MATH 570: Higher Algebra I, Winter 2005

Solutions to Assignment 1

Section 1, #3: Take any a,b € R. Since ¢? = ¢ for any ¢ € R, it follows that

(a+b)?=a+b, (a—b)?=a—0.

Hence,
(a+b?=a*+ab+ba+b>=a+ab+ba+b=a+b,
J
ab+ba =0
and

(a—b?=a*—ab—ba+b*=a—ab—ba+b=a—Db,
Y
—ab—ba+b+b=0.

Combining the above equalities we get b+ b = 0 for any b € R. Finally, since b = —b
then ba = —ba and

ab+ba=0=ab—ba=0= ab=ba
for any a,b € R.

Section 1, #7: a) Suppose there exist a,c¢ € R such that a,c # 0 but either
ac = 0 or ca = 0. Suppose, b is a unique element of R such that aba = a. Consider
a(b+ c)a. We have

a(b+ c¢)a=aba+aca =a+0=a

and since b is unique for a with this property, it follows that b +c¢ =b and ¢ = 0 -
contradiction with our assumption.
b) If b is a unique element of R such that aba = a then

aba = a = (ab)(aba) = (ab)a = a = a(bab)a = a = bab = b.

c,d) Take a,b € R such that aba = a and consider ab. Observe that b, ab,ba # 0
since a # 0. For any ¢ € R we check if (ab)c = ¢ = ¢(ab). Consider b((ab)c — c).
Hence,

b((ab)c — ¢) = (bab)c — bc = be — be = 0

and by a) we have (ab)c —c¢ = 0, so (ab)c = c¢. The equality ¢ = ¢(ab) can be checked
in the same way considering (c(ab) — ¢)a.



Also, if 0 # ¢,d € R is another pair of elements such that cdc = ¢ then it is easy
to see that ab = cd. Indeed,

(cd — ab)a = (ed)a — (ab)a = a —a = 0,

so by a) ed — ab = 0. In particular, ab = ba for any 0 # a € R and corresponding b.

Thus, for any 0 # a,b € R such that aba = a we denote ab = 1. Observe that
1g # 0 and 1 has all the properties of the identity of R. Finally, since R has no zero
divisors and for every a € R there exists a unique b such that ab = ba = 1r then R
is a division ring.

Section 1, #10e): Just computations.

Section 1, #11: Let a,b € R and n > 0. By Theorem 1.6 (p.118)

(@) =) % (£b)* a7k

7|

On the other hand, from Exercise #10e, it follows that p divides %
1 <k <p"—1 and since R is of characteristic p then

(p")!
(p" — k) k!

for any 1 < k < p™ — 1. Thus,

for any

(£b)* a?"F =0

(a+b)?" =a" £

Section 1, #18): At first we show that f(%) = g(%) for any n € Z. Indeed,

g(1) = £(1) = f(n)f (1) _y(n)f (1) |

n n

and we multiply both sides by g(%) Hence, we have

o(3) s (3 ) =0 (5) a0

and g(1)f (%)) =9 (%)
(i) =rr () =0 (5) =4 (2).
Now,



for any ™ € Q.
Section 2, #5: Let ry,ry € [R: I| and = € R. Hence,
x(ry+re) =axry +ary €I, x(rira) = (xry))ry € 1

since xry,xry € I and I is an ideal. Thus, [R : I] is closed under addition and
multiplication, and obviously I C [R : I] because [ is an ideal. Finally, if y € R, r €
[R: 1] then yr € I C [R : I] and ry € [R : I] because for any x € R we have
z(ry) = (zr)y = r'y, where v’ € I, so, 'y € I. Hence, [R: I] is an ideal.

Section 2, #8): “=" Let J be an ideal in M,,(R). Let I be the set composed
by (1, 1)-entries of all matrices from J. If A = (a;;) € J and s; ;(1g) is the matrix all
entries of which are zeros except (i, j)-entry containing 1z then

0 A, 0 0 0
sij(1g) A =i O 1R 0 A=il| ay - apm
0 .. 0 0 - 0
and
0 0 0 m 0
(50500m) A) sim(in) =i | @z o am || 0 o 1y e 0 k=
0 w 0
=11 0 aj O € J,
: O

where the only non-zero entry of (s; j(1g) A) skm(1g) is the (i, m)-entry containing
ajr. Thatis, (s;;(1r) A) Skm(1r) = sim(a;k) Eventually, since interchanging of rows
and columns corresponds to multiplication from left and right by elementary matrices
it follows that if @ is any entry of a matrix from J then s;,(a) € J and hence a € 1.
The converse is obviously true since any B = (b; ;) € M, (I) can decomposed as a
sum of s; ;(b; ;) € J, so, B € J.

Finally, let a,b € I, r € R. Then



hence,
a --- 0 b .0 a-+b 0
+ = . cJ=a+bel,
0 --- 0 0 - 0 0 e 0
a - 0 b -+ 0 ab - 0
. = ej:>ab€[’
0 --- 0 0 --- 0 0 --- 0
r - 0 a 0 ra --- 0
. = ceJ=racl,
0 --- 0 0 -0 0o --- 0
a --- 0 r 0 ar 0
. = eJ=arecl
0 --- 0 0 --- 0 0o --- 0

Thus, I is an ideal of R.

“<” If J = M,(I), where I is an ideal of R then it is easy to see that J is closed
under addition and multiplication by elements from M, (R).

Section 2, #16: Observe that if

Anpc P
i#j

AgUa
i#]
That is, without loss of generality one can assume that there are no “redundant”
ideals in the list Py, ..., P, in other words, AN P; € |J,; Pi for every j € [1,n]
which is possible only when n > 1. After this assumption is made, follow the hint
given in the textbook and get a contradiction with n > 1.

for some j € [1,n], then

Section 2, #23: Observe that
(l—e)=1lg—e—e+e’=1lg—e—et+e=1g—c¢

and
r(lg—e)=rlg—re=1gr—er=(lg —e)r

for any r € R, so (a) follows.
(b) If e is a central idempotent then

ery +erg =e(ry + 1) € eR,

(er1)(ers) = €*(rime) = e(rir2) € eR,



r(er1) = e(rr1) € eR, (er1)r =e(rir) € eR

for any r,r1,rs € R, and it follows that eR is an ideal of R. From (a) it follows that
1r — e is also a central idempotent, hence, (1g — €)R is an ideal of R. Now, observe
that for any » € R we have a decomposition

r=er+(lg—e)r € eR+ (1g —e)R.

On the other hand, if @ € eR N (1g — €)R then there exist r,75 € R such that
er; = (1g — e)ry. Thus, er; = 19 —ery and 75 = e(r; +19) = er € eR. Finally,
a = (1g —e)rs = (1g —e)(er) = er —e*r = er —er = 0 and it follows that
eRN(1g —e)R=0. So, R=eR x (1g —e)R.

Section 2, #24): We take advantage of the hint given in the textbook.
“(a) = (b)” If ¢, = (0,...,0,1g,,0,...,0) € R for i € [1,n] then obviously

e? = ¢; and e;r = re; for any r € R, so every e; is a central idempotent of R. Also, it

is easy to see that e;e; =0 when i # j and e; +--- + e, = (1g,, Lg,, ..., 1g,) = L&

“(b) = (c)” Define A; = ¢;R for every i € [1,n]. Since e; is a central idempotent
then like in #23 it can be shown that A; is an ideal of R.

Since e; + --- + e, = 1g, then for every r € R we have r = e;r + --- +e,1r €
A+ ---A,and if a € A;NA;, i # j then e;ry = e;mo and e;(e;71) = e;(ejrs), from
which it follows that e;r; = 0. Thus, A;NA; =0, i #jand R=A; x --- X A,.

“(c) = (a)” Since A; ~ R; then obviously R = A; x --- x A, implies R ~
Ry X -+ X R,.



