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Introduction

I Systems often need to leak some sensitive information to
function correctly/efficiently

I A password checker always leaks information
I Eliminating all leakage from timing channels may lead to a

substantial decrease in performance

I Problem: Find the system that minimizes information leakage
while retaining functionality

I A general framework for this task was proposed in the CSF
2017 paper Leakage Minimal Design: Universality, Limitations,
and Applications, by MHR. Khouzani and P. Malacaria

Objective of this work

Study the application of this framework to deterministic systems
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Quantitative Information Flow

I A secret value is taken from a set X = {x1, . . . , xn} according
to a distribution π

I A system takes the secret value as input and produces an
observable behaviour (or simply observable) in
Y = {y1, . . . , ym}

I An adversary, observing the behaviour of the system, may
obtain some information about the secret value
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Systems as Channels

I A system with inputs in X and observables in Y is modelled
by a channel C : X → Y.

I C(x, y) is the conditional probability that y ∈ Y will be
produced given that the secret value is x ∈ X

I C(x, y) > 0
∑
y C(x, y) = 1

C y1 y2 y3 y4
x1

1/2 1/4 1/8 1/8
x2

1/4 1/2 1/4 0
x3 1 0 0 0

I In this work we focus on deterministic channels:
C(x, y) ∈ {0, 1}
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How is information leaked?

I The adversary knows π and C

I Joint distribution p(x, y) = π(x)C(x, y)

I Marginal distribution p(y) =
∑

x∈X p(x, y)

I Posterior distributions pX|y(x) = p(x,y)
p(y)

π
1/3
1/4
1/4
1/6

C y1 y2
x1 1 0
x2 0 1
x3 0 1
x3 1 0

I By observing y, the adversary updates the distribution from π
to pX|y
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Quantifying Information Leakage

I An entropy measure H reflects how uncertain an adversary is
about the secret value

I Many Choices: Shannon Entropy (H1), min-entropy (H∞),
guessing entropy (HG) . . .

I H(π) = initial uncertainty

I H(π,C) = uncertainty after execution

I Leakage = H(π)−H(π,C)
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Deterministic Channel Design

I Leakage = H(π)−H(π,C)

Deterministic Channel Design Problem

Given π and a reasonable entropy measure H, find the
deterministic channel C that maximizes H(π,C), respecting some
operational constraints

I Maximize H(π,C) = Minimize Leakage

I What is a reasonable entropy?

I How should we model operational constraints?
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What is a Reasonable Entropy?

I A entropy H is core-concave if there is η, F such that
I H(π) = η(F (π))
I F is a real valued, continuous and concave function
I η : I → R is continuous and increasing

I Prior entropy H(π) = η(F (π))

I Posterior entropy

H(π,C) = η

(∑
y

p(y)F (pX|y)

)

I Generalizes most entropy measures in QIF
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How Should We Model Operational Constraints?

I Hard constraints: A set Ω ⊂ X × Y of which observables can
be produced for each secret.
I C(x, y) > 0 =⇒ (x, y) ∈ Ω

Ω = {(x1, y1), (x1, y2), (x2, y1), (x2, y3), (x3, y3)}

C y1 y2 y3
x1 ? ? 0
x2 ? 0 ?
x3 0 0 ?
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How to model operational constraints?

I Soft constraints: A function u : X × Y → R gives the
“utility” of each pair of secret and observable

I Execution time, difference between real and reported data, . . .

I Constraint: E[u] =
∑

x,y π(x)C(x, y)u(x, y) ≥ umin
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The general framework for the Channel Design Problem

(Probabilistic) Channel Design Problem (Khouzani and
Malacaria, CSF 2017)

Find channel C : X → Y that maximizes H(π,C) subject to

I C(x, y) > 0 =⇒ (x, y) ∈ Ω

I E[u] ≥ umin

.

I Solved by convex programming (Karush-Kuhn Tucker
conditions)
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The Deterministic Channel Design Problem
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The Deterministic Channel Design Problem

Deterministic Channel Design Problem:

Find channel C : X → Y that maximizes H(π,C) subject to

I C(x, y) ∈ {0, 1}
I C(x, y) > 0 =⇒ (x, y) ∈ Ω

I E[u] ≥ umin

.
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NP-Hardness

Theorem

The Deterministic Channel Design Problem is NP-Hard

Proof: reduction from the Set Covering Problem

Let U be a finite set and C ⊂ 2U a collection of subsets of U

There is a subcollection of C of size k > 0 that covers U

m
There is a channel C : U → C, with H∞(πu, C) ≥ − log k

|U|

(πu is the uniform distribution, and Ω = {(x, y) | x ∈ y})
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Universality of the Solution

I The choice of entropy measure depends on the adversary’s
interests and probabilities.

I This may be outside of the designer’s control...

I Thus, a desirable property is universality: there is C that is a
solution for all core-concave entropies

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality
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Universality of the Solution

Theorem

In general, the Deterministic Channel Design Problem does not
satisfy universality

Proof Let Ω = {(x1, y1), (x2, y1), (x1, y2), (x3, y2), (x2, y3), (x4, y3)}

π
0.35
0.35
0.15
0.15

C y1 y2 y3
x1 ? ? 0
x2 ? 0 ?
x3 0 ? 0
x4 0 0 ?

Optimal for min-entropy
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The Complete k-hypergraph Problem:

I The Complete k-hypergraph Problem: at most k secret values
can be mapped to each observable
I Y = {A ⊂ X | |A| ≤ k}, Ω = {(x, y) |x ∈ y}.

I Result: There is a greedy solution to a subset of core-concave
entropies, called leakage-supermodular
I Includes most entropies used in QIF: Shannon entropy,

min-entropy, guessing entropy. . .
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Leakage-Supermodularity: Supermodular Functions

I Lattice on Rn
≥0: Let r = (r1, . . . , rn),s = (s1, . . . , sn) ∈ Rn

≥0
I Join: r ∨ s = (max(r1, s1), . . . ,max(rn, sn))
I Meet: r ∧ s = (min(r1, s1), . . . ,min(rn, sn))

I A function φ : Rn
≥0 → R is Supermodular if

φ(r ∨ s) + φ(r ∧ s) ≥ φ(r) + φ(s)

Example (n = 2):
r = (r1, r2)
s = (s1, s2)

r

s

r1s1

r2

s2
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Leakage-Supermodular Entropies

I For now on, we restrict our attention to entropies that are
I Symmetric: H(π1, . . . , πn) = H(πφ(1), . . . , πφ(n)) for all

permutations φ
I Expansible: H(π1, . . . , πn, 0) = H(π1, . . . , πn)

I Given a core-concave H for some η, F , define GF : Rn
≥0 → R

GF (r1, . . . , rn) =

(∑
i

ri

)
F

(
r1∑
i ri

, . . . ,
rn∑
i ri

)
I H is leakage-supermodular if GF is supermodular

Theorem

Shannon entropy, min-entropy, guessing entropy and
Arimoto-Rényi entropies are leakage-supermodular
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Leakage-Supermodular Entropies

I Relation to leakage:

H(π,C) = η

(∑
y

GF (p(x1, y), . . . , p(xn, y))

)

π
1/3
1/4
1/4
1/6

C y1 y2
x1 1 0
x2 0 1
x3 0 1
x3 1 0

H(π,C) = η
(
GF (1/3, 0, 0, 1/6) +GF (0, 1/4, 1/4, 0)

)
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A greedy solution

The k-hypergraph Problem

Let Y = {A ⊂ X | |A| ≤ k}. Find C : X → Y that maximizes
H(π,C), subject to Ω = {(x, y) ∈ X × Y | x ∈ y}

I Order X = {x1, . . . , xn} such that π(x1) ≥ · · · ≥ π(xn)

I Build C by mapping x1, . . . , xk to one output, xk+1, . . . , x2k
to another and so on.

Greedy solution for 8 secret
values, and k = 3

π
0.25
0.20
0.15
0.13
0.10
0.08
0.07
0.02

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1
x8 0 0 1



24

A greedy solution

The k-hypergraph Problem

Let Y = {A ⊂ X | |A| ≤ k}. Find C : X → Y that maximizes
H(π,C), subject to Ω = {(x, y) ∈ X × Y | x ∈ y}

I Order X = {x1, . . . , xn} such that π(x1) ≥ · · · ≥ π(xn)

I Build C by mapping x1, . . . , xk to one output, xk+1, . . . , x2k
to another and so on.

Greedy solution for 8 secret
values, and k = 3

π
0.25
0.20
0.15
0.13
0.10
0.08
0.07
0.02

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1
x8 0 0 1



24

A greedy solution

The k-hypergraph Problem

Let Y = {A ⊂ X | |A| ≤ k}. Find C : X → Y that maximizes
H(π,C), subject to Ω = {(x, y) ∈ X × Y | x ∈ y}

I Order X = {x1, . . . , xn} such that π(x1) ≥ · · · ≥ π(xn)

I Build C by mapping x1, . . . , xk to one output, xk+1, . . . , x2k
to another and so on.

Greedy solution for 8 secret
values, and k = 3

π
0.25
0.20
0.15
0.13
0.10
0.08
0.07
0.02

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1
x8 0 0 1



24

A greedy solution

The k-hypergraph Problem

Let Y = {A ⊂ X | |A| ≤ k}. Find C : X → Y that maximizes
H(π,C), subject to Ω = {(x, y) ∈ X × Y | x ∈ y}

I Order X = {x1, . . . , xn} such that π(x1) ≥ · · · ≥ π(xn)

I Build C by mapping x1, . . . , xk to one output, xk+1, . . . , x2k
to another and so on.

Greedy solution for 8 secret
values, and k = 3

π
0.25
0.20
0.15
0.13
0.10
0.08
0.07
0.02

C y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1
x8 0 0 1



25

A greedy solution

Theorem

For leakage-supermodular entropies, the greedy solution is optimal

Proof idea.

H(π,C) = η
(
GF (0.3, 0.2) +GF (0.3, 0.1) +GF (0.1)

)

π
0.3
0.3
0.2
0.1
0.1

C y1 y2 y3
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x3 0 0 1

H(π,C ′) = η
(
GF (0.3, 0.3) +GF (0.2, 0.1) +GF (0.1)

)
(0.3, 0.3) = (0.3, 0.2) ∨ (0.1, 0.3)
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Experimental comparison
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Deterministic Channels as a Solution for Multiple
Executions

C y1 y2 y3
x1 ? ? 0
x2 ? 0 ?
x3 0 ? ?
x4 ? 0 ?
x5 ? ? ?

→
C [x1] [x2] [x3] [x5]
x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 1 0 0
x5 0 0 0 1
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Deterministic Channels as a Solution for Multiple
Executions

C y1 y2 y3
x1 0 1 0
x2 0 0 1
x3 0 1 0
x4 0 0 1
x5 0 1 0

→
C [x1] [x2] [x3] [x5]
x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 1 0 0
x5 0 0 0 1



30

Deterministic Channels as a Solution for Multiple
Executions

Proposition

Let C be a probabilistic channel respecting the operational
constraints. Then, there is a deterministic channel D that respects
the same constraints and asymptotically leaks at most as much
information as C

Thus, the deterministic solution to the design problem is
asymptotically optimal
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Conclusions and Contributions

In this work we...

I Investigated the Deterministic Channel Design Problem:
NP-hardness and non-universality

I Established a greedy solution for the k-hypergraph problem
which is optimal for the most common entropy measures

I Introduced leakage-supermodularity, which may be a useful
concept for future work in QIF

I Channel Ordering and Supermodularity – to appear at IEEE
ITW 2019

I Proved that, if a system is to be executed multiple times, the
deterministic solution is optimal when the number of
executions is very large
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