacaria

School of Electronic Engineering and Computer Science Queen Mary University of London

32nd IEEE CSF - 28 June 2019

 Systems often need to leak some sensitive information to function correctly/efficiently

 Systems often need to leak some sensitive information to function correctly/efficiently

A password checker always leaks information

 Systems often need to leak some sensitive information to function correctly/efficiently

- A password checker always leaks information
- Eliminating all leakage from timing channels may lead to a substantial decrease in performance

- Systems often need to leak some sensitive information to function correctly/efficiently
 - A password checker always leaks information
 - Eliminating all leakage from timing channels may lead to a substantial decrease in performance
- Problem: Find the system that minimizes information leakage while retaining functionality

- Systems often need to leak some sensitive information to function correctly/efficiently
 - A password checker always leaks information
 - Eliminating all leakage from timing channels may lead to a substantial decrease in performance
- Problem: Find the system that minimizes information leakage while retaining functionality
- A general framework for this task was proposed in the CSF 2017 paper Leakage Minimal Design: Universality, Limitations, and Applications, by MHR. Khouzani and P. Malacaria

- Systems often need to leak some sensitive information to function correctly/efficiently
 - A password checker always leaks information
 - Eliminating all leakage from timing channels may lead to a substantial decrease in performance
- Problem: Find the system that minimizes information leakage while retaining functionality
- A general framework for this task was proposed in the CSF 2017 paper Leakage Minimal Design: Universality, Limitations, and Applications, by MHR. Khouzani and P. Malacaria

Objective of this work

Study the application of this framework to deterministic systems

Preliminaries

Quantitative Information Flow

• A secret value is taken from a set $\mathcal{X} = \{x_1, \dots, x_n\}$ according to a distribution π

Quantitative Information Flow

- A secret value is taken from a set $\mathcal{X} = \{x_1, \dots, x_n\}$ according to a distribution π
- A system takes the secret value as input and produces an observable behaviour (or simply observable) in *Y* = {*y*₁,..., *y_m*}

Quantitative Information Flow

- A secret value is taken from a set X = {x₁,...,x_n} according to a distribution π
- An adversary, observing the behaviour of the system, may obtain some information about the secret value

A system with inputs in X and observables in Y is modelled by a channel C : X → Y.

- A system with inputs in X and observables in Y is modelled by a channel C : X → Y.
- C(x,y) is the conditional probability that $y \in \mathcal{Y}$ will be produced given that the secret value is $x \in \mathcal{X}$

- A system with inputs in X and observables in Y is modelled by a channel C : X → Y.
- C(x,y) is the conditional probability that $y \in \mathcal{Y}$ will be produced given that the secret value is $x \in \mathcal{X}$

$$\blacktriangleright C(x,y) > 0 \qquad \qquad \sum_y C(x,y) = 1$$

C	y_1	y_2	y_3	y_4
x_1	1/2	1/4	1/8	1/8
x_2	1/4	1/2	1/4	0
x_3	1	0	0	0

- A system with inputs in X and observables in Y is modelled by a channel C : X → Y.
- C(x,y) is the conditional probability that $y \in \mathcal{Y}$ will be produced given that the secret value is $x \in \mathcal{X}$

$$\blacktriangleright C(x,y) > 0 \qquad \qquad \sum_y C(x,y) = 1$$

C	y_1	y_2	y_3	y_4
x_1	1/2	1/4	1/8	1/8
x_2	1/4	1/2	1/4	0
x_3	1	0	0	0

▶ In this work we focus on deterministic channels: $C(x, y) \in \{0, 1\}$

- A system with inputs in X and observables in Y is modelled by a channel C : X → Y.
- C(x,y) is the conditional probability that $y \in \mathcal{Y}$ will be produced given that the secret value is $x \in \mathcal{X}$

$$\blacktriangleright C(x,y) > 0 \qquad \qquad \sum_y C(x,y) = 1$$

C	y_1	y_2	y_3	y_4
x_1	0	1	0	0
x_2	0	1	0	0
x_3	1	0	0	0

▶ In this work we focus on deterministic channels: $C(x, y) \in \{0, 1\}$

 \blacktriangleright The adversary knows π and C

π	C	y_1	y_2
1/3	x_1	1	0
1/4	x_2	0	1
1/4	x_3	0	1
1/6	x_3	1	0

- \blacktriangleright The adversary knows π and C
- ▶ Joint distribution $p(x, y) = \pi(x)C(x, y)$

p	y_1	y_2
x_1	1/3	0
x_2	0	1/4
x_3	0	$^{1/4}$
x_4	$^{1/6}$	0

- \blacktriangleright The adversary knows π and C
- ► Joint distribution $p(x,y) = \pi(x)C(x,y)$
- Marginal distribution $p(y) = \sum_{x \in \mathcal{X}} p(x, y)$

p	y_1	y_2	
x_1	1/3	0	$p(y_1) = 1/2$
x_2	0	1/4	
x_3	0	1/4	$p(y_2) = 1/2$
x_4	1/6	0	

- The adversary knows π and C
- ► Joint distribution $p(x, y) = \pi(x)C(x, y)$
- \blacktriangleright Marginal distribution $p(y) = \sum_{x \in \mathcal{X}} p(x,y)$
- Posterior distributions $p_{\mathcal{X}|y}(x) = \frac{p(x,y)}{p(y)}$

	$p_{\mathcal{X} y_1}$	$p_{\mathcal{X} y_2}$
x_1	2/3	0
x_2	0	1/2
x_3	0	1/2
x_4	1/3	0

$$p(y_1) = \frac{1}{2}$$

$$p(y_2) = 1/2$$

- The adversary knows π and C
- ▶ Joint distribution $p(x,y) = \pi(x)C(x,y)$
- \blacktriangleright Marginal distribution $p(y) = \sum_{x \in \mathcal{X}} p(x,y)$
- Posterior distributions $p_{\mathcal{X}|y}(x) = \frac{p(x,y)}{p(y)}$

	$p_{\mathcal{X} y_1}$	$p_{\mathcal{X} y_2}$	
x_1	2/3	0	$p(y_1) = 1/2$
x_2	0	1/2	
x_3	0	1/2	$p(y_2) = 1/2$
x_4	1/3	0	

By observing y, the adversary updates the distribution from π to p_{X|y}

An entropy measure H reflects how uncertain an adversary is about the secret value

- An entropy measure H reflects how uncertain an adversary is about the secret value
- ► Many Choices: Shannon Entropy (H₁), min-entropy (H_∞), guessing entropy (H_G)...

- An entropy measure H reflects how uncertain an adversary is about the secret value
- ► Many Choices: Shannon Entropy (H₁), min-entropy (H_∞), guessing entropy (H_G)...
- $H(\pi) = initial$ uncertainty

- An entropy measure H reflects how uncertain an adversary is about the secret value
- ► Many Choices: Shannon Entropy (H₁), min-entropy (H_∞), guessing entropy (H_G)...
- $H(\pi) = initial$ uncertainty
- $H(\pi, C) =$ uncertainty after execution

- An entropy measure H reflects how uncertain an adversary is about the secret value
- ► Many Choices: Shannon Entropy (H₁), min-entropy (H_∞), guessing entropy (H_G)...
- $H(\pi) = initial uncertainty$
- $H(\pi, C) =$ uncertainty after execution
- Leakage = $H(\pi) H(\pi, C)$

• Leakage =
$$H(\pi) - H(\pi, C)$$

• Leakage =
$$H(\pi) - H(\pi, C)$$

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the deterministic channel C that maximizes $H(\pi,C),$ respecting some operational constraints

• Leakage =
$$H(\pi) - H(\pi, C)$$

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the deterministic channel C that maximizes $H(\pi,C),$ respecting some operational constraints

• Maximize
$$H(\pi, C) =$$
 Minimize Leakage

• Leakage =
$$H(\pi) - H(\pi, C)$$

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the deterministic channel C that maximizes $H(\pi,C),$ respecting some operational constraints

- Maximize $H(\pi, C)$ = Minimize Leakage
- What is a reasonable entropy?

• Leakage =
$$H(\pi) - H(\pi, C)$$

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the deterministic channel C that maximizes $H(\pi, C)$, respecting some operational constraints

- Maximize $H(\pi, C)$ = Minimize Leakage
- What is a reasonable entropy?
- How should we model operational constraints?

• A entropy H is core-concave if there is η , F such that

$$\blacktriangleright H(\pi) = \eta(F(\pi))$$

 \blacktriangleright F is a real valued, continuous and concave function

• $\eta: I \to \mathbb{R}$ is continuous and increasing

• A entropy H is core-concave if there is η , F such that

•
$$H(\pi) = \eta(F(\pi))$$

 \blacktriangleright F is a real valued, continuous and concave function

• $\eta: I \to \mathbb{R}$ is continuous and increasing

• Prior entropy $H(\pi) = \eta(F(\pi))$

• A entropy H is core-concave if there is η , F such that

•
$$H(\pi) = \eta(F(\pi))$$

 \blacktriangleright F is a real valued, continuous and concave function

- $\eta: I \to \mathbb{R}$ is continuous and increasing
- Prior entropy $H(\pi) = \eta(F(\pi))$

Posterior entropy

$$H(\pi, C) = \eta\left(\sum_{y} p(y)F(p_{\mathcal{X}|y})\right)$$

A entropy H is core-concave if there is η , F such that

•
$$H(\pi) = \eta(F(\pi))$$

▶ *F* is a real valued, continuous and concave function

- $\eta: I \to \mathbb{R}$ is continuous and increasing
- Prior entropy $H(\pi) = \eta(F(\pi))$

Posterior entropy

$$H(\pi, C) = \eta\left(\sum_{y} p(y)F(p_{\mathcal{X}|y})\right)$$

Generalizes most entropy measures in QIF

Hard constraints: A set Ω ⊂ X × Y of which observables can be produced for each secret.

 $\blacktriangleright \ C(x,y) > 0 \implies (x,y) \in \Omega$

Hard constraints: A set Ω ⊂ X × Y of which observables can be produced for each secret.

 $\blacktriangleright \ C(x,y)>0 \implies (x,y)\in \Omega$

Hard constraints: A set Ω ⊂ X × Y of which observables can be produced for each secret.

 $\blacktriangleright \ C(x,y)>0 \implies (x,y)\in \Omega$

C	y_1	y_2	y_3
x_1	?	?	0
x_2	?	0	?
x_3	0	0	?

Hard constraints: A set Ω ⊂ X × Y of which observables can be produced for each secret.

 $\blacktriangleright \ C(x,y)>0 \implies (x,y)\in \Omega$

C	y_1	y_2	y_3
x_1	1	0	0
x_2	1	0	0
x_3	0	0	1

Hard constraints: A set Ω ⊂ X × Y of which observables can be produced for each secret.

 $\blacktriangleright \ C(x,y)>0 \implies (x,y)\in \Omega$

C	y_1	y_2	y_3
x_1	0	1	0
x_2	0	0	1
x_3	0	0	1

How to model operational constraints?

▶ Soft constraints: A function $u : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ gives the "utility" of each pair of secret and observable

How to model operational constraints?

▶ Soft constraints: A function $u : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ gives the "utility" of each pair of secret and observable

Execution time, difference between real and reported data,

How to model operational constraints?

Soft constraints: A function u : X × Y → ℝ gives the "utility" of each pair of secret and observable
Execution time, difference between real and reported data, ...
Constraint: E[u] = ∑_{x,y} π(x)C(x,y)u(x,y) ≥ u_{min}

The general framework for the Channel Design Problem

(Probabilistic) Channel Design Problem (Khouzani and Malacaria, CSF 2017)

Find channel $C: \mathcal{X} \to \mathcal{Y}$ that maximizes $H(\pi, C)$ subject to

$$\blacktriangleright \ C(x,y) > 0 \implies (x,y) \in \Omega$$

$$\blacktriangleright \mathbb{E}[u] \ge u_{min}$$

.

The general framework for the Channel Design Problem

(Probabilistic) Channel Design Problem (Khouzani and Malacaria, CSF 2017)

Find channel $C:\mathcal{X}\to\mathcal{Y}$ that maximizes $H(\pi,C)$ subject to

$$\blacktriangleright C(x,y) > 0 \implies (x,y) \in \Omega$$

•
$$\mathbb{E}[u] \ge u_{min}$$

Solved by convex programming (Karush-Kuhn Tucker conditions)

The Deterministic Channel Design Problem

The Deterministic Channel Design Problem

Deterministic Channel Design Problem:

Find channel $C:\mathcal{X}\rightarrow\mathcal{Y}$ that maximizes $H(\pi,C)$ subject to

►
$$C(x, y) \in \{0, 1\}$$

$$\blacktriangleright \ C(x,y) > 0 \implies (x,y) \in \Omega$$

$$\blacktriangleright \mathbb{E}[u] \ge u_{min}$$

Theorem

The Deterministic Channel Design Problem is NP-Hard

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem Let \mathcal{U} be a finite set and $\mathcal{C} \subset 2^{\mathcal{U}}$ a collection of subsets of \mathcal{U}

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem Let \mathcal{U} be a finite set and $\mathcal{C} \subset 2^{\mathcal{U}}$ a collection of subsets of \mathcal{U}

There is a subcollection of C of size k > 0 that covers \mathcal{U}

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem Let \mathcal{U} be a finite set and $\mathcal{C} \subset 2^{\mathcal{U}}$ a collection of subsets of \mathcal{U}

There is a subcollection of C of size k > 0 that covers \mathcal{U}

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem Let \mathcal{U} be a finite set and $\mathcal{C} \subset 2^{\mathcal{U}}$ a collection of subsets of \mathcal{U}

There is a subcollection of C of size k > 0 that covers \mathcal{U}

There is a channel $C: \mathcal{U} \to \mathcal{C}$, with $H_{\infty}(\pi_u, C) \geq -\log \frac{k}{|\mathcal{U}|}$

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem Let \mathcal{U} be a finite set and $\mathcal{C} \subset 2^{\mathcal{U}}$ a collection of subsets of \mathcal{U}

There is a subcollection of C of size k > 0 that covers \mathcal{U}

There is a channel $C : \mathcal{U} \to \mathcal{C}$, with $H_{\infty}(\pi_u, C) \ge -\log \frac{k}{|\mathcal{U}|}$ $(\pi_u \text{ is the uniform distribution, and } \Omega = \{(x, y) \mid x \in y\})$

The choice of entropy measure depends on the adversary's interests and probabilities.

- The choice of entropy measure depends on the adversary's interests and probabilities.
- This may be outside of the designer's control...

- The choice of entropy measure depends on the adversary's interests and probabilities.
- This may be outside of the designer's control...
- ► Thus, a desirable property is <u>universality</u>: there is C that is a solution for all core-concave entropies

- The choice of entropy measure depends on the adversary's interests and probabilities.
- This may be outside of the designer's control...
- ► Thus, a desirable property is <u>universality</u>: there is C that is a solution for all core-concave entropies

Theorem

In general, the Deterministic Channel Design Problem does not satisfy universality

Theorem

In general, the Deterministic Channel Design Problem does not satisfy universality

Theorem

In general, the Deterministic Channel Design Problem does not satisfy universality

Proof Let $\Omega = \{(x_1, y_1), (x_2, y_1), (x_1, y_2), (x_3, y_2), (x_2, y_3), (x_4, y_3)\}$

π	C	y_1	y_2	y_3
0.35	x_1	?	?	0
0.35	x_2	?	0	?
0.15	x_3	0	?	0
0.15	x_4	0	0	?

Theorem

In general, the Deterministic Channel Design Problem does not satisfy universality

Proof Let $\Omega = \{(x_1, y_1), (x_2, y_1), (x_1, y_2), (x_3, y_2), (x_2, y_3), (x_4, y_3)\}$

π	C	y_1	y_2	y_3
0.35	x_1	1	0	0
0.35	x_2	1	0	0
0.15	x_3	0	1	0
0.15	x_4	0	0	1

Optimal for min-entropy

Theorem

In general, the Deterministic Channel Design Problem does not satisfy universality

Proof Let $\Omega = \{(x_1, y_1), (x_2, y_1), (x_1, y_2), (x_3, y_2), (x_2, y_3), (x_4, y_3)\}$

π	C	y_1	y_2	y_3
0.35	x_1	0	1	0
0.35	x_2	0	0	1
0.15	x_3	0	1	0
0.15	x_4	0	0	1

Optimal for Shannon entropy

The complete k-hypergraph problem

The Complete *k*-hypergraph Problem:

The Complete k-hypergraph Problem: at most k secret values can be mapped to each observable

$$\blacktriangleright \mathcal{Y} = \{ \mathcal{A} \subset \mathcal{X} \, | \, |\mathcal{A}| \le k \}, \qquad \Omega = \{ (x, y) \, | \, x \in y \}.$$

The Complete *k*-hypergraph Problem:

The Complete k-hypergraph Problem: at most k secret values can be mapped to each observable

 $\blacktriangleright \mathcal{Y} = \{ \mathcal{A} \subset \mathcal{X} \mid |\mathcal{A}| \le k \}, \qquad \Omega = \{ (x, y) \mid x \in y \}.$

- Result: There is a greedy solution to a subset of core-concave entropies, called leakage-supermodular
 - Includes most entropies used in QIF: Shannon entropy, min-entropy, guessing entropy...

• Lattice on $\mathbb{R}^n_{\geq 0}$: Let $\mathbf{r} = (r_1, \dots, r_n)$, $\mathbf{s} = (s_1, \dots, s_n) \in \mathbb{R}^n_{\geq 0}$

- Join: $\mathbf{r} \vee \mathbf{s} = (\max(r_1, s_1), \dots, \max(r_n, s_n))$
- Meet: $\mathbf{r} \wedge \mathbf{s} = (\min(r_1, s_1), \dots, \min(r_n, s_n))$

▶ Lattice on $\mathbb{R}^n_{\geq 0}$: Let $\mathbf{r} = (r_1, \dots, r_n)$, $\mathbf{s} = (s_1, \dots, s_n) \in \mathbb{R}^n_{\geq 0}$ ▶ Join: $\mathbf{r} \lor \mathbf{s} = (\max(r_1, s_1), \dots, \max(r_n, s_n))$

• Meet:
$$\mathbf{r} \wedge \mathbf{s} = (\min(r_1, s_1), \dots, \min(r_n, s_n))$$

▶ Lattice on $\mathbb{R}^n_{\geq 0}$: Let $\mathbf{r} = (r_1, \dots, r_n)$, $\mathbf{s} = (s_1, \dots, s_n) \in \mathbb{R}^n_{\geq 0}$ ▶ Join: $\mathbf{r} \lor \mathbf{s} = (\max(r_1, s_1), \dots, \max(r_n, s_n))$

• Meet:
$$\mathbf{r} \wedge \mathbf{s} = (\min(r_1, s_1), \dots, \min(r_n, s_n))$$

Lattice on Rⁿ_{≥0}: Let r = (r₁,...,r_n),s = (s₁,...,s_n) ∈ Rⁿ_{≥0}
Join: r ∨ s = (max(r₁,s₁),...,max(r_n,s_n))
Meet: r ∧ s = (min(r₁,s₁),...,min(r_n,s_n))

• A function $\phi : \mathbb{R}^n_{\geq 0} \to \mathbb{R}$ is Supermodular if

 s_1

 r_1

▶ Lattice on $\mathbb{R}^n_{\geq 0}$: Let $\mathbf{r} = (r_1, \dots, r_n)$, $\mathbf{s} = (s_1, \dots, s_n) \in \mathbb{R}^n_{\geq 0}$ ▶ Join: $\mathbf{r} \lor \mathbf{s} = (\max(r_1, s_1), \dots, \max(r_n, s_n))$ ▶ Meet: $\mathbf{r} \land \mathbf{s} = (\min(r_1, s_1), \dots, \min(r_n, s_n))$

• A function $\phi : \mathbb{R}^n_{\geq 0} \to \mathbb{R}$ is Supermodular if

 $\phi(\mathbf{r} \vee \mathbf{s}) + \phi(\mathbf{r} \wedge \mathbf{s}) \ge \phi(\mathbf{r}) + \phi(\mathbf{s})$

▶ Lattice on $\mathbb{R}^n_{\geq 0}$: Let $\mathbf{r} = (r_1, \dots, r_n)$, $\mathbf{s} = (s_1, \dots, s_n) \in \mathbb{R}^n_{\geq 0}$ ▶ Join: $\mathbf{r} \lor \mathbf{s} = (\max(r_1, s_1), \dots, \max(r_n, s_n))$ ▶ Meet: $\mathbf{r} \land \mathbf{s} = (\min(r_1, s_1), \dots, \min(r_n, s_n))$

• A function $\phi : \mathbb{R}^n_{\geq 0} \to \mathbb{R}$ is Supermodular if

 s_1

 r_1

For now on, we restrict our attention to entropies that are

- Symmetric: $H(\pi_1, \ldots, \pi_n) = H(\pi_{\phi(1)}, \ldots, \pi_{\phi(n)})$ for all permutations ϕ
- Expansible: $H(\pi_1, \ldots, \pi_n, 0) = H(\pi_1, \ldots, \pi_n)$

For now on, we restrict our attention to entropies that are

Symmetric: $H(\pi_1, \ldots, \pi_n) = H(\pi_{\phi(1)}, \ldots, \pi_{\phi(n)})$ for all permutations ϕ

• Expansible: $H(\pi_1, \ldots, \pi_n, 0) = H(\pi_1, \ldots, \pi_n)$

• Given a core-concave H for some η, F , define $G_F : \mathbb{R}^n_{>0} \to \mathbb{R}$

$$G_F(r_1, \dots, r_n) = \left(\sum_i r_i\right) F\left(\frac{r_1}{\sum_i r_i}, \dots, \frac{r_n}{\sum_i r_i}\right)$$

For now on, we restrict our attention to entropies that are

- Symmetric: $H(\pi_1, \ldots, \pi_n) = H(\pi_{\phi(1)}, \ldots, \pi_{\phi(n)})$ for all permutations ϕ
- Expansible: $H(\pi_1, \ldots, \pi_n, 0) = H(\pi_1, \ldots, \pi_n)$

• Given a core-concave H for some η, F , define $G_F : \mathbb{R}^n_{>0} \to \mathbb{R}$

$$G_F(r_1, \dots, r_n) = \left(\sum_i r_i\right) F\left(\frac{r_1}{\sum_i r_i}, \dots, \frac{r_n}{\sum_i r_i}\right)$$

• *H* is leakage-supermodular if G_F is supermodular

For now on, we restrict our attention to entropies that are

- Symmetric: $H(\pi_1, \ldots, \pi_n) = H(\pi_{\phi(1)}, \ldots, \pi_{\phi(n)})$ for all permutations ϕ
- Expansible: $H(\pi_1, \ldots, \pi_n, 0) = H(\pi_1, \ldots, \pi_n)$

• Given a core-concave H for some η, F , define $G_F : \mathbb{R}^n_{>0} \to \mathbb{R}$

$$G_F(r_1, \dots, r_n) = \left(\sum_i r_i\right) F\left(\frac{r_1}{\sum_i r_i}, \dots, \frac{r_n}{\sum_i r_i}\right)$$

• *H* is leakage-supermodular if G_F is supermodular

Theorem

Shannon entropy, min-entropy, guessing entropy and Arimoto-Rényi entropies are leakage-supermodular

$$H(\pi, C) = \eta\left(\sum_{y} G_F\left(p(x_1, y), \dots, p(x_n, y)\right)\right)$$

$$H(\pi, C) = \eta\left(\sum_{y} G_F\left(p(x_1, y), \dots, p(x_n, y)\right)\right)$$

π	C	y_1	y_2
1/3	x_1	1	0
1/4	x_2	0	1
1/4	x_3	0	1
1/6	x_3	1	0

$$H(\pi, C) = \eta\left(\sum_{y} G_F\left(p(x_1, y), \dots, p(x_n, y)\right)\right)$$

p	y_1	y_2
x_1	1/3	0
x_2	0	1/4
x_3	0	1/4
x_4	$^{1/6}$	0

$$H(\pi, C) = \eta\left(\sum_{y} G_F\left(p(x_1, y), \dots, p(x_n, y)\right)\right)$$

p	y_1	y_2
x_1	1/3	0
x_2	0	1/4
x_3	0	1/4
x_4	$^{1/6}$	0

$$H(\pi, C) = \eta \Big(G_F(1/3, 0, 0, 1/6) + G_F(0, 1/4, 1/4, 0) \Big)$$

The k-hypergraph Problem

Let $\mathcal{Y} = \{\mathcal{A} \subset \mathcal{X} \mid |\mathcal{A}| \leq k\}$. Find $C : \mathcal{X} \to \mathcal{Y}$ that maximizes $H(\pi, C)$, subject to $\Omega = \{(x, y) \in \mathcal{X} \times \mathcal{Y} \mid x \in y\}$

The k-hypergraph Problem

Let $\mathcal{Y} = \{\mathcal{A} \subset \mathcal{X} \mid |\mathcal{A}| \leq k\}$. Find $C : \mathcal{X} \to \mathcal{Y}$ that maximizes $H(\pi, C)$, subject to $\Omega = \{(x, y) \in \mathcal{X} \times \mathcal{Y} \mid x \in y\}$

• Order $\mathcal{X} = \{x_1, \dots, x_n\}$ such that $\pi(x_1) \ge \dots \ge \pi(x_n)$

The k-hypergraph Problem Let $\mathcal{Y} = \{\mathcal{A} \subset \mathcal{X} \mid |\mathcal{A}| \leq k\}$. Find $C : \mathcal{X} \to \mathcal{Y}$ that maximizes $H(\pi, C)$, subject to $\Omega = \{(x, y) \in \mathcal{X} \times \mathcal{Y} \mid x \in y\}$

- Order $\mathcal{X} = \{x_1, \dots, x_n\}$ such that $\pi(x_1) \ge \dots \ge \pi(x_n)$
- ▶ Build C by mapping x₁,..., x_k to one output, x_{k+1},..., x_{2k} to another and so on.

The k-hypergraph Problem Let $\mathcal{Y} = \{\mathcal{A} \subset \mathcal{X} \mid |\mathcal{A}| \leq k\}$. Find $C : \mathcal{X} \to \mathcal{Y}$ that maximizes $H(\pi, C)$, subject to $\Omega = \{(x, y) \in \mathcal{X} \times \mathcal{Y} \mid x \in y\}$

- Order $\mathcal{X} = \{x_1, \dots, x_n\}$ such that $\pi(x_1) \ge \dots \ge \pi(x_n)$
- ▶ Build C by mapping x₁,..., x_k to one output, x_{k+1},..., x_{2k} to another and so on.

Greedy solution for 8 secret values, and k = 3

π	C	7	y_1	y_2	y_3
0.25	x	1	1	0	0
0.20	x	2	1	0	0
0.15	x	3	1	0	0
0.13	x	4	0	1	0
0.10	x	5	0	1	0
0.08	x	6	0	1	0
0.07	x	7	0	0	1
0.02	x	8	0	0	1

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.

π	C	y_1	y_2	y_3
0.3	x_1	1	0	0
0.3	x_2	0	1	0
0.2	x_3	1	0	0
0.1	x_3	0	1	0
0.1	x_3	0	0	1

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.

p	y_1	y_2	y_3
x_1	0.3	0	0
x_2	0	0.3	0
x_3	0.2	0	0
x_3	0	0.1	0
x_3	0	0	0.1

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

p	y_1	y_2	y_3
x_1	0.3	0	0
x_2	0	0.3	0
x_3	0.2	0	0
x_3	0	0.1	0
x_3	0	0	0.1

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

p	y_1	y_2	y_3
x_1	0.3	0	0
x_2	0	0.3	0
x_3	0.2	0	0
x_3	0	0.1	0
x_3	0	0	0.1

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

p'	y_1	y_2	y_3
x_1	0.3	0	0
x_2	0.3	0	0
x_3	0	0.2	0
x_3	0	0.1	0
x_3	0	0	0.1

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

p'	y_1	y_2	y_3
x_1	0.3	0	0
x_2	0.3	0	0
x_3	0	0.2	0
x_3	0	0.1	0
x_3	0	0	0.1

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea. $H(\pi, C) = \eta (G_F(0.3, 0.2) + G_F(0.3, 0.1) + G_F(0.1))$

π	C'	y_1	y_2	y_3
0.3	x_1	1	0	0
0.3	x_2	1	0	0
0.2	x_3	0	1	0
0.1	x_3	0	1	0
0.1	x_3	0	0	1

 $H(\pi, C') = \eta \big(G_F(0.3, 0.3) + G_F(0.2, 0.1) + G_F(0.1) \big)$

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea. $H(\pi, C) = \eta \left(G_F(0.3, 0.2) + G_F(0.3, 0.1) + G_F(0.1) \right)$

π	C'	y_1	y_2	y_3
0.3	x_1	1	0	0
0.3	x_2	1	0	0
0.2	x_3	0	1	0
0.1	x_3	0	1	0
0.1	x_3	0	0	1

 $H(\pi, C') = \eta \big(G_F(0.3, 0.3) + G_F(0.2, 0.1) + G_F(0.1) \big)$

 $(0.3, 0.3) = (0.3, 0.2) \lor (0.1, 0.3)$

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea. $H(\pi, C) = \eta \left(G_F(0.3, 0.2) + G_F(0.3, 0.1) + G_F(0.1) \right)$

π	C'	y_1	y_2	y_3
0.3	x_1	1	0	0
0.3	x_2	1	0	0
0.2	x_3	0	1	0
0.1	x_3	0	1	0
0.1	x_3	0	0	1

 $H(\pi, C') = \eta \big(G_F(0.3, 0.3) + G_F(0.2, 0.1) + G_F(0.1) \big)$

 $(0.1, 0.2) = (0.3, 0.2) \land (0.1, 0.3)$

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea. $H(\pi, C) = \eta (G_F(0.3, 0.2) + G_F(0.3, 0.1) + G_F(0.1))$

π	C'	y_1	y_2	y_3
0.3	x_1	1	0	0
0.3	x_2	1	0	0
0.2	x_3	0	1	0
0.1	x_3	0	1	0
0.1	x_3	0	0	1

 $H(\pi, C') = \eta \big(G_F(0.3, 0.3) + G_F(0.2, 0.1) + G_F(0.1) \big)$

 $H(\pi, C') \ge H(\pi, C)$

Experimental comparison

 Often, a system is executed multiple times for a fixed secret value

- Often, a system is executed multiple times for a fixed secret value
- How do we design an optimal system in this scenario?

C	y_1	y_2	y_3
x_1	?	?	0
x_2	?	0	?
x_3	0	?	?
x_4	?	0	?
x_5	?	?	?

C	y_1	y_2	y_3
x_1	1/2	$^{1/2}$	0
x_2	$^{1/3}$	0	$^{2/3}$
x_3	0	$^{3/4}$	1/4
x_4	1/3	0	2/3
x_5	3/5	1/5	1/5

C	y_1	y_2	y_3		C	$[x_1]$	$[x_2]$	$[x_3]$	$[x_5]$
x_1	1/2	$^{1/2}$	0		x_1	1	0	0	0
x_2	1/3	0	$^{2/3}$	\rightarrow	x_2	0	1	0	0
x_3	0	$^{3/4}$	1/4	/	x_3	0	0	1	0
x_4	1/3	0	2/3		x_4	0	1	0	0
x_5	3/5	1/5	1/5		x_5	0	0	0	1

C	y_1	y_2	y_3
x_1	0	1	0
x_2	0	0	1
x_3	0	1	0
x_4	0	0	1
x_5	0	1	0

C	$[x_1]$	$[x_2]$	$[x_3]$	$[x_5]$
x_1	1	0	0	0
x_2	0	1	0	0
x_3	0	0	1	0
x_4	0	1	0	0
x_5	0	0	0	1

Proposition

Let C be a probabilistic channel respecting the operational constraints. Then, there is a deterministic channel D that respects the same constraints and asymptotically leaks at most as much information as C

Proposition

Let C be a probabilistic channel respecting the operational constraints. Then, there is a deterministic channel D that respects the same constraints and asymptotically leaks at most as much information as C

Thus, the deterministic solution to the design problem is asymptotically optimal

In this work we...

 Investigated the Deterministic Channel Design Problem: NP-hardness and non-universality

- Investigated the Deterministic Channel Design Problem: NP-hardness and non-universality
- Established a greedy solution for the k-hypergraph problem which is optimal for the most common entropy measures

- Investigated the Deterministic Channel Design Problem: NP-hardness and non-universality
- Established a greedy solution for the k-hypergraph problem which is optimal for the most common entropy measures
- Introduced leakage-supermodularity, which may be a useful concept for future work in QIF

- Investigated the Deterministic Channel Design Problem: NP-hardness and non-universality
- Established a greedy solution for the k-hypergraph problem which is optimal for the most common entropy measures
- Introduced leakage-supermodularity, which may be a useful concept for future work in QIF
 - Channel Ordering and Supermodularity to appear at IEEE ITW 2019

- Investigated the Deterministic Channel Design Problem: NP-hardness and non-universality
- Established a greedy solution for the k-hypergraph problem which is optimal for the most common entropy measures
- Introduced leakage-supermodularity, which may be a useful concept for future work in QIF
 - Channel Ordering and Supermodularity to appear at IEEE ITW 2019
- Proved that, if a system is to be executed multiple times, the deterministic solution is optimal when the number of executions is very large