Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Corequisites: CH 117
General Chemistry Laboratory I (0-3-1)
(Lecture-Lab-Study Hours)
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Corequisites: CH 115,
General Chemistry I (3-0-6)
(Lecture-Lab-Study Hours)
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout.
This is the first half of a one-credit, two-semester course that consists of a set of engineering experiences such as lectures, small group sessions, on-line modules and visits. Students are required to complete a specified number of experiences each semester and are given credit at the end of the second half of the course which is E102. The goal is to introduce students to the engineering profession, engineering disciplines, college success strategies, Stevens research and other engaging activities and to Technogenesis. Course is pass/fail.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Corequisites: E 115,
Introduction to Programming (1-2-3)
(Lecture-Lab-Study Hours)
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I). Close
Engineering graphics: principles of orthographic and auxiliary projections, pictorial presentation of engineering designs, dimensioning and tolerance, sectional and detail views, assembly drawings. Descriptive geometry. Engineering figures and graphs. Solid modeling introduction to computer-aided design and manufacturing (CAD/CAM) using numerically-controlled (NC) machines. Close
Engineering graphics: principles of orthographic and auxiliary projections, pictorial presentation of engineering designs, dimensioning and tolerance, sectional and detail views, assembly drawings. Descriptive geometry. Engineering figures and graphs. Solid modeling introduction to computer-aided design and manufacturing (CAD/CAM) using numerically-controlled (NC) machines.
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I).
This course empowers students with the written and oral communications skills essential for both university-level academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations.
This course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view. Close
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acid-base titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Corequisites: CH 116
General Chemistry II (3-0-6)
(Lecture-Lab-Study Hours)
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close
This is a two-semester course that consists of a set of engineering experiences such as lectures, small group sessions, on-line modules and visits. Students are required to complete a specified number of experiences each semester and are given credit at the end of the semester. The goal is to introduce students to the engineering profession, engineering disciplines, college success strategies, Stevens research and other engaging activities and to Technogenesis.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates.
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Corequisites: MA 115
Calculus I (4-0-8)
(Lecture-Lab-Study Hours)
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Close
This course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view.
This course empowers students with the written and oral communications skills essential for both university-level academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations. Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves.
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures.
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Corequisites: MA 221,
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Corequisites: E 126
Mechanics of Solids (4-0-8)
(Lecture-Lab-Study Hours)
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures. Close
This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced. Close
Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Corequisites: MA 221
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed.
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Close
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Close
Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing.
Biological principles and their physical and chemical aspects are explored at the cellular and molecular level. Major emphasis is placed on cell structure, the processes of energy conversion by plant and animal cells, genetics and evolution, and applications to biotechnology.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close
Concepts of heat and work; First and Second Laws for closed and open systems including steady processes and cycles; thermodynamic properties of substances and interrelationships; phase change and phase equilibrium; chemical reactions and chemical equilibrium; representative applications. Introduction to energy conversion systems, including direct energy conversion in fuel-cells, photo-voltaic systems, etc.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
A study of momentum, mass and heat transport in living systems. Rheology of blood. Basic hemodynamics. Use of the equations of continuity and motion to set up complex flow problems. Flow within distensible tubes. Shear stress and endothelial cell function. Mass transfer and metabolism in organs and tissues. Microscopic and macroscopic mass balances. Diffusion. Blood-tissue transport of solutes in the microcirculation. Compartmental models for pharmacokinetic analyses. Analysis of blood oxygenators, hemodialysis, tissue growth in porous support materials. Artificial organs. Energy balances and the use of heat to treat tumor growth (radio frequency ablation, cryogenic ablation). Laboratory exercises accompany major topics discussed in class and are conducted at the same time.
Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing.
Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Close
An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
This course includes both experimentation and open-ended design problems that are integrated with the Materials Processing course taught concurrently. Core design themes are further developed. Corequisites: E 344
Materials Processing (3-0-6)
(Lecture-Lab-Study Hours)
An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products. Close
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close
Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acid-base titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Close
The structure and function of the cell and its subcellular organelles is studied. Biological macromolecules, enzymes, biomembranes, biological transport, bioenergetics, DNA replication, protein synthesis and secretion, motility, and cancer are covered. Cell biology experiments and interactive computer simulation exercises are conducted in the laboratory.
Biological principles and their physical and chemical aspects are explored at the cellular and molecular level. Major emphasis is placed on cell structure, the processes of energy conversion by plant and animal cells, genetics and evolution, and applications to biotechnology. Close
Descriptive statistics, pictorial and tabular methods, measures of location and of variability, sample space and events, probability and independence, Bayes' formula, discrete random variables, densities and moments, normal, gamma, exponential and Weibull distributions, distribution of the sum and average of random samples, the central limit theorem, confidence intervals for the mean and the variance, hypothesis testing and p-values, applications for prediction in a regression model. A statistical computer package is used throughout the course for teaching and for project assignments.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
Basics of cost accounting and cost estimation, cost-estimating techniques for engineering projects, quantitative techniques for forecasting costs, cost of quality. Basic engineering economics, including capital investment in tangible and intangible assets. Engineering project management techniques, including budget development, sensitivity analysis, risk and uncertainty analysis and total quality management concepts.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Close
This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Close
This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed. Close
Introduction to the principles of wireless transmission and the design of biomedical devices and instrumentation with wireless capabilities.(e.g. pacemakers, defibrilators. EKG). Electrical safety (isolation, shielding), and equipment validation standards for FDA compliance are introduced. Use of LabView to provide virtual bioinstrumentation. The course culminates in group projects to design a biomedical device that runs on wireless technology.
Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing.
Intended as an introduction to materials science for biomedical engineers, this course first reviews the materials properties relevant to the their application to the human body. It goes on to discuss proteins, cells, tissues, and their reactions and interactions with foreign materials, as well as the degradation of these materials in the human body. The course then treats various implants, burn dressings, drug delivery systems, biosensors, artificial organs, and elements of tissue engineering. Laboratory exercises accompany the major topics discussed in class and are conducted at the same time. Corequisites: BME 506
Biomechanics (3-0-6)
(Lecture-Lab-Study Hours)
This course reviews basic engineering principles governing materials and structures such as mechanics, rigid body dynamics, fluid mechanics and solid mechanics and applies these to the study of biological systems such as ligaments, tendons, bone, muscles, joints, etc. The influence of material properties on the structure and function of organisms provides an appreciation for the mechanical complexity of biological systems. Methods for both rigid body and deformational mechanics are developed in the context of bone, muscle, and connective tissue. Multiple applications of Newton's Laws of mechanical are made to human motion. Close
An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products. Close
This course reviews basic engineering principles governing materials and structures such as mechanics, rigid body dynamics, fluid mechanics and solid mechanics and applies these to the study of biological systems such as ligaments, tendons, bone, muscles, joints, etc. The influence of material properties on the structure and function of organisms provides an appreciation for the mechanical complexity of biological systems. Methods for both rigid body and deformational mechanics are developed in the context of bone, muscle, and connective tissue. Multiple applications of Newton's Laws of mechanical are made to human motion. Corequisites: BME 505
Biomaterials (2-3-6)
(Lecture-Lab-Study Hours)
Intended as an introduction to materials science for biomedical engineers, this course first reviews the materials properties relevant to the their application to the human body. It goes on to discuss proteins, cells, tissues, and their reactions and interactions with foreign materials, as well as the degradation of these materials in the human body. The course then treats various implants, burn dressings, drug delivery systems, biosensors, artificial organs, and elements of tissue engineering. Laboratory exercises accompany the major topics discussed in class and are conducted at the same time. Close
A study of momentum, mass and heat transport in living systems. Rheology of blood. Basic hemodynamics. Use of the equations of continuity and motion to set up complex flow problems. Flow within distensible tubes. Shear stress and endothelial cell function. Mass transfer and metabolism in organs and tissues. Microscopic and macroscopic mass balances. Diffusion. Blood-tissue transport of solutes in the microcirculation. Compartmental models for pharmacokinetic analyses. Analysis of blood oxygenators, hemodialysis, tissue growth in porous support materials. Artificial organs. Energy balances and the use of heat to treat tumor growth (radio frequency ablation, cryogenic ablation). Laboratory exercises accompany major topics discussed in class and are conducted at the same time. Close
Introduction to mammalian physiology from an engineering point of view. The quantitative aspects of normal cellular and organ functions and the regulatory processes required maintaining organ viability and homeostasis. Laboratory exercises using exercise physiology as an integration of function at the cellular, organ and systems level will be conducted at the same time. Measurements of heart activity (EKG), cardiac output (partial CO2 rebreathing), blood pressure, oxygen consumption, carbon dioxide production, muscle strength (EMG), fluid shifts and respiratory function in response to exercise stress will be measured and analyzed from an engineering point of view. Corequisites: BME 423
Senior Design I (0-8-3)
(Lecture-Lab-Study Hours)
Senior design courses. Senior design provides, over the course of two semesters, a collaborative design experience with a significant biomedical problem related to human health. The project will often originate with an industrial sponsor or a medical practitioner at a nearby medical facility and will contain a clear implementation objective (i.e. for a medical device). It is a capstone experience that draws extensively on the student’s engineering and scientific background and requires independent judgments and actions. The project generally involves a determination of the medical need, a detailed economic analysis of the market potential, physiological considerations, biocompatibility issues, ease of patient use, an engineering analysis of the design, manufacturing considerations and experimentation and/or prototype construction of the device. The faculty advisor, industrial sponsor or biomedical practitioner works closely with the group to insure that the project meets its goals in a timely way. Leadership and entrepreneurship are nourished throughout all phases of the project. The project goals are met in a stepwise fashion, with each milestone forming a part of a final report with a common structure. Oral and written progress reports are presented to a panel of faculty at specified intervals and at the end of each semester. Close
Imaging plays an important role in both clinical and research environments. This course presents both the basic physics together with the practical technology associated with such methods as X-ray computed tomography (CT), magnetic resonance imaging (MRI), functional MRI (f-MRI) and spectroscopy, ultrasonics (echocardiography, Doppler flow), nuclear medicine (Gallium, PET and SPECT scans) as well as optical methods such as bioluminescence, optical tomography, fluorescent confocal microscopy, two-photon microscopy and atomic force microscopy.
This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed. Close
Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing.
Introduction to the principles of wireless transmission and the design of biomedical devices and instrumentation with wireless capabilities.(e.g. pacemakers, defibrilators. EKG). Electrical safety (isolation, shielding), and equipment validation standards for FDA compliance are introduced. Use of LabView to provide virtual bioinstrumentation. The course culminates in group projects to design a biomedical device that runs on wireless technology. Close
Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing.
Introduction to the principles of wireless transmission and the design of biomedical devices and instrumentation with wireless capabilities.(e.g. pacemakers, defibrilators. EKG). Electrical safety (isolation, shielding), and equipment validation standards for FDA compliance are introduced. Use of LabView to provide virtual bioinstrumentation. The course culminates in group projects to design a biomedical device that runs on wireless technology. Close
Senior design courses. Senior design provides, over the course of two semesters, a collaborative design experience with a significant biomedical problem related to human health. The project will often originate with an industrial sponsor or a medical practitioner at a nearby medical facility and will contain a clear implementation objective (i.e. for a medical device). It is a capstone experience that draws extensively on the student’s engineering and scientific background and requires independent judgments and actions. The project generally involves a determination of the medical need, a detailed economic analysis of the market potential, physiological considerations, biocompatibility issues, ease of patient use, an engineering analysis of the design, manufacturing considerations and experimentation and/or prototype construction of the device. The faculty advisor, industrial sponsor or biomedical practitioner works closely with the group to insure that the project meets its goals in a timely way. Leadership and entrepreneurship are nourished throughout all phases of the project. The project goals are met in a stepwise fashion, with each milestone forming a part of a final report with a common structure. Oral and written progress reports are presented to a panel of faculty at specified intervals and at the end of each semester.
Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing.
A study of momentum, mass and heat transport in living systems. Rheology of blood. Basic hemodynamics. Use of the equations of continuity and motion to set up complex flow problems. Flow within distensible tubes. Shear stress and endothelial cell function. Mass transfer and metabolism in organs and tissues. Microscopic and macroscopic mass balances. Diffusion. Blood-tissue transport of solutes in the microcirculation. Compartmental models for pharmacokinetic analyses. Analysis of blood oxygenators, hemodialysis, tissue growth in porous support materials. Artificial organs. Energy balances and the use of heat to treat tumor growth (radio frequency ablation, cryogenic ablation). Laboratory exercises accompany major topics discussed in class and are conducted at the same time. Close
Introduction to the principles of wireless transmission and the design of biomedical devices and instrumentation with wireless capabilities.(e.g. pacemakers, defibrilators. EKG). Electrical safety (isolation, shielding), and equipment validation standards for FDA compliance are introduced. Use of LabView to provide virtual bioinstrumentation. The course culminates in group projects to design a biomedical device that runs on wireless technology. Close
Intended as an introduction to materials science for biomedical engineers, this course first reviews the materials properties relevant to the their application to the human body. It goes on to discuss proteins, cells, tissues, and their reactions and interactions with foreign materials, as well as the degradation of these materials in the human body. The course then treats various implants, burn dressings, drug delivery systems, biosensors, artificial organs, and elements of tissue engineering. Laboratory exercises accompany the major topics discussed in class and are conducted at the same time. Close
This course reviews basic engineering principles governing materials and structures such as mechanics, rigid body dynamics, fluid mechanics and solid mechanics and applies these to the study of biological systems such as ligaments, tendons, bone, muscles, joints, etc. The influence of material properties on the structure and function of organisms provides an appreciation for the mechanical complexity of biological systems. Methods for both rigid body and deformational mechanics are developed in the context of bone, muscle, and connective tissue. Multiple applications of Newton's Laws of mechanical are made to human motion. Close
This course will provide students with a practical approach to current computational and experimental methods used in the field of biomechanics. The goal of the course will be to bridge the gap between the theoretical computations and the practical application of experimental techniques. Topics covered will include cartilage and muscle mechanics as well as the response of bone tissue to loading. The analysis of implants will also be covered. The course will conclude with analysis of human motion. Experiments will be associated with various topics to demonstrate practical applications of the theoretical concepts introduced. Students will be required to use statistical analysis software. Prerequisites: BME 506 Biomechanics, BME 505 Biomaterials, knowledge of, or courses in Differential Equations, Multivariable Calculus and Statistics.
Intended as an introduction to materials science for biomedical engineers, this course first reviews the materials properties relevant to the their application to the human body. It goes on to discuss proteins, cells, tissues, and their reactions and interactions with foreign materials, as well as the degradation of these materials in the human body. The course then treats various implants, burn dressings, drug delivery systems, biosensors, artificial organs, and elements of tissue engineering. Laboratory exercises accompany the major topics discussed in class and are conducted at the same time. Close
This course reviews basic engineering principles governing materials and structures such as mechanics, rigid body dynamics, fluid mechanics and solid mechanics and applies these to the study of biological systems such as ligaments, tendons, bone, muscles, joints, etc. The influence of material properties on the structure and function of organisms provides an appreciation for the mechanical complexity of biological systems. Methods for both rigid body and deformational mechanics are developed in the context of bone, muscle, and connective tissue. Multiple applications of Newton's Laws of mechanical are made to human motion. Close
Time and frequency domain analysis of linear control systems. Proportional, derivative and integral control actions. Stability. Applications of control theory to physiological control systems: biosensors, information processors and bioactuators. Mathematical modeling and analysis of heart and blood pressure regulation, body temperature regulation, regulation of intracellular ionic concentrations, eye movement and pupil dilation controls. Use of Matlab and Simulink to model blood pressure regulation, auto regulation of blood flow, force development by muscle contraction, and integrated response of cardiac output, blood pressure and respiration to exercise.
Introduction to mammalian physiology from an engineering point of view. The quantitative aspects of normal cellular and organ functions and the regulatory processes required maintaining organ viability and homeostasis. Laboratory exercises using exercise physiology as an integration of function at the cellular, organ and systems level will be conducted at the same time. Measurements of heart activity (EKG), cardiac output (partial CO2 rebreathing), blood pressure, oxygen consumption, carbon dioxide production, muscle strength (EMG), fluid shifts and respiratory function in response to exercise stress will be measured and analyzed from an engineering point of view. Close
This course focuses on professional ethical conduct in the biomedical field. It will enable students to understand the ethical challenges they may encounter as biomedical engineers, allow them to practice biomedical engineering in an ethical manner and conduct themselves ethically as contributing members of society. Case discussions and presentations by practitioners in the field illustrate ethical norms and dilemmas.
Senior design courses. Senior design provides, over the course of two semesters, a collaborative design experience with a significant biomedical problem related to human health. The project will often originate with an industrial sponsor or a medical practitioner at a nearby medical facility and will contain a clear implementation objective (i.e. for a medical device). It is a capstone experience that draws extensively on the student’s engineering and scientific background and requires independent judgments and actions. The project generally involves a determination of the medical need, a detailed economic analysis of the market potential, physiological considerations, biocompatibility issues, ease of patient use, an engineering analysis of the design, manufacturing considerations and experimentation and/or prototype construction of the device. The faculty advisor, industrial sponsor or biomedical practitioner works closely with the group to insure that the project meets its goals in a timely way. Leadership and entrepreneurship are nourished throughout all phases of the project. The project goals are met in a stepwise fashion, with each milestone forming a part of a final report with a common structure. Oral and written progress reports are presented to a panel of faculty at specified intervals and at the end of each semester. Close
Senior design courses. Senior design provides, over the course of two semesters, a collaborative design experience with a significant biomedical problem related to human health. The project will often originate with an industrial sponsor or a medical practitioner at a nearby medical facility and will contain a clear implementation objective (i.e. for a medical device). It is a capstone experience that draws extensively on the student’s engineering and scientific background and requires independent judgments and actions. The project generally involves a determination of the medical need, a detailed economic analysis of the market potential, physiological considerations, biocompatibility issues, ease of patient use, an engineering analysis of the design, manufacturing considerations and experimentation and/or prototype construction of the device. The faculty advisor, industrial sponsor or biomedical practitioner works closely with the group to insure that the project meets its goals in a timely way. Leadership and entrepreneurship are nourished throughout all phases of the project. The project goals are met in a stepwise fashion, with each milestone forming a part of a final report with a common structure. Oral and written progress reports are presented to a panel of faculty at specified intervals and at the end of each semester.
Senior design courses. Senior design provides, over the course of two semesters, a collaborative design experience with a significant biomedical problem related to human health. The project will often originate with an industrial sponsor or a medical practitioner at a nearby medical facility and will contain a clear implementation objective (i.e. for a medical device). It is a capstone experience that draws extensively on the student’s engineering and scientific background and requires independent judgments and actions. The project generally involves a determination of the medical need, a detailed economic analysis of the market potential, physiological considerations, biocompatibility issues, ease of patient use, an engineering analysis of the design, manufacturing considerations and experimentation and/or prototype construction of the device. The faculty advisor, industrial sponsor or biomedical practitioner works closely with the group to insure that the project meets its goals in a timely way. Leadership and entrepreneurship are nourished throughout all phases of the project. The project goals are met in a stepwise fashion, with each milestone forming a part of a final report with a common structure. Oral and written progress reports are presented to a panel of faculty at specified intervals and at the end of each semester. Close
Basic Science electives – note: engineering programs may have specific requirements
- one elective must have a laboratory component
- two electives from the same science field cannot be selected
(3)
Credit for E101 & 102
(4)
Core option – specific course determined by engineering program
(5)
Discipline specific course
(6)
Core option – specific course determined by engineering program
(7)
General Education Electives – chosen by the student
- can be used towards a minor or option
- can be applied to research or approved international studies