This is a first course in computer programming for students with no prior experience. Students will learn the core process of programming: given a problem statement, how does one design an algorithm to solve that particular problem and then implement the algorithm in a computer program? The course will also introduce elementary programming concepts like basic control concepts (such as conditional statements and loops) and a few essential data types (e.g., integers and doubles). Exposure to programming will be through a self-contained user-friendly programming environment, widely used by the scientific and engineering communities, such as Matlab. The course will cover problems from all fields of science, engineering, and business.
This course provides students with an understanding of the use of statistical methods as applied to business problems, in general, and to marketing research applications in particular. Topics include: descriptive statistics; probability theory, discrete and continuous probability distributions; sampling theory and sampling distributions; interval estimation; hypothesis testing; statistical inference about means, proportions, and variances; tests of goodness-of-fit and independence; analysis of variance and experimental design; simple and multiple regression; correlation analysis. This course has been developed with particular attention to the specific statistical foundation required by students enrolling in BT214 Marketing Research the next term. A statistical package (SPSS) will be used throughout the term.
Introduces the essentials of probability theory and elementary statistics. Lectures and assignments greatly stress the manifold applications of probability and statistics to computer science, production management, quality control, and reliability. A statistical computer package is used throughout the course for teaching and for assignments. Contents include: descriptive statistics, pictorial and tabular methods, and measures of location and of variability; sample space and events, probability axioms, and counting techniques; conditional probability and independence, and Bayes' formula; discrete random variables, distribution functions and moments, and binomial and Poisson distributions; continuous random variables, densities and moments, normal, gamma, and exponential and Weibull distributions unions; distribution of the sum and average of random samples; the Central Limit Theorem; confidence intervals for the mean and the variance; hypothesis testing and p-values, and applications for the mean; simple linear regression, and estimation of and inference about the parameters; and correlation and prediction in a regression model.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
Partial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Close
The forces which govern the overall performance of the national economy are covered. Areas discussed include: supply and demand analysis, national income theory, monetary systems, alternative approaches to economic policy, current macroeconomic problems, and international economies.
The focus of this course is on the behavior of and interactions between individual participants in the economic system. In addition to providing a theoretical basis for the analysis of these economic questions, the course also develops applications of these theories to a number of current problems. Topics include: the nature of economic decisions, the theory of market processes, models of imperfect competition, public policy towards competition, the allocation of factors of production, discrimination, poverty and earnings, and energy.
In this course, students explore the tools and techniques of advanced writing and research. Students write four research papers and give several oral presentations. This course is required for single degree B.A. students and strongly recommended for double degree students.
A year-long sequence from Group A: literature and philosophy and a year-long sequence from Group B: history and social science is required for each of the first two years.
(2)
Secondary concentration courses and electives can be 3-0-3 or 3-3-4.
This course empowers students with the written and oral communications skills essential for both university-level academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations.
This is a first course in computer programming for students with no prior experience. Students will learn the core process of programming: given a problem statement, how does one design an algorithm to solve that particular problem and then implement the algorithm in a computer program? The course will also introduce elementary programming concepts like basic control concepts (such as conditional statements and loops) and a few essential data types (e.g., integers and doubles). Exposure to programming will be through a self-contained user-friendly programming environment, widely used by the scientific and engineering communities, such as Matlab. The course will cover problems from all fields of science, engineering, and business.
This course provides students with an understanding of the use of statistical methods as applied to business problems, in general, and to marketing research applications in particular. Topics include: descriptive statistics; probability theory, discrete and continuous probability distributions; sampling theory and sampling distributions; interval estimation; hypothesis testing; statistical inference about means, proportions, and variances; tests of goodness-of-fit and independence; analysis of variance and experimental design; simple and multiple regression; correlation analysis. This course has been developed with particular attention to the specific statistical foundation required by students enrolling in BT214 Marketing Research the next term. A statistical package (SPSS) will be used throughout the term.
This course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view.
Introduces the essentials of probability theory and elementary statistics. Lectures and assignments greatly stress the manifold applications of probability and statistics to computer science, production management, quality control, and reliability. A statistical computer package is used throughout the course for teaching and for assignments. Contents include: descriptive statistics, pictorial and tabular methods, and measures of location and of variability; sample space and events, probability axioms, and counting techniques; conditional probability and independence, and Bayes' formula; discrete random variables, distribution functions and moments, and binomial and Poisson distributions; continuous random variables, densities and moments, normal, gamma, and exponential and Weibull distributions unions; distribution of the sum and average of random samples; the Central Limit Theorem; confidence intervals for the mean and the variance; hypothesis testing and p-values, and applications for the mean; simple linear regression, and estimation of and inference about the parameters; and correlation and prediction in a regression model.
The forces which govern the overall performance of the national economy are covered. Areas discussed include: supply and demand analysis, national income theory, monetary systems, alternative approaches to economic policy, current macroeconomic problems, and international economies.
A working seminar in which students will become acquainted with the various research methods and resources in the Humanities disciplines, and with the modes of presentation characteristic of each discipline. Special attention will be paid to clarity of expression and logical structure of essays and research papers.
The focus of this course is on the behavior of and interactions between individual participants in the economic system. In addition to providing a theoretical basis for the analysis of these economic questions, the course also develops applications of these theories to a number of current problems. Topics include: the nature of economic decisions, the theory of market processes, models of imperfect competition, public policy towards competition, the allocation of factors of production, discrimination, poverty and earnings, and energy.
The student will complete a major research thesis in the area of concentration under the guidance of a faculty advisor. Open to Bachelor of Arts students only.
An individual program of study arranged between student and instructor. A tutorial plan must be prepared (and presented to the Tutorial Committee of the Department of the Humanities) outlining the program and indicating the nature and scope of the project (generally a written paper). Upon completion of the program, the student will receive a grade and credit for a humanities elective.
0
0
4
4
HUM
Humanities 300/400-level
No data available
3
0
0
3
HUM
Humanities 300/400-level
No data available
3
0
0
3
Secondary Concentration
No data available
3
0
3
3
Elective
No data available
3
0
0
3
Total
12
0
7
16
For students entering Fall 2012 and after
Term I
CAL 105 CAL Colloquium: Knowledge, Nature, Culture
HHS 130 History of Science & Technology
HST 120 Introduction to Science & Technology Studies
CS 105 Introduction to Scientific Computing or CS 115 Intoduction to Computer Science
CAL Major Course
Term II
CAL 103 Writing & Communications Colloquium
HLI 220 Images of Science in Literature
HPL 112 Science and Metaphysics
Mathematics
CAL Major Course
Term III
CAL Major Course
CAL Major Course
Environmental Studies
Mathematics
Secondary Concentration
Term IV
CAL Major Course
CAL Major Course
Science
Global Studies
Elective
Term V
CAL Major Course
CAL Major Course
Secondary concentration
CAL 301Seminar in Writing and Research Methods
Elective
Term VI
CAL Major Course
CAL 405 CAL Seminar: The Legacy of the Two Cultures