Assignment 5

- 1) Prove that $F = \mathbb{R}[x]/(x^2 + 2)$ is a field and find $(x + 1)^{-1}$ in F (here and below \mathbb{R} is the field of real numbers).
- 2) Let $F = \mathbb{Z}_2[x]/(x^3 + x + 1)$ find $(x^2 + x + 1)^{-1}$ in F.
- 3) Is $\mathbb{Z}_3[x]/(x^3 + 2x^2 + x + 1)$ a field?
- 4) For a positive number $a \in \mathbb{Q}$ define

$$\mathbb{Q}(\sqrt{a}) = \{r + s\sqrt{a} \mid r, s \in \mathbb{Q}\}$$

(here and below \mathbb{Q} is the field of rational numbers).

- a) Verify that $\mathbb{Q}(\sqrt{3})$ is a subring of \mathbb{R} ;
- b) Show that $\mathbb{Q}(\sqrt{3})$ is isomorphic to $\mathbb{Q}[x]/(x^2-3)$.
- 5) Is $\mathbb{Q}(\sqrt{2})$ isomorphic to $\mathbb{Q}(\sqrt{3})$?
- 6) a) Show that the set $I = \{(k,0) \mid k \in \mathbb{Z}\}$ is an ideal in the ring $\mathbb{Z} \times \mathbb{Z}$ (see Theorem 3.1 from the textbook for definition of $\mathbb{Z} \times \mathbb{Z}$);
 - b) Show that the set $J = \{(k, k) \mid k \in \mathbb{Z}\}$ is not an ideal in the ring $\mathbb{Z} \times \mathbb{Z}$;
 - c) Is the set

$$J = \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & r \end{array} \right) \mid r \in \mathbb{R} \right\}$$

an ideal in the ring $M_2(\mathbb{R})$ of 2×2 matrices over \mathbb{R} ?

- 7) List the **distinct** principal ideals in \mathbb{Z}_9 .
- 8) Let J be an ideal in a ring R. Prove that

$$I = \{r \in R \mid rt = 0 \text{ for every } t \in J\}$$

is also an ideal in R.

9) Let $J = \{0, 5\}$ in \mathbb{Z}_{10} . Verify that J is an ideal and show that \mathbb{Z}_{10}/J is isomorphic to \mathbb{Z}_5 .