Assignment 4

1) Find polynomials q(x) and r(x) in $\mathbb{Q}[x]$ such that f(x) = g(x)q(x) + r(x), where

$$f(x) = x^4 - 7x + 1$$
, $g(x) = 2x^2 + 1$ in $\mathbb{Q}[x]$

2) Find polynomials q(x) and r(x) in $\mathbb{Z}_{7}[x]$ such that f(x) = g(x)q(x) + r(x), where $f(x) = 4x^{4} + 2x^{3} + 6x^{2} + 4x + 5$, $g(x) = 3x^{2} + 2$ in $\mathbb{Z}_{7}[x]$

3) Use the Euclidean Algorithm to find the gcd of the given polynomials:

$$x^{5} + x^{4} + 2x^{3} - x^{2} - x - 2$$
 and $x^{4} + 2x^{3} + 5x^{2} + 4x + 4$ in $\mathbb{Q}[x]$

- 4) Find the gcd of x + a + b and $x^3 3xab + a^3 + b^3$ in $\mathbb{Q}[x]$.
- 5) List all associates of $x^2 + x$ in $\mathbb{Z}_5[x]$.
- 6) Find all irreducible polynomials of degree 3 in $\mathbb{Z}_2[x]$.
- 7) Is the polynomial $x^2 + x 2$ irreducible in $\mathbb{Z}_3[x]$?
- 8) Show that $x^5 + a$ is reducible in $\mathbb{Z}_5[x]$ for each $a \in \mathbb{Z}_5$.