
Assignment 2 – Solutions

Because of the length of the assignment we mainly give ideas of the proofs and
leave out many computations that we’ve done earlier before in the same or a
similar way. Of course no proof is unique, there are always many ways to prove a
claim. Therefore all the solutions are only suggestions.

Chapter 3

3)a) Consider u = a+
√

10b and v = c+
√

10d. Then verify by computation that

N (uv) = N
(
ac + 10bd +

√
10 (ad + bc)

)
= . . . = N (u) ·N (v) .

If u = 0 then clearly N (u) = 0. So suppose now N (u) = 0.

N (u) = 0 ⇒ a2 − 10b2 = 0 ⇒ a2 = 10b2 (1)

We know that for all w ∈ R we have

N (u) ·N (w) = 0.

So verify for w = 1 +
√

10:

N (uw) = −18b (10b− a) ,

using (1).

If u 6= 0, then clearly b 6= 0, so we know that the second factor has to equal
zero and we can conclude:

10b− a = 0 ⇒ a = 10b

⇒ a2 = 100b2

⇒ 10b2 = 100b2

⇒ b = 0,

again using (1). But this is a contradiction, so u = 0.

b) Claim: u unit in R ⇔ N (u) = ±1.
proof:

“⇒” : Let u be unit in R. Then there exists a v ∈ R such that uv = 1.
Because of the multiplicity of N we have

1 = N (1) N (uv) = N (u) N (v) .

So N (u) is a unit in Z and therefore the claim holds, as the only units
in Z are 1 and −1.
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“⇐” : Suppose N (u) = ±1. We need to find a v ∈ R with uv = 1.
Claim: v = N (u) · (a−√10b

)
does it.

Proof: v ∈ R, as N (u) = ±1 and a, b ∈ Z. Furthermore we have

u · v =
(
a + b

√
10

)
·N (u) ·

(
a− b

√
10

)

= N (u) ·N (u) = 1.

¤

c) Suppose u = a · b. Then clearly N (u) = N (a) ·N (b).

u = 2 : We have N (u) = 4. So N (a) is either −1, 1,−2 or 2. We have to
show that ±2 is impossible.
Consider a = x + y

√
10 and suppose

N (a) = x2 − 10y2 = ±2.

If we find a solution in Z, then we have a solution in any Zn, because
we have the natural ring-homomorphism between both rings.

Consider Z5. The equation simplifies to x2 = ±2, which means x2 = 2
or x2 = 3. A quick check verifies that there are no elements in Z5 that
satisfy either of the equations. So we know that there is no a ∈ R with
N (a) = ±2. Therefore any a in a factorisation of 2 has an N–value of
±1 and thus is a unit. So 2 is irreducible in R.

u = 3 : Same proof. Observe that ±3 in Zn is 3 or 2.

u = 4 +
√

10 : In this case N (u) = 6. So any a in a non–trivial factorisation
of u has an N–value of ±2 or ±3. But as shown above this is not
possible. So 4 +

√
10 is irreducible.

u = 4−√10 : The same.

d) Just compare the N–values of the four elements:

N (2) = 4 N
(
4 +

√
10

)
= 6

N (3) = 9 N
(
4−√10

)
= 6

As no N–value on the let hand side divides any on the right hand side (and
vice versa), none of the four elements in R divides another. Therefore none
of these elements are prime elements.
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4) Consider u 6= 0 and suppose we cannot factorise it into irreducibles. That
means that in any factorisation u = v1 · v2 both the factors are reducible.
We can therefore factorise both of them, and again every factor is reducible.
We can do this as often as we want. Let us do this until we have k ≥ |N (u)|
factors. So

u =
k∏

i=1

vi.

As each of the factors is reducible and thus not a unit, its N–value is greater
than 1 or smaller than -1. Therefore we have

|N (u)| =
k∏

i=1

|N (vi)|︸ ︷︷ ︸
>1

> |N (u)| .

This is of course a contradiction, and therefore we cannot factorise u into
as many reducible factors as we want. So u must have a factorisation into
(finitely many) irreducibles.

This factorisation need not be unique, as seen in problem 3)d). The element
6 has two factorisations, where the factors are not associates of each other.

5)a) Let P = (a) and a uniquely factorised into a = p1 · · · pn. (Theorem 3.7)
Claim: (a) = (p1) (p2) · · · (pn) =: P ′

Proof: Clearly (a) ⊆ P ′ as a ∈ P ′.
“⊇”: Let b ∈ P ′. Then (for some m ∈ N):

b =
∑
j=1

mx1jp1 · x2jp2 · · ·xnjpn

=

(
m∑

j=1

x1j · · ·xnj

)
p1 · · · pn

=

(
m∑

j=1

x1j · · ·xnj

)
a ∈ (a) .

As pi are irreducible, all (pi) are maximal ideals.

b) P primary ⇔ P = (pn) for some p ∈ R, p prime or p = 0, and some n.

“⇒” : Let P = (q) be primary. So if ab ∈ P and a /∈ P , then bm ∈ P for
some m.
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Case 1: q 6= 0. Suppose q 6= pn for all p, p prime. So we have a factori-
sation of q into at least two prime factors:

q =
k∏

i=1

pji

i ,

pi prime, pi 6= pj for i 6= j.

Let a = pj1
1 and b =

∏k
i=2 pji

i . Then q = ab, so ab ∈ P . But a /∈ P , so
bm ∈ P for some m. But this is impossible, as p1 is not a factor of bm.
So we have a contradiction and q = pn for some prime element p and
some integer n.
Case 2: q = 0. If ab ∈ (q), a /∈ (q), then b = 0. So b1 ∈ (q).

“⇐” : Let p = 0. Then P = (0) and P is primary (see Case 2 of above).
Let P = (pn), p 6= 0, p irreducible. Suppose ab ∈ P , a /∈ P .
Then ab = rpn for some r ∈ R. So pn|ab. But pn 6 |a, so p|b and p|bn.

c) “⊆” : Suppose q ∈ P1 · · ·Pn. Then q = r · pn1
1 · · · pnn

n .
Clearly pni

i |q ∀ i, so q ∈ Pi ∀ i and thus q ∈ P1 ∩ . . . ∩ Pn.

“⊇” : Suppose q ∈ P1∩ . . .∩Pn. Then q ∈ Pi ∀ i. Therefore pni
i |q ∀ i. As the

pi are distinct, we have

q = r · pn1
1 · · · pnn

n ∈ P1 · · ·Pn.

d) Let P = (q). We know q has a unique factorisation (up to order and asso-
ciativity). Let

q =
n∏

i=1

pni
i .

Then (pni
i ) are primary. We therefore have because of c):

P = (pn1
1 ) · · · (pnn

n ) = (pn1
1 ) ∩ . . . ∩ (pnn

n ) .

Note that associated elements in two factorisations generate the same ideal.
So we have uniqueness up to order.

6)a) We know Z is Euclidean, so we have a = qn + r for some q, r ∈ Z. Let
r >

∣∣n
2

∣∣.
Case 1: r > 0, n > 0. Consider q′ := q + 1, r′ := r − n. Then

q′n + r′ = (q + 1) n + r − n = qn + r = a.

and |r′| ≤ n
2
.

Cases 2,3 and 4 similarly.
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b) To show that the Gaussian Integers form a Euclidean Domain we show that
Definition 3.8 holds.

3.8(i) : Let x, y ∈ Z [i] =: R, and x = a + bi, y = c + di. Then

ϕ (xy) = ϕ (ac− bd + i (ad + bc))

= a2c2 − 2abcd + b2d2 + a2d2 + 2abcd + b2c2

= a2
(
c2 + d2

)
+ b2

(
c2 + d2

)

=
(
a2 + b2

) (
c2 + d2

)

= ϕ (x) ϕ (y)︸ ︷︷ ︸
≥1

≥ ϕ (x) .

3.8(ii) : To prove this part of the definiton we just follow the hint given in
the book. There is nothing more to be done.
Let x, y ∈ R, x 6= 0. Show: There exist q, r ∈ R, such that y = qx + r
with r = 0 or r 6= 0 and ϕ (r) < ϕ (x). Case 1: x ∈ N. Suppose
y = a + bi.
From part a) we know that there exist q1, q2, r1, r2 ∈ Z such that a =
q1x + r1, b = q2x + r2 and |r1| ≤ x

2
, |r2| ≤ x

2
.

Put q := q1 + q2i and r := r1 + r2i.
Claim: y = qx+r.
Proof:

qx + r = (q1 + q2i) x + r1 + r2i

= q1x + r1 + (q2x + r2) i

= a + bi = y.

Furthermore either r = 0 or

ϕ (r) = ϕ (r1 + r2i) = r2
1 + r2

2

≤
(x

2

)2

+
(x

2

)2

=
x2

2
< ϕ (x) = x2.

Case 2: x ∈ Z [i]. Let x = c + di.
Then xx̄ > 0, with x̄ = c− di, so xx̄ = c2 + d2.
There are q, r0 ∈ Z such that yx̄ = q (xx̄) + r0. This is a direct appli-
cation of Case 1.
Put r = y − qx.
Claim: y = qx +r.
Proof: qx + r = qx + r = qx + y − qx = y.

5



Claim: r = 0 or ϕ (r) < ϕ (x).
Proof: Let r 6= 0. Then y − qx 6= 0.
ϕ (r) = ϕ (y − qx).

ϕ (r) ϕ (x̄) = ϕ (rx̄) = ϕ ((y − qx) x̄)

= ϕ (yx̄− q (xx̄)) = ϕ (r0) < ϕ (xx̄) = ϕ (x) ϕ (x̄) .

So ϕ (r) < ϕ (x).

8) This solution is rather long and can be looked up in
Dumit & Foote, “Abstract Algebra”, pages 282f for PID and pages 277f for
not Euclidean.

Chapter 4

6) We know: ∀ I C R : S−1I C S−1R.
And ∀ I C S−1R and J = ϕ−1

S (I) : J C R and I = S−1J .

So let J C S−1R be an ideal and I = ϕ−1
S (J).

Then of course I = (a) for some a ∈ R.

⇒ J = S−1I =
{ra

s

∣∣∣ r ∈ R, s ∈ S
}

=
{r

a
· a

∣∣∣ r ∈ R, s ∈ S
}

=
{
ta

∣∣ t ∈ S−1R
}

= (a) (in S−1R).

9) S be a multiplicative subset of the commutative ring R with identity. Recall:

Rad I =
{
r ∈ R

∣∣ rn ∈ I for some n
}

So accordingly

Rad
(
S−1I

)
=

{
r

s
∈ S−1R

∣∣∣
(r

s

)n

=
rn

sn
∈ S−1I for some n

}
.

“⊆”: Let r
s
∈ S−1 (Rad I). So we have r ∈ Rad I and rn ∈ I. Then we have

immediately that (r

s

)n

=
rn

sn
∈ S−1I,

because rn ∈ I and sn ∈ S. Therefore r
s
∈ Rad (S−1I) and thus

S−1 (Rad I) ⊆ Rad
(
S−1I

)
.
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“⊇”: Let r
s
∈ Rad (S−1I). Then there exists an n such that

(
r
s

)
= rn

sn ∈
S−1I.
Let rn

sn = q
t

with q ∈ I and t ∈ S. So there exists an u ∈ S such that

u (rnt− qsn) = 0R.

Then we have

urnt = uqsn ⇒ unrntn = unqsntn−1 ∈ I,

as a ∈ I and ICR. The left hand side of the last equation equals (urt)n

and so we have that urt ∈ Rad I. As u, t ∈ S we also have that ut ∈ S
and because of the commutativity:

r

s
=

urt

ust
∈ S−1 (Rad I) ,

because urt ∈ Rad I and ust ∈ S. This proves the other inclusion and
thus the two sets are equal.

15) We denote the set of all nilpotent elements in R with N (R). Observe that
N (R) is an ideal in R.

“i) ⇒ ii)”: Clearly if R has a unique prime ideal then this ideal is exactly
N (R).
Let x ∈ R be a non–unit. Then there exists a maximal ideal M such
that x ∈ M . As any maximal ideal is prime we have that M = N (R).
This implies that x is nilpotent.

“ii) ⇒ iii)”: As N (R) contains all non–units it is maximal and thus prime.
Note that every element of N (R) is a zero–divisor and that all units
are not. So N (R) contains all zero–divisors and all non–units.

“iii) ⇒ i)”: Let P the minimal prime ideal that contains all non–units. Then
it is of course maximal, as every element that could be added is a unit,
and thus the larger ideal would be equal to R. So R has a unique prime
ideal.
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