Solutions to 235 Assignment 6

1.a) Yes, G is a group. Multiplication is associative as it is in \mathbb{Q} . Closure is easy to show. Identity is 1. And the inverse of 2^x is simply 2^{-x} . In fact, G is a subgroup of the multiplicative group of the ring \mathbb{Q} .

b) G is a group. Show first that * is a binary operation on G, i.e., show that if $a, b \in G$, then $a * b \in G$. Associativity is easy to show by direct computation. The multiplicative identity is $0, a^{-1} = -\frac{a}{a+1}$.

c) G is a subgroup of $GL_2(\mathbb{R})$, the group of 2×2 invertible real matrices. Indeed, the determinant of a matrix from G is never zero (since $a^2 + b^2 \neq 0$ when either a or $b \neq 0$), now it suffices to show that G is closed under multiplication and inversion (straightforward computations).

2.a) The group of units U_n of the ring \mathbb{Z}_n consists of elements of the type [k] where gcd(k,n) = 1. So $U_{10} = \{1,3,7,9\}$, and their orders are 1,4,4,2 respectively.

b) and c) Straightforward computations.

3.a) The elements of $S_3 \times \mathbb{Z}_4$ of order 6 are of the form $(\sigma, 2)$, where σ is an element of order 3 in S_3 , i.e. a 3-cycle, i.e., $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ or $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.

b) Non-abelian groups of given orders:

12: D_6 16: D_8 30: $S_3 \times \mathbb{Z}_{10}$ 48: $S_4 \times \mathbb{Z}_2$

4) Let $a, b \in G$. Then $(ab)^2 = abab$ and also $(ab)^2 = a^2b^2$. Thus

 $abab = aabb \Rightarrow aba = aab \Rightarrow ba = ab$

(multiplication on the right by b^{-1} and on the left by a^{-1}).

5) Let $a, b \in G$ and ab = ba. Denote m = |a|, n = |b|, k = |ab|. We can assume that $m, n \geq 2$. Then

$$(ab)^{mn} = a^{mn}b^{mn} = (a^m)^n (b^n)^m = 1^n 1^m = 1$$

So k divides mn. Since gcd(m, n) = 1 there are integers u, v such that mu+nv = 1. It follows that k = kmu + knv and

$$1 = (ab)^k = (ab)^{kmu+knv} = a^{knv}b^{kmu}$$

Taking m-s power of the equality above

$$1 = a^{knvm}b^{kmum} = (a^m)^{knv}b^{kmum} = b^{kmum}$$

Therefore n divides kmum, hence n divides k (observe that gcd(m, n) = 1 and gcd(u, n) = 1). Similarly, m divides k, so k = mn, as required.

6.a) The center of S_3 is $\{1\}$ (check that for any element $a \in S_3$ if $a \neq 1$ then there exists $b \in S_3$ such that $ab \neq ba$).

b) H is normal, because for all $h \in H$, $g \in S_3$, we have $g^{-1}hg \in H$ (straightforward verification. In fact, it suffices to check this only for the generator $h = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$).

c) Since $|S_3|/|H| = 2$, and cosets are disjoint and span the entire group, there are only two cosets: namely H and Hg, where g is any element not in H.

7) No, it is not. Indeed, suppose $g = x + y\sqrt{2}$ generates G for some $x, y \in \mathbb{Z}$. Then (using additive notations) there exists an integer m such that $mg = \sqrt{2}$, i.e.,

$$mx + my\sqrt{2} = \sqrt{2}.$$

So (since $\sqrt{2}$ is irrational) mx = 0 and my = 1. This implies that x = 0 and $y = \pm 1$. But then for any integer $n \ ng \neq 1$ -contradiction.

8.a) No, they are not isomorphic, since, for example, $\mathbb{Z}_4 \times \mathbb{Z}_2$ is abelian and D_4 is not.

b) Denote vertices of the triangle by 1, 2, 3. Then each element d in D_3 gives a bijection, say σ_d , between the vertices, i.e., a permutation on symbols 1, 2, 3. Check that the map $d \to \sigma_d$ is an isomorphism between D_3 and S_3 .