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MATH 570: Higher Algebra I, Winter 2005

Solutions to Assignment 3

Chapter III, Section 5, #2: a) Define

φ : (Mn(R))[x] →Mn(R[x])

in the following way: for every

A =

p∑
k=0

(ai,j)
(k)xk ∈ (Mn(R))[x],

where (ai,j)
(k) ∈Mn(R), k ∈ [0, p] put

φ(A) = (ci,j) ∈Mn(R[x]),

where ci,j =
∑p

k=0 a
(k)
i,j x

k and a
(k)
i,j is an (i, j)-entry of (ai,j)

(k).
φ is obviously a bijection. Finally, one has to show that φ is a homomorphism,

that is, φ(A + B) = φ(A) + φ(B), φ(AB) = φ(A)φ(B) but this is a usual technical
procedure.

b) φ : (Mn(R))[[x]] →Mn(R][x]]) is defined as above, but in the sum instead of p
one has to use ∞.

Chapter III, Section 5, #8.b): Factorization in Z[x] is obvious

x2 + 3x+ 2 = (x+ 1)(x+ 2),

where both x+ 1 and x+ 2 are irreducible and non-invertible. At the same time, by
Proposition 5.9 (p.155), x2 + 3x+ 2 is irreducible in Z[[x]] since 2 is irreducible in Z
(no contradiction with factorization in Z[x] because both x + 1 and x + 2 are units
in Z[[x]]: indeed, 1

x+1
and 1

x+1
can be represented as infinite (geometric) series).

Chapter III, Section 5, #9: It is easy to see that the map φ0 defined as

φ0 :
x→ 0,
f → f, ∀ f ∈ F

induces the unique homomorphism φ : F [x] → F which is surjective. Observe that
for every h(x) = a0 + a1x + · · · + anx

n ∈ F [x] we have φ(h(x)) = a0, that is, ker(φ)
consists of all polynomials with the constant coefficient equal to zero or in other words
all polynomials which have x as a factor. Hence, ker(φ) = (x) and F [x]/(x) ' F is a
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field, so, (x) is maximal. Observe also that x− 1 /∈ ker(φ) = (x). On the other hand,
considering the homomorphism ψ : F [x] → F induced by

ψ0 :
x→ 1,
f → f, ∀ f ∈ F

one can show that ker(ψ) = (x− 1) is a maximal ideal of F [x]. But x− 1 ∈ (x− 1),
so (x) 6= (x− 1) and (x) is not the only maximal ideal of F [x].

Chapter IV, Section 1, #2.a): “⇒” If for every homomorphisms g, h : D → A
we have (fg)(a) = (fh)(a) for every d ∈ D then f(g(d)) = f(h(d)) and f(g(d)) −
f(h(d)) = f(g(d) − h(d)) = 0, where d ∈ D is any element. Since f : A → A is a
monomorphism it follows that g(d)−h(d) = 0, that is, g and h agree on every element
of D.

“⇐” Following the hint in the textbook define D = ker(f), which is obviously a
submodule of A, and two homomorphisms g, h : D → A such that g(D) = D ⊆ A is
an inclusion and h(D) = 0 is a zero map. Observe that (fg)(d) = f(g(d)) = f(d) = 0
and (fh)(d) = f(h(d)) = f(0) = 0 for every d ∈ D. Hence, by our assumprion g = h
and it follows that D = 0.

Chapter IV, Section 1, #5: a) We assume that A 6= 0. Thus, there exists
a ∈ A and Ra is a submodule of A. Hence, the projection A → Ra is onto and
non-zero. Since A is simple it follows that ker(A) = 0 and A ' Ra.

b) Suppose A 6= 0 and φ : A → A is an endomorphism. Since ker(φ) is a
submodule of A it follows that either ker(φ) = 0 or ker(φ) = A. In the latter case φ
is a zero map and we are done. In the former case φ is a monomorphism and taking
into account the fact that im(φ) is a submodule of A it follows that im(φ) = A and
φ is an isomorphism.

Chapter IV, Section 1, #7.b): Let S = HomR(A,A). Define 0S(a) =
0, 1S(a) = a, ∀a ∈ A and for any f ∈ S set (−f)(a) = −f(a), ∀a ∈ A. Direct
verification of the ring axioms.

Chapter IV, Section 1, #9: At first observe that ker(f)∩ im(f) = 0. Indeed,
if 0 6= b ∈ ker(f) ∩ im(f) then f(b) = 0 and there exists c ∈ A such that b = f(c).
Hence, 0 = f(b) = f(f(c)) = f(c) = b - contradiction. Finally, any a ∈ A can be
represented as a = f(a) + (a − f(a)), where f(a) ∈ im(f) and a − f(a) ∈ ker(f)
because f(a− f(a)) = f(a)− f(f(a)) = f(a)− f(a) = 0. Thus, A ' ker(f)⊕ im(f).

Chapter IV, Section 1, #11: a),b) Direct computations.
c) As a counterexample take A = R = Z6. Then, for 2, 3 ∈ Z6 we have O2,O3 6= 0

(3 ∈ O2, 2 ∈ O3), while O3−2 = O1 = 0 because 1 is invertible in Z6. That is, T (Z6)
is not closed under addition, so, can not be a submodule of Z6.

d) If a ∈ T (a) then there exists r ∈ R such that ra = 0, so, 0 = f(ra) = rf(a)
and f(a) ∈ T (B).

e) Since ker(f) = 0 it follows that ker(fT ) = 0, that is, T (A) → T (B) is an
embedding. We show that im(fT ) = ker(gT ). If b ∈ ker(gT ) then b ∈ ker(g)∩T (B) =
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im(f) ∩ T (B). Hence, there exists a ∈ A such that f(a) = b and it is enough
to show that a ∈ T (A). But since b ∈ T (B) then there exists r ∈ R such that
rb = rf(a) = f(ra) = 0, hence, ra = 0 because ker(f) = 0, and ker(gT ) ⊆ im(fT ).
Now, ker(gT ) = ker(g)∩T (B) = im(f)∩T (B). On the other hand, im(fT ) ⊆ im(f)
and also im(fT ) ⊆ T (B) by d). That is, im(fT ) ⊆ im(f) ∩ T (B) = ker(gT ).

f) Consider Z and Z2. Then both can be viewed as Z-modules, moreover, T (Z) =
0, T (Z2) = Z2. Hence, Z → Z2 = Z/2Z is an epimorphism but T (Z) → T (Z2) is not.


