
1

Deterministic Channel Design for Minimum
Leakage

Arthur Américo, MHR. Khouzani, Pasquale Malacaria

School of Electronic Engineering and Computer Science
Queen Mary University of London

32nd IEEE CSF – 28 June 2019

2

Introduction

3

Introduction

I Systems often need to leak some sensitive information to
function correctly/efficiently

I A password checker always leaks information
I Eliminating all leakage from timing channels may lead to a

substantial decrease in performance

I Problem: Find the system that minimizes information leakage
while retaining functionality

I A general framework for this task was proposed in the CSF
2017 paper Leakage Minimal Design: Universality, Limitations,
and Applications, by MHR. Khouzani and P. Malacaria

Objective of this work

Study the application of this framework to deterministic systems

3

Introduction

I Systems often need to leak some sensitive information to
function correctly/efficiently
I A password checker always leaks information

I Eliminating all leakage from timing channels may lead to a
substantial decrease in performance

I Problem: Find the system that minimizes information leakage
while retaining functionality

I A general framework for this task was proposed in the CSF
2017 paper Leakage Minimal Design: Universality, Limitations,
and Applications, by MHR. Khouzani and P. Malacaria

Objective of this work

Study the application of this framework to deterministic systems

3

Introduction

I Systems often need to leak some sensitive information to
function correctly/efficiently
I A password checker always leaks information
I Eliminating all leakage from timing channels may lead to a

substantial decrease in performance

I Problem: Find the system that minimizes information leakage
while retaining functionality

I A general framework for this task was proposed in the CSF
2017 paper Leakage Minimal Design: Universality, Limitations,
and Applications, by MHR. Khouzani and P. Malacaria

Objective of this work

Study the application of this framework to deterministic systems

3

Introduction

I Systems often need to leak some sensitive information to
function correctly/efficiently
I A password checker always leaks information
I Eliminating all leakage from timing channels may lead to a

substantial decrease in performance

I Problem: Find the system that minimizes information leakage
while retaining functionality

I A general framework for this task was proposed in the CSF
2017 paper Leakage Minimal Design: Universality, Limitations,
and Applications, by MHR. Khouzani and P. Malacaria

Objective of this work

Study the application of this framework to deterministic systems

3

Introduction

I Systems often need to leak some sensitive information to
function correctly/efficiently
I A password checker always leaks information
I Eliminating all leakage from timing channels may lead to a

substantial decrease in performance

I Problem: Find the system that minimizes information leakage
while retaining functionality

I A general framework for this task was proposed in the CSF
2017 paper Leakage Minimal Design: Universality, Limitations,
and Applications, by MHR. Khouzani and P. Malacaria

Objective of this work

Study the application of this framework to deterministic systems

3

Introduction

I Systems often need to leak some sensitive information to
function correctly/efficiently
I A password checker always leaks information
I Eliminating all leakage from timing channels may lead to a

substantial decrease in performance

I Problem: Find the system that minimizes information leakage
while retaining functionality

I A general framework for this task was proposed in the CSF
2017 paper Leakage Minimal Design: Universality, Limitations,
and Applications, by MHR. Khouzani and P. Malacaria

Objective of this work

Study the application of this framework to deterministic systems

4

Preliminaries

5

Quantitative Information Flow

I A secret value is taken from a set X = {x1, . . . , xn} according
to a distribution π

I A system takes the secret value as input and produces an
observable behaviour (or simply observable) in
Y = {y1, . . . , ym}

I An adversary, observing the behaviour of the system, may
obtain some information about the secret value

5

Quantitative Information Flow

I A secret value is taken from a set X = {x1, . . . , xn} according
to a distribution π

I A system takes the secret value as input and produces an
observable behaviour (or simply observable) in
Y = {y1, . . . , ym}

I An adversary, observing the behaviour of the system, may
obtain some information about the secret value

5

Quantitative Information Flow

I A secret value is taken from a set X = {x1, . . . , xn} according
to a distribution π

I A system takes the secret value as input and produces an
observable behaviour (or simply observable) in
Y = {y1, . . . , ym}

I An adversary, observing the behaviour of the system, may
obtain some information about the secret value

6

Systems as Channels

I A system with inputs in X and observables in Y is modelled
by a channel C : X → Y.

I C(x, y) is the conditional probability that y ∈ Y will be
produced given that the secret value is x ∈ X

I C(x, y) > 0
∑
y C(x, y) = 1

C y1 y2 y3 y4
x1

1/2 1/4 1/8 1/8
x2

1/4 1/2 1/4 0
x3 1 0 0 0

I In this work we focus on deterministic channels:
C(x, y) ∈ {0, 1}

6

Systems as Channels

I A system with inputs in X and observables in Y is modelled
by a channel C : X → Y.

I C(x, y) is the conditional probability that y ∈ Y will be
produced given that the secret value is x ∈ X

I C(x, y) > 0
∑
y C(x, y) = 1

C y1 y2 y3 y4
x1

1/2 1/4 1/8 1/8
x2

1/4 1/2 1/4 0
x3 1 0 0 0

I In this work we focus on deterministic channels:
C(x, y) ∈ {0, 1}

6

Systems as Channels

I A system with inputs in X and observables in Y is modelled
by a channel C : X → Y.

I C(x, y) is the conditional probability that y ∈ Y will be
produced given that the secret value is x ∈ X
I C(x, y) > 0

∑
y C(x, y) = 1

C y1 y2 y3 y4
x1

1/2 1/4 1/8 1/8
x2

1/4 1/2 1/4 0
x3 1 0 0 0

I In this work we focus on deterministic channels:
C(x, y) ∈ {0, 1}

6

Systems as Channels

I A system with inputs in X and observables in Y is modelled
by a channel C : X → Y.

I C(x, y) is the conditional probability that y ∈ Y will be
produced given that the secret value is x ∈ X
I C(x, y) > 0

∑
y C(x, y) = 1

C y1 y2 y3 y4
x1

1/2 1/4 1/8 1/8
x2

1/4 1/2 1/4 0
x3 1 0 0 0

I In this work we focus on deterministic channels:
C(x, y) ∈ {0, 1}

6

Systems as Channels

I A system with inputs in X and observables in Y is modelled
by a channel C : X → Y.

I C(x, y) is the conditional probability that y ∈ Y will be
produced given that the secret value is x ∈ X
I C(x, y) > 0

∑
y C(x, y) = 1

C y1 y2 y3 y4
x1 0 1 0 0
x2 0 1 0 0
x3 1 0 0 0

I In this work we focus on deterministic channels:
C(x, y) ∈ {0, 1}

7

How is information leaked?

I The adversary knows π and C

I Joint distribution p(x, y) = π(x)C(x, y)

I Marginal distribution p(y) =
∑

x∈X p(x, y)

I Posterior distributions pX|y(x) = p(x,y)
p(y)

π
1/3
1/4
1/4
1/6

C y1 y2
x1 1 0
x2 0 1
x3 0 1
x3 1 0

I By observing y, the adversary updates the distribution from π
to pX|y

7

How is information leaked?

I The adversary knows π and C

I Joint distribution p(x, y) = π(x)C(x, y)

I Marginal distribution p(y) =
∑

x∈X p(x, y)

I Posterior distributions pX|y(x) = p(x,y)
p(y)

p y1 y2
x1

1/3 0
x2 0 1/4
x3 0 1/4
x4

1/6 0

p(y1) = 1/2

p(y2) = 1/2

I By observing y, the adversary updates the distribution from π
to pX|y

7

How is information leaked?

I The adversary knows π and C

I Joint distribution p(x, y) = π(x)C(x, y)

I Marginal distribution p(y) =
∑

x∈X p(x, y)

I Posterior distributions pX|y(x) = p(x,y)
p(y)

p y1 y2
x1

1/3 0
x2 0 1/4
x3 0 1/4
x4

1/6 0

p(y1) = 1/2

p(y2) = 1/2

I By observing y, the adversary updates the distribution from π
to pX|y

7

How is information leaked?

I The adversary knows π and C

I Joint distribution p(x, y) = π(x)C(x, y)

I Marginal distribution p(y) =
∑

x∈X p(x, y)

I Posterior distributions pX|y(x) = p(x,y)
p(y)

pX|y1
pX|y2

x1
2/3 0

x2 0 1/2
x3 0 1/2
x4

1/3 0

p(y1) = 1/2

p(y2) = 1/2

I By observing y, the adversary updates the distribution from π
to pX|y

7

How is information leaked?

I The adversary knows π and C

I Joint distribution p(x, y) = π(x)C(x, y)

I Marginal distribution p(y) =
∑

x∈X p(x, y)

I Posterior distributions pX|y(x) = p(x,y)
p(y)

pX|y1
pX|y2

x1
2/3 0

x2 0 1/2
x3 0 1/2
x4

1/3 0

p(y1) = 1/2

p(y2) = 1/2

I By observing y, the adversary updates the distribution from π
to pX|y

8

Quantifying Information Leakage

I An entropy measure H reflects how uncertain an adversary is
about the secret value

I Many Choices: Shannon Entropy (H1), min-entropy (H∞),
guessing entropy (HG) . . .

I H(π) = initial uncertainty

I H(π,C) = uncertainty after execution

I Leakage = H(π)−H(π,C)

8

Quantifying Information Leakage

I An entropy measure H reflects how uncertain an adversary is
about the secret value

I Many Choices: Shannon Entropy (H1), min-entropy (H∞),
guessing entropy (HG) . . .

I H(π) = initial uncertainty

I H(π,C) = uncertainty after execution

I Leakage = H(π)−H(π,C)

8

Quantifying Information Leakage

I An entropy measure H reflects how uncertain an adversary is
about the secret value

I Many Choices: Shannon Entropy (H1), min-entropy (H∞),
guessing entropy (HG) . . .

I H(π) = initial uncertainty

I H(π,C) = uncertainty after execution

I Leakage = H(π)−H(π,C)

8

Quantifying Information Leakage

I An entropy measure H reflects how uncertain an adversary is
about the secret value

I Many Choices: Shannon Entropy (H1), min-entropy (H∞),
guessing entropy (HG) . . .

I H(π) = initial uncertainty

I H(π,C) = uncertainty after execution

I Leakage = H(π)−H(π,C)

8

Quantifying Information Leakage

I An entropy measure H reflects how uncertain an adversary is
about the secret value

I Many Choices: Shannon Entropy (H1), min-entropy (H∞),
guessing entropy (HG) . . .

I H(π) = initial uncertainty

I H(π,C) = uncertainty after execution

I Leakage = H(π)−H(π,C)

9

Deterministic Channel Design

I Leakage = H(π)−H(π,C)

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the
deterministic channel C that maximizes H(π,C), respecting some
operational constraints

I Maximize H(π,C) = Minimize Leakage

I What is a reasonable entropy?

I How should we model operational constraints?

9

Deterministic Channel Design

I Leakage = H(π)−H(π,C)

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the
deterministic channel C that maximizes H(π,C), respecting some
operational constraints

I Maximize H(π,C) = Minimize Leakage

I What is a reasonable entropy?

I How should we model operational constraints?

9

Deterministic Channel Design

I Leakage = H(π)−H(π,C)

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the
deterministic channel C that maximizes H(π,C), respecting some
operational constraints

I Maximize H(π,C) = Minimize Leakage

I What is a reasonable entropy?

I How should we model operational constraints?

9

Deterministic Channel Design

I Leakage = H(π)−H(π,C)

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the
deterministic channel C that maximizes H(π,C), respecting some
operational constraints

I Maximize H(π,C) = Minimize Leakage

I What is a reasonable entropy?

I How should we model operational constraints?

9

Deterministic Channel Design

I Leakage = H(π)−H(π,C)

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the
deterministic channel C that maximizes H(π,C), respecting some
operational constraints

I Maximize H(π,C) = Minimize Leakage

I What is a reasonable entropy?

I How should we model operational constraints?

10

What is a Reasonable Entropy?

I A entropy H is core-concave if there is η, F such that
I H(π) = η(F (π))
I F is a real valued, continuous and concave function
I η : I → R is continuous and increasing

I Prior entropy H(π) = η(F (π))

I Posterior entropy

H(π,C) = η

(∑
y

p(y)F (pX|y)

)

I Generalizes most entropy measures in QIF

10

What is a Reasonable Entropy?

I A entropy H is core-concave if there is η, F such that
I H(π) = η(F (π))
I F is a real valued, continuous and concave function
I η : I → R is continuous and increasing

I Prior entropy H(π) = η(F (π))

I Posterior entropy

H(π,C) = η

(∑
y

p(y)F (pX|y)

)

I Generalizes most entropy measures in QIF

10

What is a Reasonable Entropy?

I A entropy H is core-concave if there is η, F such that
I H(π) = η(F (π))
I F is a real valued, continuous and concave function
I η : I → R is continuous and increasing

I Prior entropy H(π) = η(F (π))

I Posterior entropy

H(π,C) = η

(∑
y

p(y)F (pX|y)

)

I Generalizes most entropy measures in QIF

10

What is a Reasonable Entropy?

I A entropy H is core-concave if there is η, F such that
I H(π) = η(F (π))
I F is a real valued, continuous and concave function
I η : I → R is continuous and increasing

I Prior entropy H(π) = η(F (π))

I Posterior entropy

H(π,C) = η

(∑
y

p(y)F (pX|y)

)

I Generalizes most entropy measures in QIF

11

How Should We Model Operational Constraints?

I Hard constraints: A set Ω ⊂ X × Y of which observables can
be produced for each secret.
I C(x, y) > 0 =⇒ (x, y) ∈ Ω

Ω = {(x1, y1), (x1, y2), (x2, y1), (x2, y3), (x3, y3)}

C y1 y2 y3
x1 ? ? 0
x2 ? 0 ?
x3 0 0 ?

11

How Should We Model Operational Constraints?

I Hard constraints: A set Ω ⊂ X × Y of which observables can
be produced for each secret.
I C(x, y) > 0 =⇒ (x, y) ∈ Ω

Ω = {(x1, y1), (x1, y2), (x2, y1), (x2, y3), (x3, y3)}

C y1 y2 y3
x1 ? ? 0
x2 ? 0 ?
x3 0 0 ?

11

How Should We Model Operational Constraints?

I Hard constraints: A set Ω ⊂ X × Y of which observables can
be produced for each secret.
I C(x, y) > 0 =⇒ (x, y) ∈ Ω

Ω = {(x1, y1), (x1, y2), (x2, y1), (x2, y3), (x3, y3)}

C y1 y2 y3
x1 ? ? 0
x2 ? 0 ?
x3 0 0 ?

11

How Should We Model Operational Constraints?

I Hard constraints: A set Ω ⊂ X × Y of which observables can
be produced for each secret.
I C(x, y) > 0 =⇒ (x, y) ∈ Ω

Ω = {(x1, y1), (x1, y2), (x2, y1), (x2, y3), (x3, y3)}

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 0 0 1

11

How Should We Model Operational Constraints?

I Hard constraints: A set Ω ⊂ X × Y of which observables can
be produced for each secret.
I C(x, y) > 0 =⇒ (x, y) ∈ Ω

Ω = {(x1, y1), (x1, y2), (x2, y1), (x2, y3), (x3, y3)}

C y1 y2 y3
x1 0 1 0
x2 0 0 1
x3 0 0 1

12

How to model operational constraints?

I Soft constraints: A function u : X × Y → R gives the
“utility” of each pair of secret and observable

I Execution time, difference between real and reported data, . . .

I Constraint: E[u] =
∑

x,y π(x)C(x, y)u(x, y) ≥ umin

12

How to model operational constraints?

I Soft constraints: A function u : X × Y → R gives the
“utility” of each pair of secret and observable
I Execution time, difference between real and reported data, . . .

I Constraint: E[u] =
∑

x,y π(x)C(x, y)u(x, y) ≥ umin

12

How to model operational constraints?

I Soft constraints: A function u : X × Y → R gives the
“utility” of each pair of secret and observable
I Execution time, difference between real and reported data, . . .

I Constraint: E[u] =
∑

x,y π(x)C(x, y)u(x, y) ≥ umin

13

The general framework for the Channel Design Problem

(Probabilistic) Channel Design Problem (Khouzani and
Malacaria, CSF 2017)

Find channel C : X → Y that maximizes H(π,C) subject to

I C(x, y) > 0 =⇒ (x, y) ∈ Ω

I E[u] ≥ umin

.

I Solved by convex programming (Karush-Kuhn Tucker
conditions)

13

The general framework for the Channel Design Problem

(Probabilistic) Channel Design Problem (Khouzani and
Malacaria, CSF 2017)

Find channel C : X → Y that maximizes H(π,C) subject to

I C(x, y) > 0 =⇒ (x, y) ∈ Ω

I E[u] ≥ umin

.

I Solved by convex programming (Karush-Kuhn Tucker
conditions)

14

The Deterministic Channel Design Problem

15

The Deterministic Channel Design Problem

Deterministic Channel Design Problem:

Find channel C : X → Y that maximizes H(π,C) subject to

I C(x, y) ∈ {0, 1}
I C(x, y) > 0 =⇒ (x, y) ∈ Ω

I E[u] ≥ umin

.

16

NP-Hardness

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem

Let U be a finite set and C ⊂ 2U a collection of subsets of U

There is a subcollection of C of size k > 0 that covers U

m
There is a channel C : U → C, with H∞(πu, C) ≥ − log k

|U|

(πu is the uniform distribution, and Ω = {(x, y) | x ∈ y})

16

NP-Hardness

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem

Let U be a finite set and C ⊂ 2U a collection of subsets of U

There is a subcollection of C of size k > 0 that covers U

m
There is a channel C : U → C, with H∞(πu, C) ≥ − log k

|U|

(πu is the uniform distribution, and Ω = {(x, y) | x ∈ y})

16

NP-Hardness

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem

Let U be a finite set and C ⊂ 2U a collection of subsets of U

There is a subcollection of C of size k > 0 that covers U

m
There is a channel C : U → C, with H∞(πu, C) ≥ − log k

|U|

(πu is the uniform distribution, and Ω = {(x, y) | x ∈ y})

16

NP-Hardness

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem

Let U be a finite set and C ⊂ 2U a collection of subsets of U

There is a subcollection of C of size k > 0 that covers U

m
There is a channel C : U → C, with H∞(πu, C) ≥ − log k

|U|

(πu is the uniform distribution, and Ω = {(x, y) | x ∈ y})

16

NP-Hardness

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem

Let U be a finite set and C ⊂ 2U a collection of subsets of U

There is a subcollection of C of size k > 0 that covers U

m

There is a channel C : U → C, with H∞(πu, C) ≥ − log k
|U|

(πu is the uniform distribution, and Ω = {(x, y) | x ∈ y})

16

NP-Hardness

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem

Let U be a finite set and C ⊂ 2U a collection of subsets of U

There is a subcollection of C of size k > 0 that covers U

m
There is a channel C : U → C, with H∞(πu, C) ≥ − log k

|U|

(πu is the uniform distribution, and Ω = {(x, y) | x ∈ y})

16

NP-Hardness

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem

Let U be a finite set and C ⊂ 2U a collection of subsets of U

There is a subcollection of C of size k > 0 that covers U

m
There is a channel C : U → C, with H∞(πu, C) ≥ − log k

|U|

(πu is the uniform distribution, and Ω = {(x, y) | x ∈ y})

17

Universality of the Solution

I The choice of entropy measure depends on the adversary’s
interests and probabilities.

I This may be outside of the designer’s control...

I Thus, a desirable property is universality: there is C that is a
solution for all core-concave entropies

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality

17

Universality of the Solution

I The choice of entropy measure depends on the adversary’s
interests and probabilities.

I This may be outside of the designer’s control...

I Thus, a desirable property is universality: there is C that is a
solution for all core-concave entropies

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality

17

Universality of the Solution

I The choice of entropy measure depends on the adversary’s
interests and probabilities.

I This may be outside of the designer’s control...

I Thus, a desirable property is universality: there is C that is a
solution for all core-concave entropies

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality

17

Universality of the Solution

I The choice of entropy measure depends on the adversary’s
interests and probabilities.

I This may be outside of the designer’s control...

I Thus, a desirable property is universality: there is C that is a
solution for all core-concave entropies

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality

18

Universality of the Solution

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality

Proof Let Ω = {(x1, y1), (x2, y1), (x1, y2), (x3, y2), (x2, y3), (x4, y3)}

π
0.35
0.35
0.15
0.15

C y1 y2 y3
x1 ? ? 0
x2 ? 0 ?
x3 0 ? 0
x4 0 0 ?

Optimal for min-entropy

18

Universality of the Solution

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality

Proof Let Ω = {(x1, y1), (x2, y1), (x1, y2), (x3, y2), (x2, y3), (x4, y3)}

π
0.35
0.35
0.15
0.15

C y1 y2 y3
x1 ? ? 0
x2 ? 0 ?
x3 0 ? 0
x4 0 0 ?

Optimal for min-entropy

18

Universality of the Solution

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality

Proof Let Ω = {(x1, y1), (x2, y1), (x1, y2), (x3, y2), (x2, y3), (x4, y3)}

π
0.35
0.35
0.15
0.15

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 0 1 0
x4 0 0 1

Optimal for min-entropy

18

Universality of the Solution

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality

Proof Let Ω = {(x1, y1), (x2, y1), (x1, y2), (x3, y2), (x2, y3), (x4, y3)}

π
0.35
0.35
0.15
0.15

C y1 y2 y3
x1 0 1 0
x2 0 0 1
x3 0 1 0
x4 0 0 1

Optimal for Shannon entropy

19

The complete k-hypergraph problem

20

The Complete k-hypergraph Problem:

I The Complete k-hypergraph Problem: at most k secret values
can be mapped to each observable
I Y = {A ⊂ X | |A| ≤ k}, Ω = {(x, y) |x ∈ y}.

I Result: There is a greedy solution to a subset of core-concave
entropies, called leakage-supermodular
I Includes most entropies used in QIF: Shannon entropy,

min-entropy, guessing entropy. . .

20

The Complete k-hypergraph Problem:

I The Complete k-hypergraph Problem: at most k secret values
can be mapped to each observable
I Y = {A ⊂ X | |A| ≤ k}, Ω = {(x, y) |x ∈ y}.

I Result: There is a greedy solution to a subset of core-concave
entropies, called leakage-supermodular
I Includes most entropies used in QIF: Shannon entropy,

min-entropy, guessing entropy. . .

21

Leakage-Supermodularity: Supermodular Functions

I Lattice on Rn
≥0: Let r = (r1, . . . , rn),s = (s1, . . . , sn) ∈ Rn

≥0
I Join: r ∨ s = (max(r1, s1), . . . ,max(rn, sn))
I Meet: r ∧ s = (min(r1, s1), . . . ,min(rn, sn))

I A function φ : Rn
≥0 → R is Supermodular if

φ(r ∨ s) + φ(r ∧ s) ≥ φ(r) + φ(s)

Example (n = 2):
r = (r1, r2)
s = (s1, s2)

r

s

r1s1

r2

s2

21

Leakage-Supermodularity: Supermodular Functions

I Lattice on Rn
≥0: Let r = (r1, . . . , rn),s = (s1, . . . , sn) ∈ Rn

≥0
I Join: r ∨ s = (max(r1, s1), . . . ,max(rn, sn))
I Meet: r ∧ s = (min(r1, s1), . . . ,min(rn, sn))

I A function φ : Rn
≥0 → R is Supermodular if

φ(r ∨ s) + φ(r ∧ s) ≥ φ(r) + φ(s)

Example (n = 2):
r = (r1, r2)
s = (s1, s2)

r

s

r1s1

r2

s2

21

Leakage-Supermodularity: Supermodular Functions

I Lattice on Rn
≥0: Let r = (r1, . . . , rn),s = (s1, . . . , sn) ∈ Rn

≥0
I Join: r ∨ s = (max(r1, s1), . . . ,max(rn, sn))
I Meet: r ∧ s = (min(r1, s1), . . . ,min(rn, sn))

I A function φ : Rn
≥0 → R is Supermodular if

φ(r ∨ s) + φ(r ∧ s) ≥ φ(r) + φ(s)

Example (n = 2):
r = (r1, r2)
s = (s1, s2)

r ∧ s

r ∨ s

r

s

r1s1

r2

s2

21

Leakage-Supermodularity: Supermodular Functions

I Lattice on Rn
≥0: Let r = (r1, . . . , rn),s = (s1, . . . , sn) ∈ Rn

≥0
I Join: r ∨ s = (max(r1, s1), . . . ,max(rn, sn))
I Meet: r ∧ s = (min(r1, s1), . . . ,min(rn, sn))

I A function φ : Rn
≥0 → R is Supermodular if

φ(r ∨ s) + φ(r ∧ s) ≥ φ(r) + φ(s)

Example (n = 2):
r = (r1, r2)
s = (s1, s2)

r ∧ s

r ∨ s

r

s

r1s1

r2

s2

21

Leakage-Supermodularity: Supermodular Functions

I Lattice on Rn
≥0: Let r = (r1, . . . , rn),s = (s1, . . . , sn) ∈ Rn

≥0
I Join: r ∨ s = (max(r1, s1), . . . ,max(rn, sn))
I Meet: r ∧ s = (min(r1, s1), . . . ,min(rn, sn))

I A function φ : Rn
≥0 → R is Supermodular if

φ(r ∨ s) + φ(r ∧ s) ≥ φ(r) + φ(s)

Example (n = 2):
r = (r1, r2)
s = (s1, s2)

r ∧ s

r ∨ s

r

s

r1s1

r2

s2

21

Leakage-Supermodularity: Supermodular Functions

I Lattice on Rn
≥0: Let r = (r1, . . . , rn),s = (s1, . . . , sn) ∈ Rn

≥0
I Join: r ∨ s = (max(r1, s1), . . . ,max(rn, sn))
I Meet: r ∧ s = (min(r1, s1), . . . ,min(rn, sn))

I A function φ : Rn
≥0 → R is Supermodular if

φ(r ∨ s) + φ(r ∧ s) ≥ φ(r) + φ(s)

Example (n = 2):
r = (r1, r2)
s = (s1, s2)

r ∧ s

r ∨ s

r

s

r1s1

r2

s2

22

Leakage-Supermodular Entropies

I For now on, we restrict our attention to entropies that are
I Symmetric: H(π1, . . . , πn) = H(πφ(1), . . . , πφ(n)) for all

permutations φ
I Expansible: H(π1, . . . , πn, 0) = H(π1, . . . , πn)

I Given a core-concave H for some η, F , define GF : Rn
≥0 → R

GF (r1, . . . , rn) =

(∑
i

ri

)
F

(
r1∑
i ri

, . . . ,
rn∑
i ri

)
I H is leakage-supermodular if GF is supermodular

Theorem

Shannon entropy, min-entropy, guessing entropy and
Arimoto-Rényi entropies are leakage-supermodular

22

Leakage-Supermodular Entropies

I For now on, we restrict our attention to entropies that are
I Symmetric: H(π1, . . . , πn) = H(πφ(1), . . . , πφ(n)) for all

permutations φ
I Expansible: H(π1, . . . , πn, 0) = H(π1, . . . , πn)

I Given a core-concave H for some η, F , define GF : Rn
≥0 → R

GF (r1, . . . , rn) =

(∑
i

ri

)
F

(
r1∑
i ri

, . . . ,
rn∑
i ri

)

I H is leakage-supermodular if GF is supermodular

Theorem

Shannon entropy, min-entropy, guessing entropy and
Arimoto-Rényi entropies are leakage-supermodular

22

Leakage-Supermodular Entropies

I For now on, we restrict our attention to entropies that are
I Symmetric: H(π1, . . . , πn) = H(πφ(1), . . . , πφ(n)) for all

permutations φ
I Expansible: H(π1, . . . , πn, 0) = H(π1, . . . , πn)

I Given a core-concave H for some η, F , define GF : Rn
≥0 → R

GF (r1, . . . , rn) =

(∑
i

ri

)
F

(
r1∑
i ri

, . . . ,
rn∑
i ri

)
I H is leakage-supermodular if GF is supermodular

Theorem

Shannon entropy, min-entropy, guessing entropy and
Arimoto-Rényi entropies are leakage-supermodular

22

Leakage-Supermodular Entropies

I For now on, we restrict our attention to entropies that are
I Symmetric: H(π1, . . . , πn) = H(πφ(1), . . . , πφ(n)) for all

permutations φ
I Expansible: H(π1, . . . , πn, 0) = H(π1, . . . , πn)

I Given a core-concave H for some η, F , define GF : Rn
≥0 → R

GF (r1, . . . , rn) =

(∑
i

ri

)
F

(
r1∑
i ri

, . . . ,
rn∑
i ri

)
I H is leakage-supermodular if GF is supermodular

Theorem

Shannon entropy, min-entropy, guessing entropy and
Arimoto-Rényi entropies are leakage-supermodular

23

Leakage-Supermodular Entropies

I Relation to leakage:

H(π,C) = η

(∑
y

GF (p(x1, y), . . . , p(xn, y))

)

π
1/3
1/4
1/4
1/6

C y1 y2
x1 1 0
x2 0 1
x3 0 1
x3 1 0

H(π,C) = η
(
GF (1/3, 0, 0, 1/6) +GF (0, 1/4, 1/4, 0)

)

23

Leakage-Supermodular Entropies

I Relation to leakage:

H(π,C) = η

(∑
y

GF (p(x1, y), . . . , p(xn, y))

)

π
1/3
1/4
1/4
1/6

C y1 y2
x1 1 0
x2 0 1
x3 0 1
x3 1 0

H(π,C) = η
(
GF (1/3, 0, 0, 1/6) +GF (0, 1/4, 1/4, 0)

)

23

Leakage-Supermodular Entropies

I Relation to leakage:

H(π,C) = η

(∑
y

GF (p(x1, y), . . . , p(xn, y))

)

p y1 y2
x1

1/3 0
x2 0 1/4
x3 0 1/4
x4

1/6 0

p(y1) = 1/2

p(y2) = 1/2

H(π,C) = η
(
GF (1/3, 0, 0, 1/6) +GF (0, 1/4, 1/4, 0)

)

23

Leakage-Supermodular Entropies

I Relation to leakage:

H(π,C) = η

(∑
y

GF (p(x1, y), . . . , p(xn, y))

)

p y1 y2
x1

1/3 0
x2 0 1/4
x3 0 1/4
x4

1/6 0

p(y1) = 1/2

p(y2) = 1/2

H(π,C) = η
(
GF (1/3, 0, 0, 1/6) +GF (0, 1/4, 1/4, 0)

)

24

A greedy solution

The k-hypergraph Problem

Let Y = {A ⊂ X | |A| ≤ k}. Find C : X → Y that maximizes
H(π,C), subject to Ω = {(x, y) ∈ X × Y | x ∈ y}

I Order X = {x1, . . . , xn} such that π(x1) ≥ · · · ≥ π(xn)

I Build C by mapping x1, . . . , xk to one output, xk+1, . . . , x2k
to another and so on.

Greedy solution for 8 secret
values, and k = 3

π
0.25
0.20
0.15
0.13
0.10
0.08
0.07
0.02

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1
x8 0 0 1

24

A greedy solution

The k-hypergraph Problem

Let Y = {A ⊂ X | |A| ≤ k}. Find C : X → Y that maximizes
H(π,C), subject to Ω = {(x, y) ∈ X × Y | x ∈ y}

I Order X = {x1, . . . , xn} such that π(x1) ≥ · · · ≥ π(xn)

I Build C by mapping x1, . . . , xk to one output, xk+1, . . . , x2k
to another and so on.

Greedy solution for 8 secret
values, and k = 3

π
0.25
0.20
0.15
0.13
0.10
0.08
0.07
0.02

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1
x8 0 0 1

24

A greedy solution

The k-hypergraph Problem

Let Y = {A ⊂ X | |A| ≤ k}. Find C : X → Y that maximizes
H(π,C), subject to Ω = {(x, y) ∈ X × Y | x ∈ y}

I Order X = {x1, . . . , xn} such that π(x1) ≥ · · · ≥ π(xn)

I Build C by mapping x1, . . . , xk to one output, xk+1, . . . , x2k
to another and so on.

Greedy solution for 8 secret
values, and k = 3

π
0.25
0.20
0.15
0.13
0.10
0.08
0.07
0.02

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1
x8 0 0 1

24

A greedy solution

The k-hypergraph Problem

Let Y = {A ⊂ X | |A| ≤ k}. Find C : X → Y that maximizes
H(π,C), subject to Ω = {(x, y) ∈ X × Y | x ∈ y}

I Order X = {x1, . . . , xn} such that π(x1) ≥ · · · ≥ π(xn)

I Build C by mapping x1, . . . , xk to one output, xk+1, . . . , x2k
to another and so on.

Greedy solution for 8 secret
values, and k = 3

π
0.25
0.20
0.15
0.13
0.10
0.08
0.07
0.02

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1
x8 0 0 1

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.

H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)

π
0.3
0.3
0.2
0.1
0.1

C y1 y2 y3
x1 1 0 0
x2 0 1 0
x3 1 0 0
x3 0 1 0
x3 0 0 1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.

H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)

π
0.3
0.3
0.2
0.1
0.1

C y1 y2 y3
x1 1 0 0
x2 0 1 0
x3 1 0 0
x3 0 1 0
x3 0 0 1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.

H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)

p y1 y2 y3
x1 0.3 0 0
x2 0 0.3 0
x3 0.2 0 0
x3 0 0.1 0
x3 0 0 0.1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)
p y1 y2 y3
x1 0.3 0 0
x2 0 0.3 0
x3 0.2 0 0
x3 0 0.1 0
x3 0 0 0.1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)
p y1 y2 y3
x1 0.3 0 0
x2 0 0.3 0
x3 0.2 0 0
x3 0 0.1 0
x3 0 0 0.1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)
p′ y1 y2 y3
x1 0.3 0 0
x2 0.3 0 0
x3 0 0.2 0
x3 0 0.1 0
x3 0 0 0.1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)
p′ y1 y2 y3
x1 0.3 0 0
x2 0.3 0 0
x3 0 0.2 0
x3 0 0.1 0
x3 0 0 0.1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)
π
0.3
0.3
0.2
0.1
0.1

C ′ y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 0 1 0
x3 0 1 0
x3 0 0 1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)

(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)
π
0.3
0.3
0.2
0.1
0.1

C ′ y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 0 1 0
x3 0 1 0
x3 0 0 1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)
π
0.3
0.3
0.2
0.1
0.1

C ′ y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 0 1 0
x3 0 1 0
x3 0 0 1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.1, 0.2) = (0.3, 0.2) ∧ (0.1, 0.3)

25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)
π
0.3
0.3
0.2
0.1
0.1

C ′ y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 0 1 0
x3 0 1 0
x3 0 0 1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
H(π,C ′) ≥ H(π,C)

26

Experimental comparison

0 50 100 150 200 250 300 350
Size of input set

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Optimal, (H1)
Optimal (H)
Random (H1)
Random (H)
Un-optimal (H1)
Un-optimal (H)

27

Deterministic Channels as a Solution for Multiple
Executions

28

Deterministic Channels as a Solution for Multiple
Executions

I Often, a system is executed multiple times for a fixed secret
value

I How do we design an optimal system in this scenario?

28

Deterministic Channels as a Solution for Multiple
Executions

I Often, a system is executed multiple times for a fixed secret
value

I How do we design an optimal system in this scenario?

29

Deterministic Channels as a Solution for Multiple
Executions

C y1 y2 y3
x1 ? ? 0
x2 ? 0 ?
x3 0 ? ?
x4 ? 0 ?
x5 ? ? ?

→
C [x1] [x2] [x3] [x5]
x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 1 0 0
x5 0 0 0 1

29

Deterministic Channels as a Solution for Multiple
Executions

C y1 y2 y3
x1

1/2 1/2 0
x2

1/3 0 2/3
x3 0 3/4 1/4
x4

1/3 0 2/3
x5

3/5 1/5 1/5

→
C [x1] [x2] [x3] [x5]
x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 1 0 0
x5 0 0 0 1

29

Deterministic Channels as a Solution for Multiple
Executions

C y1 y2 y3
x1

1/2 1/2 0
x2

1/3 0 2/3
x3 0 3/4 1/4
x4

1/3 0 2/3
x5

3/5 1/5 1/5

→
C [x1] [x2] [x3] [x5]
x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 1 0 0
x5 0 0 0 1

29

Deterministic Channels as a Solution for Multiple
Executions

C y1 y2 y3
x1 0 1 0
x2 0 0 1
x3 0 1 0
x4 0 0 1
x5 0 1 0

→
C [x1] [x2] [x3] [x5]
x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 1 0 0
x5 0 0 0 1

30

Deterministic Channels as a Solution for Multiple
Executions

Proposition

Let C be a probabilistic channel respecting the operational
constraints. Then, there is a deterministic channel D that respects
the same constraints and asymptotically leaks at most as much
information as C

Thus, the deterministic solution to the design problem is
asymptotically optimal

30

Deterministic Channels as a Solution for Multiple
Executions

Proposition

Let C be a probabilistic channel respecting the operational
constraints. Then, there is a deterministic channel D that respects
the same constraints and asymptotically leaks at most as much
information as C

Thus, the deterministic solution to the design problem is
asymptotically optimal

31

Conclusions and Contributions

32

Conclusions and Contributions

In this work we...

I Investigated the Deterministic Channel Design Problem:
NP-hardness and non-universality

I Established a greedy solution for the k-hypergraph problem
which is optimal for the most common entropy measures

I Introduced leakage-supermodularity, which may be a useful
concept for future work in QIF

I Channel Ordering and Supermodularity – to appear at IEEE
ITW 2019

I Proved that, if a system is to be executed multiple times, the
deterministic solution is optimal when the number of
executions is very large

32

Conclusions and Contributions

In this work we...

I Investigated the Deterministic Channel Design Problem:
NP-hardness and non-universality

I Established a greedy solution for the k-hypergraph problem
which is optimal for the most common entropy measures

I Introduced leakage-supermodularity, which may be a useful
concept for future work in QIF

I Channel Ordering and Supermodularity – to appear at IEEE
ITW 2019

I Proved that, if a system is to be executed multiple times, the
deterministic solution is optimal when the number of
executions is very large

32

Conclusions and Contributions

In this work we...

I Investigated the Deterministic Channel Design Problem:
NP-hardness and non-universality

I Established a greedy solution for the k-hypergraph problem
which is optimal for the most common entropy measures

I Introduced leakage-supermodularity, which may be a useful
concept for future work in QIF

I Channel Ordering and Supermodularity – to appear at IEEE
ITW 2019

I Proved that, if a system is to be executed multiple times, the
deterministic solution is optimal when the number of
executions is very large

32

Conclusions and Contributions

In this work we...

I Investigated the Deterministic Channel Design Problem:
NP-hardness and non-universality

I Established a greedy solution for the k-hypergraph problem
which is optimal for the most common entropy measures

I Introduced leakage-supermodularity, which may be a useful
concept for future work in QIF

I Channel Ordering and Supermodularity – to appear at IEEE
ITW 2019

I Proved that, if a system is to be executed multiple times, the
deterministic solution is optimal when the number of
executions is very large

32

Conclusions and Contributions

In this work we...

I Investigated the Deterministic Channel Design Problem:
NP-hardness and non-universality

I Established a greedy solution for the k-hypergraph problem
which is optimal for the most common entropy measures

I Introduced leakage-supermodularity, which may be a useful
concept for future work in QIF
I Channel Ordering and Supermodularity – to appear at IEEE

ITW 2019

I Proved that, if a system is to be executed multiple times, the
deterministic solution is optimal when the number of
executions is very large

32

Conclusions and Contributions

In this work we...

I Investigated the Deterministic Channel Design Problem:
NP-hardness and non-universality

I Established a greedy solution for the k-hypergraph problem
which is optimal for the most common entropy measures

I Introduced leakage-supermodularity, which may be a useful
concept for future work in QIF
I Channel Ordering and Supermodularity – to appear at IEEE

ITW 2019

I Proved that, if a system is to be executed multiple times, the
deterministic solution is optimal when the number of
executions is very large

	Introduction
	Preliminaries
	The Deterministic Channel Design Problem
	The complete k-hypergraph problem
	Deterministic Channels as a Solution for Multiple Executions
	Conclusions and Contributions

