MATH 570: Higher Algebra I, Winter 2005

Solutions to Assignment 3

Chapter III, Section 5, #2: a) Define
¢ : (Mn(R))[z] — My (R[z])

in the following way: for every

A= S (az‘,j)(k)xk S (MH(R>)[J:]7
k=0

where (a; ;)™ € M,(R), k € [0, p] put

¢(A) = (ciy) € M (Rlz]),

p (k) )

where ¢;; = Y7 _a; ;2" and aES is an (4, j)-entry of (a;;)®).

¢ is obviously a bijection. Finally, one has to show that ¢ is a homomorphism,
that is, ¢(A + B) = ¢(A) + ¢(B), ¢(AB) = ¢(A)p(B) but this is a usual technical
procedure.

b) ¢ : (M,(R))[[z]] = M,(R][x]]) is defined as above, but in the sum instead of p

one has to use oco.
Chapter III, Section 5, #8.b): Factorization in Z|x] is obvious
P+ 3 +2=(z+1)(z+2),

where both 4+ 1 and x + 2 are irreducible and non-invertible. At the same time, by
Proposition 5.9 (p.155), 2% + 3z + 2 is irreducible in Z[[z]] since 2 is irreducible in Z
(no contradiction with factorization in Z[z| because both = + 1 and x + 2 are units
in Z[[z]]: indeed, -7 and —15 can be represented as infinite (geometric) series).

Chapter III, Section 5, #9: It is easy to see that the map ¢y defined as

z — 0,

D L VfeEF

induces the unique homomorphism ¢ : F[z] — F which is surjective. Observe that
for every h(x) = ag + a1z + - - - + a,a™ € F[z] we have ¢(h(z)) = ag, that is, ker(¢)
consists of all polynomials with the constant coefficient equal to zero or in other words
all polynomials which have x as a factor. Hence, ker(¢) = (x) and Flz]/(z) ~ F is a



field, so, (x) is maximal. Observe also that © — 1 ¢ ker(¢) = (z). On the other hand,
considering the homomorphism ¢ : F[z] — F induced by

r— 1,

Voiy L f WfeF

one can show that ker(y)) = (x — 1) is a maximal ideal of F[x]. But z — 1 € (z — 1),
so () # (x — 1) and () is not the only maximal ideal of F[z].

Chapter IV, Section 1, #2.a): “=" If for every homomorphisms g,h : D — A
we have (fg)(a) = (fh)(a) for every d € D then f(g(d)) = f(h(d)) and f(g(d)) —
f(h(d)) = f(g(d) — h(d)) = 0, where d € D is any element. Since f: A — Ais a
monomorphism it follows that g(d) —h(d) = 0, that is, g and h agree on every element
of D.

“<” Following the hint in the textbook define D = ker(f), which is obviously a
submodule of A, and two homomorphisms g, h : D — A such that g(D) = D C A is
an inclusion and h(D) = 0 is a zero map. Observe that (fg)(d) = f(g(d)) = f(d) =0
and (fh)(d) = f(h(d)) = f(0) = 0 for every d € D. Hence, by our assumprion g = h
and it follows that D = 0.

Chapter IV, Section 1, #5: a) We assume that A # 0. Thus, there exists
a € A and Ra is a submodule of A. Hence, the projection A — Ra is onto and
non-zero. Since A is simple it follows that ker(A) = 0 and A ~ Ra.

b) Suppose A # 0 and ¢ : A — A is an endomorphism. Since ker(¢) is a
submodule of A it follows that either ker(¢) = 0 or ker(¢) = A. In the latter case ¢
is a zero map and we are done. In the former case ¢ is a monomorphism and taking
into account the fact that im(¢) is a submodule of A it follows that im(¢) = A and
¢ is an isomorphism.

Chapter IV, Section 1, #7.b): Let S = Hompg(A, A). Define 0g(a) =
0, 1s(a) = a, Ya € A and for any f € S set (—f)(a) = —f(a), Ya € A. Direct

verification of the ring axioms.

Chapter IV, Section 1, #9: At first observe that ker(f) Nim(f) = 0. Indeed,
if 0 #£ b € ker(f) Nim(f) then f(b) = 0 and there exists ¢ € A such that b = f(c).
Hence, 0 = f(b) = f(f(c)) = f(c¢) = b - contradiction. Finally, any a € A can be
represented as a = f(a) + (a — f(a)), where f(a) € im(f) and a — f(a) € ker(f)
because f(a— f(a)) = f(a) = f(f(a)) = f(a) = f(a) = 0. Thus, A = ker(f) @ im(f).

Chapter IV, Section 1, #11: a),b) Direct computations.

c) As a counterexample take A = R = Zg. Then, for 2,3 € Zg we have Oy, O3 # 0
(3 € 09,2 € O3), while O3_5 = Oy = 0 because 1 is invertible in Zg. That is, T'(Zs)
is not closed under addition, so, can not be a submodule of Zg.

d) If a € T(a) then there exists r € R such that ra = 0, so, 0 = f(ra) = rf(a)
and f(a) € T(B).

e) Since ker(f) = 0 it follows that ker(fr) = 0, that is, T(A) — T(B) is an
embedding. We show that im(fr) = ker(gr). If b € ker(gr) then b € ker(g)NT(B) =



im(f) NT(B). Hence, there exists a € A such that f(a) = b and it is enough
to show that @ € T(A). But since b € T(B) then there exists r € R such that
rb=rf(a) = f(ra) = 0, hence, ra = 0 because ker(f) = 0, and ker(gr) C im(fr).
Now, ker(gr) = ker(g)NT(B) = im(f)NT(B). On the other hand, im(fr) C im(f)
and also im(fr) C T(B) by d). That is, im(fr) C im(f) NT(B) = ker(gr).

f) Consider Z and Z,. Then both can be viewed as Z-modules, moreover, T(Z) =
0, T(Zs) = Z». Hence, Z — Zy = 7Z/2Z is an epimorphism but T(Z) — T(Zs) is not.



