Interdisciplinary Programs

PROGRAM IN COMPUTATIONAL SCIENCE

Supervisory Committee

Elli Angelopoulou, Computer Science
Kurt Becker, Physics
Michael Bruno, Ocean Engineering
Wayne Carr, Physics
Robert Gilman, Mathematics
Sophia Hassiotis, Civil Engineering
George Kamberov, Computer Science
Khaldoun Khashanah, Mathematics
Yi Li, Mathematics
Marc Mansfield, Chemistry
Patrick Miller, Mathematics
Nicolai Panikov, Chemical Biology
Roger Pinkham, Mathematics
David Vaccari, Environmental Engineering
Susanne Wetzel, Computer Science
Rebecca Wright, Computer Science

UNDERGRADUATE PROGRAM

Computational Science is an emerging field in which sophisticated computational techniques are used to build models and solve problems related to science and engineering. It complements existing theoretical and experimental approaches and may be thought of as a new mode of scientific inquiry.

At Stevens, undergraduates may study computational science through an interdisciplinary program leading to a bachelor of science in mathematics with a specialization in an area of science or engineering. The current specializations are:

- Computational Biology
- Computational Chemistry
- Computational Mechanics
- Computational Oceanography
- Computational Physics
- Computer Vision
- Cybersecurity
- Environmental Systems

The program consists of the science curriculum core courses and technical electives. The technical electives are divided between foundation courses in mathematics and computer science, and application courses in the student's area of specialization. An important part of the program is a project or research problem to be done in the senior year. Each student must choose one of the application areas listed above prior to preparing their study plan. Each student's study plan reflects his or her interests and aspirations, and is made up by the student, working with a member of the Supervisory Committee. Potential students are encouraged to consult members of this committee for further information.

The following table includes the core courses and typical foundation courses. Application area courses are discussed below. Courses need not be taken in exactly the order listed.

Freshman Year

Junior Year

	Term V	Term VI							
			Per W				Hrs. P	er Wk.	
				Sem. Cred.			Class	Lab	Sem. Cred
Ma 232	Linear Algebra	3	0	3	Ma 222	Probability \& Statistics	3	0	3
Ma 346	Numerical Methods	3	0	3	Ma 525	Intro to Computational Sci	3	0	3
CS 385	Data Structures \& Alg. II	3	0	3	PEP 282	Modern Physics	3	0	3
TE	Technical Elective	3	0 (3)	3(4)	TE	Technical Elective	3	0(3)	3(4)
Hu	Humanities	3	0	3	Hu	Humanities	3	0	3
PE 200	Physical Education V	0	2	1	PE 200	Physical Education VI	0	2	1
	TOTAL	15		16(17)		TOTAL	15	2(5)	16(17)

Senior Year

	Term VII	Term VIII							
		Hrs. Per Wk.					Hrs. Per Wk.		
				Sem. Cred.			Class	Lab	Sem. Cred
TE	Technical Elective	3	0 (3)	3(4)	TE	Technical Elective	3	0 (3)	3(4)
TE	Technical Elective	3	0 (3)	3(4)	TE	Technical Elective	3	$0(3)$	3(4)
E	Elective	3	0	3	E	Elective	3	0	3
Hu	Humanities	3	0	3	Hu	Humanities	3	0	3
	TOTAL	12		12(14)		TOTAL	12	0 (6)	12(14)

Application Areas

Application Areas correspond to the research interests of the faculty associated with the program and are subject to change. Sample selections of application courses are given below. In addition, Ma 547 Advanced Calculus I and Ma 548 Advanced Calculus II are strongly recommended for students considering graduate school in any field. Note that $600-l e v e l$ courses require special permission. For further information about an Application Area, consult the faculty advisor for that area.

Computational Biology (Prof. Panikov)	Computational Physics (Profs. Becker
Ch 241 Organic Chemistry I	and Carr)
Ch 242 Organic Chemistry II	PEP 497 SKIL V
Ch 580 Biochemistry I	PEP 498 SKIL VI
Ch 498 Senior Chemical/Biological	PEP 538 Introduction to Mechanics
Research I	PEP 542 Electromagnetism
one of the following:	one of the following:
Ch 499 Senior Chemical/Biological	PEP 520 Computational Physics
Research II	PEP 575 Fundamentals of
Ch 678 Computational Microbiology Ch 681 Biochemistry II	Atmospheric Radiation and Climate
Computational Chemistry (Prof. Mansfield)	Computer Vision (Profs. Angelopoulou and Kamberov)
Ch 241 Organic Chemistry I	CS 437 Interactive Computer Graphics
Ch 322 Theoretical Chemistry	CS 638 Interactive Computer Graphics II
Ch 421 Chemical Dynamics	CS 558 Computer Vision
Ch 498 Chemical Research I	CS 499 Computer Science Research II
Ch 499 Chemical Research II	CS 498 Computer Science Research I
Computational Mechanics (Prof. Hassiotis)	Cybersecurity (Profs. Wetzel and
E 126 Mechanics of Solids	Wright)
CE 345 Modeling and Simulation	CS 335 Computational Structures
CE 373 Structural Analysis	CS 499 Computer Science Research II
Ma 498 Senior Research Project I	CS 668 Foundations of Cryptography
one of the following:	CS 693 Cyptographic Protocols
CE 613 Matrix Analysis of Structures CE 623 Structural Dynamics	CS 498 Computer Science Research I
CE 681 Introduction to Finite	Environmental Systems (Prof. Vaccari)
Element Methods	EN 345 Modeling and Simulation
	EN 375 Environmental Systems
Computational Oceanography (Prof.	EN 541 Fate and Transport of
Bruno)	Environmental Contaminants
E 126 Mechanics of Solids	Ma 498 Mathematical Research I
CE 342 Fluid Mechanics	one of the following:
OE 526 Computer-Aided Naval	Ma 499 Mathematical Research II
Architecture	EN 571 Physiochemical Processes for
OE 648 Numerical Hydrodynamics	Environmental Control
Ma 498 Mathematical Research I	

