Math 235 01: Basic Algebra Fall 2002

MIDTERM EXAM

Part I. Solve all the problems (10 points each):

- 1) Find gcd(2613, 2171);
- 2) Find the remainder when 3^{2002} is divided by 5;
- 3) Prove that if $5|(a^2 + b^2 + c^2)$ then 5|a, or 5|b, or 5|c;
- 4) Prove that $3\sqrt[3]{7} 1$ is not a rational number;
- 5) Is it true that (A ∪ B) (C ∪ B) is equal to
 a) A C? b) (A C) B? c) A (C ∩ B)?
 (show all the work).

Part II. Solve at least four problems (12 points each):

- 6) Prove that for any positive integer $n \ gcd(n+1, n^2 n + 1)$ is 1 or 3;
- 7) Prove that for any integer $n \ge 2$

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

8) Define a new addition \oplus and multiplication \odot on the set of integers Z by

$$a \oplus b = a + b - 1$$
, $a \odot b = ab - (a + b) + 2$.

Prove that Z with these new operations is a commutative ring with 1 and without zero divisors;

- 9) Solve the equation 24x = 16 in Z_{86} ;
- 10) For reals $a, b \in R$ denote

$$[a,b] = \{x \mid a \le x \le b\}, \ [a,\infty) = \{x \mid a \le x\}$$

- a) Is the function $x^2 + 2x 6$ a bijection from $[0, \infty)$ to $[-10, \infty)$?
- b) Find a bijection between [2, 4] and [0, 10];
- c) Find a bijection between [0, 1) and $[0, \infty)$ (Hint: use tan(x)).

Bonus Problem (10 points):

Let p, q be primes with $p \ge 5$ and $q \ge 5$. Prove that $24|(p^2 - q^2);$

October 16th, 6:15-8:15pm, Adams Aud., Frank Dawson Adams Building, 3540 University.