MATH 570: Higher Algebra I, Winter 2005

Solutions to Assignment 1

Section 1, #3: Take any $a, b \in R$. Since $c^2 = c$ for any $c \in R$, it follows that

$$(a+b)^2 = a+b, (a-b)^2 = a-b.$$

Hence,

$$(a + b)^2 = a^2 + ab + ba + b^2 = a + ab + ba + b = a + b,$$
 $\downarrow b$
 $ab + ba = 0$

and

$$(a - b)^{2} = a^{2} - ab - ba + b^{2} = a - ab - ba + b = a - b,$$

$$\downarrow b$$

$$-ab - ba + b + b = 0.$$

Combining the above equalities we get b + b = 0 for any $b \in R$. Finally, since b = -b then ba = -ba and

$$ab + ba = 0 \Rightarrow ab - ba = 0 \Rightarrow ab = ba$$

for any $a, b \in R$.

Section 1, #7: a) Suppose there exist $a, c \in R$ such that $a, c \neq 0$ but either ac = 0 or ca = 0. Suppose, b is a unique element of R such that aba = a. Consider a(b+c)a. We have

$$a(b+c)a = aba + aca = a + 0 = a$$

and since b is unique for a with this property, it follows that b+c=b and c=0 -contradiction with our assumption.

b) If b is a unique element of R such that aba = a then

$$aba = a \Rightarrow (ab)(aba) = (ab)a = a \Rightarrow a(bab)a = a \Rightarrow bab = b.$$

c,d) Take $a, b \in R$ such that aba = a and consider ab. Observe that $b, ab, ba \neq 0$ since $a \neq 0$. For any $c \in R$ we check if (ab)c = c = c(ab). Consider b((ab)c - c). Hence,

$$b((ab)c - c) = (bab)c - bc = bc - bc = 0$$

and by **a**) we have (ab)c - c = 0, so (ab)c = c. The equality c = c(ab) can be checked in the same way considering (c(ab) - c)a.

Also, if $0 \neq c, d \in R$ is another pair of elements such that cdc = c then it is easy to see that ab = cd. Indeed,

$$(cd - ab)a = (cd)a - (ab)a = a - a = 0,$$

so by a) cd - ab = 0. In particular, ab = ba for any $0 \neq a \in R$ and corresponding b.

Thus, for any $0 \neq a, b \in R$ such that aba = a we denote $ab = 1_R$. Observe that $1_R \neq 0$ and 1_R has all the properties of the identity of R. Finally, since R has no zero divisors and for every $a \in R$ there exists a unique b such that $ab = ba = 1_R$ then R is a division ring.

Section 1, #10e): Just computations.

Section 1, #11: Let $a, b \in R$ and $n \ge 0$. By Theorem 1.6 (p.118)

$$(a \pm b)^{p^n} = \sum_{k=0}^{p^n} \frac{(p^n)!}{(p^n - k)! \ k!} \ (\pm b)^k \ a^{p^n - k}.$$

On the other hand, from **Exercise #10e**, it follows that p divides $\frac{(p^n)!}{(p^n-k)!}$ for any $1 \le k \le p^n - 1$ and since R is of characteristic p then

$$\frac{(p^n)!}{(p^n - k)! \ k!} \ (\pm b)^k \ a^{p^n - k} = 0$$

for any $1 \le k \le p^n - 1$. Thus,

$$(a \pm b)^{p^n} = a^{p^n} \pm b^{p^n}$$

Section 1, #18): At first we show that $f(\frac{1}{n}) = g(\frac{1}{n})$ for any $n \in \mathbb{Z}$. Indeed,

$$g(1) = f(1) = f(n)f\left(\frac{1}{n}\right) = g(n)f\left(\frac{1}{n}\right).$$

and we multiply both sides by $g(\frac{1}{n})$. Hence, we have

$$g\left(\frac{1}{n}\right)(g(n)f\left(\frac{1}{n}\right)) = g\left(\frac{1}{n}\right)g(1)$$

and

$$g(1)f\left(\frac{1}{n}\right)) = g\left(\frac{1}{n}\right)$$

so,

$$f\left(\frac{1}{n}\right) = f(1)f\left(\frac{1}{n}\right) = g(1)f\left(\frac{1}{n}\right) = g\left(\frac{1}{n}\right).$$

Now,

$$f\left(\frac{m}{n}\right) = mf\left(\frac{1}{n}\right) = mg\left(\frac{1}{n}\right) = g\left(\frac{m}{n}\right)$$

for any $\frac{m}{n} \in \mathbb{Q}$.

Section 2, #5: Let $r_1, r_2 \in [R:I]$ and $x \in R$. Hence,

$$x(r_1 + r_2) = xr_1 + xr_2 \in I, \ x(r_1r_2) = (xr_1)r_2 \in I$$

since $xr_1, xr_2 \in I$ and I is an ideal. Thus, [R:I] is closed under addition and multiplication, and obviously $I \subseteq [R:I]$ because I is an ideal. Finally, if $y \in R$, $r \in [R:I]$ then $yr \in I \subseteq [R:I]$ and $ry \in [R:I]$ because for any $x \in R$ we have x(ry) = (xr)y = r'y, where $r' \in I$, so, $r'y \in I$. Hence, [R:I] is an ideal.

Section 2, #8): " \Rightarrow " Let J be an ideal in $M_n(R)$. Let I be the set composed by (1,1)-entries of all matrices from J. If $A=(a_{i,j}) \in J$ and $s_{i,j}(1_R)$ is the matrix all entries of which are zeros except (i,j)-entry containing 1_R then

$$s_{i,j}(1_R) \ A = i \begin{pmatrix} 0 & \ddots^{j} & 0 \\ \dots & \dots & \dots \\ 0 & \dots & 1_R & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 \end{pmatrix} A = i \begin{pmatrix} 0 & \dots & 0 \\ \dots & \dots & \\ a_{j,1} & \dots & a_{j,n} \\ \dots & \dots & \\ 0 & \dots & 0 \end{pmatrix}$$

and

$$(s_{i,j}(1_R) \ A) \ s_{k,m}(1_R) = i \begin{pmatrix} 0 & \cdots & 0 \\ & \cdots & \\ a_{j,1} & \cdots & a_{j,n} \\ & \cdots & \\ 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} 0 & \cdots & m & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 1_R & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 \end{pmatrix} k = i \begin{pmatrix} 0 & \cdots & m & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & a_{j,k} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \in J,$$

where the only non-zero entry of $(s_{i,j}(1_R) \ A) \ s_{k,m}(1_R)$ is the (i,m)-entry containing $a_{j,k}$. That is, $(s_{i,j}(1_R) \ A) \ s_{k,m}(1_R) = s_{i,m}(a_{j,k})$ Eventually, since interchanging of rows and columns corresponds to multiplication from left and right by elementary matrices it follows that if a is any entry of a matrix from J then $s_{1,1}(a) \in J$ and hence $a \in I$. The converse is obviously true since any $B = (b_{i,j}) \in M_n(I)$ can decomposed as a sum of $s_{i,j}(b_{i,j}) \in J$, so, $B \in J$.

Finally, let $a, b \in I$, $r \in R$. Then

$$\begin{pmatrix} a & \cdots & 0 \\ & \cdots & \\ 0 & \cdots & 0 \end{pmatrix}, \begin{pmatrix} b & \cdots & 0 \\ & \cdots & \\ 0 & \cdots & 0 \end{pmatrix} \in J, \begin{pmatrix} r & \cdots & 0 \\ & \cdots & \\ 0 & \cdots & 0 \end{pmatrix} \in M_n(R),$$

hence,

$$\begin{pmatrix} a & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} + \begin{pmatrix} b & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} a+b & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} \in J \Rightarrow a+b \in I,$$

$$\begin{pmatrix} a & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} \cdot \begin{pmatrix} b & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} ab & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} \in J \Rightarrow ab \in I,$$

$$\begin{pmatrix} r & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} \cdot \begin{pmatrix} a & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} ra & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} \in J \Rightarrow ra \in I,$$

$$\begin{pmatrix} a & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} \cdot \begin{pmatrix} r & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} ar & \cdots & 0 \\ \cdots & 0 & \cdots & 0 \end{pmatrix} \in J \Rightarrow ar \in I.$$

Thus, I is an ideal of R.

" \Leftarrow " If $J = M_n(I)$, where I is an ideal of R then it is easy to see that J is closed under addition and multiplication by elements from $M_n(R)$.

Section 2, #16: Observe that if

$$A\cap P_j\subseteq\bigcup_{i\neq j}P_i$$

for some $j \in [1, n]$, then

$$A \subseteq \bigcup_{i \neq j} P_i.$$

That is, without loss of generality one can assume that there are no "redundant" ideals in the list P_1, \ldots, P_n , in other words, $A \cap P_j \not\subseteq \bigcup_{i \neq j} P_i$ for every $j \in [1, n]$ which is possible only when n > 1. After this assumption is made, follow the hint given in the textbook and get a contradiction with n > 1.

Section 2, #23: Observe that

$$(1_R - e)^2 = 1_R - e - e + e^2 = 1_R - e - e + e = 1_R - e$$

and

$$r(1_R - e) = r1_R - re = 1_R r - er = (1_R - e)r$$

for any $r \in R$, so (a) follows.

(b) If e is a central idempotent then

$$er_1 + er_2 = e(r_1 + r_2) \in eR,$$

 $(er_1)(er_2) = e^2(r_1r_2) = e(r_1r_2) \in eR.$

$$r(er_1) = e(rr_1) \in eR, \ (er_1)r = e(r_1r) \in eR$$

for any $r, r_1, r_2 \in R$, and it follows that eR is an ideal of R. From (a) it follows that $1_R - e$ is also a central idempotent, hence, $(1_R - e)R$ is an ideal of R. Now, observe that for any $r \in R$ we have a decomposition

$$r = er + (1_R - e)r \in eR + (1_R - e)R.$$

On the other hand, if $a \in eR \cap (1_R - e)R$ then there exist $r_1, r_2 \in R$ such that $er_1 = (1_R - e)r_2$. Thus, $er_1 = r_2 - er_2$ and $r_2 = e(r_1 + r_2) = er \in eR$. Finally, $a = (1_R - e)r_2 = (1_R - e)(er) = er - e^2r = er - er = 0$ and it follows that $eR \cap (1_R - e)R = 0$. So, $R = eR \times (1_R - e)R$.

Section 2, #24): We take advantage of the hint given in the textbook.

- "(a) \Rightarrow (b)" If $e_i = (0, ..., 0, 1_{R_i}, 0, ..., 0) \in R$ for $i \in [1, n]$ then obviously $e_i^2 = e_i$ and $e_i r = r e_i$ for any $r \in R$, so every e_i is a central idempotent of R. Also, it is easy to see that $e_i e_j = 0$ when $i \neq j$ and $e_1 + \cdots + e_n = (1_{R_1}, 1_{R_2}, ..., 1_{R_n}) = 1_R$.
- "(b) \Rightarrow (c)" Define $A_i = e_i R$ for every $i \in [1, n]$. Since e_i is a central idempotent then like in #23 it can be shown that A_i is an ideal of R.

Since $e_1 + \cdots + e_n = 1_R$, then for every $r \in R$ we have $r = e_1r + \cdots + e_nr \in A_1 + \cdots + A_n$ and if $a \in A_i \cap A_j$, $i \neq j$ then $e_ir_1 = e_jr_2$ and $e_i(e_ir_1) = e_i(e_jr_2)$, from which it follows that $e_ir_1 = 0$. Thus, $A_i \cap A_j = 0$, $i \neq j$ and $R = A_1 \times \cdots \times A_n$.

"(c) \Rightarrow (a)" Since $A_i \simeq R_i$ then obviously $R = A_1 \times \cdots \times A_n$ implies $R \simeq R_1 \times \cdots \times R_n$.