Interdisciplinary Programs

PROGRAM IN COMPUTATIONAL SCIENCE

Supervisory Committee

Elli Angelopoulou, Computer Science Kurt Becker, Physics Michael Bruno, Ocean Engineering Wayne Carr, Physics Robert Gilman, Mathematics Sophia Hassiotis, Civil Engineering George Kamberov, Computer Science Khaldoun Khashanah, Mathematics Yi Li, Mathematics Marc Mansfield, Chemistry Patrick Miller, Mathematics Nicolai Panikov, Chemical Biology Roger Pinkham, Mathematics David Vaccari, Environmental Engineering Susanne Wetzel, Computer Science Rebecca Wright, Computer Science

UNDERGRADUATE PROGRAM

Computational Science is an emerging field in which sophisticated computational techniques are used to build models and solve problems related to science and engineering. It complements existing theoretical and experimental approaches and may be thought of as a new mode of scientific inquiry.

At Stevens, undergraduates may study computational science through an interdisciplinary program leading to a bachelor of science in mathematics with a specialization in an area of science or engineering. The current specializations are:

- Computational Biology
- Computational Chemistry
- Computational Mechanics
- Computational Oceanography
- Computational Physics
- Computer Vision
- Cybersecurity
- Environmental Systems

The program consists of the science curriculum core courses and technical electives. The technical electives are divided between foundation courses in mathematics and computer science, and application courses in the student's area of specialization. An important part of the program is a project or research problem to be done in the senior year. Each student must choose one of the application areas listed above prior to preparing their study plan. Each student's study plan reflects his or her interests and aspirations, and is made up by the student, working with a member of the Supervisory Committee. Potential students are encouraged to consult members of this committee for further information.

Interdisciplinary Programs

The following table includes the core courses and typical foundation courses. Application area courses are discussed below. Courses need not be taken in exactly the order listed.

	Term I					Term II				
		Hrs. Per Wk.					<u>Hrs. Per Wk</u> .			
		Clas	s Lab	Sem.			Class	Lab	Sem.	
				Cred.					Cred	
Ma 115	Math Analysis I	3	0	3	Ma 116	Math Analysis II	3	0	3	
Ch 115	General Chemistry I	3	0	3	Ch 116	General Chemistry II	3	0	3	
Ch 117	General Chemistry Lab I	0	3	1	Ch 118	General Chemistry Lab II	0	3	1	
CS 115	Intro to Computer Science	2	2	3	Ch 281	Biology and Biotechnology	3	0	3	
PEP 111	Mechanics	3	0	3	PEP 112	Electricity and Magnetism	3	0	3	
Hu	Humanities	3	0	3	Hu	Humanities	3	0	3	
PE 200	Physical Education I	0	2	1	PE 200	Physical Education II	0	2	1	
	TOTAL	14	7	17		TOTAL	15	5	17	

Freshman Year

Sophomore Year

	Term III					Term IV			
		Hrs. Per Wk.						er Wk	
		Clas	s Lab	Sem. Cred.			Class	Lab	Sem. Cred
Ma 221	Differential Equations	4	0	4	Ma 227	Multivariate Calculus	3	0	3
Ma 334	Discrete Mathematics	3	0	3		Thermodynamics	3	0	3
Mgt	Economics	3	0	3	CS 384	Data Structures & Alg. I	3	0	3
PEP 221	Physics Lab I	0	3	1	PEP 222	Physics Lab II	0	3	1
Hu	Humanities	3	0	3	Hu	Humanities	3	0	3
PE 200	Physical Education III	0	2	1	PE 200	Physical Education IV	0	2	1
	TOTAL	13	5	15		TOTAL	12	5	14

Junior Year

	Term V					Term VI			
			Per W				Hrs. Per Wk.		
		Class	Lab	Sem. Cred.			Class	Lab	Sem. Cred
Ma 232	Linear Algebra	3	0	3	Ma 222	Probability & Statistics	3	0	3
Ma 346	Numerical Methods	3	0	3	Ma 525	Intro to Computational Sci	3	0	3
CS 385	Data Structures & Alg. II	3	0	3	PEP 282	Modern Physics	3	0	3
TE	Technical Elective	3	0(3)	3(4)	TE	Technical Elective	3	0(3)	3(4)
Hu	Humanities	3	0	3	Hu	Humanities	3	0	3
PE 200	Physical Education V	0	2	1	PE 200	Physical Education VI	0	2	1
	TOTAL	15	2(5)	16(17)		TOTAL	15	2(5)	16(17)

Senior Year

	Term VII					Term VIII				
			<u>Per W</u> s Lab				<u>Hrs. Per Wk</u> . Class Lab Sem.			
		Class	5 LaD	Cred.			Class	Lab	Cred	
TE	Technical Elective	3	0(3)	3(4)	TE	Technical Elective	3	0(3)	3(4)	
TE	Technical Elective	3	0(3)	3(4)	TE	Technical Elective	3	0(3)	3(4)	
Е	Elective	3	0	3	E	Elective	3	0	3	
Hu	Humanities	3	0	3	Hu	Humanities	3	0	3	
	TOTAL	12	0(6)	12(14)		TOTAL	12	0(6)	12(14)	

Application Areas

Application Areas correspond to the research interests of the faculty associated with the program and are subject to change. Sample selections of application courses are given below. In addition, Ma 547 Advanced Calculus I and Ma 548 Advanced Calculus II are strongly recommended for students considering graduate school in any field. Note that 600-level courses require special permission. For further information about an Application Area, consult the faculty advisor for that area.

Computational Biology (Prof. Panikov) Ch 241 Organic Chemistry I Ch 242 Organic Chemistry II Ch 580 Biochemistry I Ch 498 Senior Chemical/Biological Research I one of the following: Ch 499 Senior Chemical/Biological Research II Ch 678 Computational Microbiology Ch 681 Biochemistry II

Computational Chemistry (Prof. Mansfield) Ch 241 Organic Chemistry I Ch 322 Theoretical Chemistry Ch 421 Chemical Dynamics Ch 498 Chemical Research I Ch 499 Chemical Research II

Computational Mechanics (Prof. Hassiotis) E 126 Mechanics of Solids CE 345 Modeling and Simulation CE 373 Structural Analysis Ma 498 Senior Research Project I one of the following: CE 613 Matrix Analysis of Structures CE 623 Structural Dynamics CE 681 Introduction to Finite Element Methods

Computational Oceanography (Prof.

Bruno) E 126 Mechanics of Solids CE 342 Fluid Mechanics OE 526 Computer-Aided Naval Architecture OE 648 Numerical Hydrodynamics Ma 498 Mathematical Research I <u>Computational Physics</u> (Profs. Becker and Carr) PEP 497 SKIL V PEP 498 SKIL VI PEP 538 Introduction to Mechanics PEP 542 Electromagnetism *one of the following:* PEP 520 Computational Physics PEP 575 Fundamentals of Atmospheric Radiation and Climate

Computer Vision (Profs. Angelopoulou and Kamberov) CS 437 Interactive Computer Graphics CS 638 Interactive Computer Graphics II CS 558 Computer Vision CS 499 Computer Science Research II CS 498 Computer Science Research I

Cybersecurity (Profs. Wetzel and Wright) CS 335 Computational Structures CS 499 Computer Science Research II CS 668 Foundations of Cryptography CS 693 Cyptographic Protocols CS 498 Computer Science Research I

Environmental Systems (Prof. Vaccari) EN 345 Modeling and Simulation EN 375 Environmental Systems EN 541 Fate and Transport of Environmental Contaminants Ma 498 Mathematical Research I *one of the following:* Ma 499 Mathematical Research II EN 571 Physiochemical Processes for Environmental Control