Solution to assignment 1

Maxime Descoteaux

October 2, 2002

Question #1

Show that $5|2^{4n-2}+1$ for every positive integer n.

proof:

base case: let n = 1. Then, $2^{4*1-2} + 1 = 5$ which is divisible by 5. OK!

inductive hypothesis: assume true for n. i.e. $5|2^{4n-2}+1$ which is the same as $2^{4n-2}+1=5*k$ where $k \in \mathbb{Z}$

Now, we show that $5|2^{4(n+1)-2}+1$

$$\begin{array}{lll} 2^{4(n+1)-2}+1 & = & 2^{4n-2}2^4+1 \\ & = & 16*2^{4n-2}+1 \\ & = & 15*2^{4n-2}+2^{4n-2}+1 \\ & = & 15*2^{4n-2}+5*k & \text{by inductive hypothesis} \end{array}$$

$$\implies 5|2^{4(n+1)-2}+1$$

Hence, $5|2^{4n-2}+1$ by mathematical induction

Question #2

Show that $2^n > n^2$ for n > 5

proof:

base case: for n=5, $2^5=32$ and $5^2=25$

So, $2^5 > 5^2$.

inductive hypothesis: assume that $2^n > n^2$ is true

Now, we must show that $2^{n+1} > (n+1)^2$. We will need the following claim.

claim: $n^2 > 2n + 1$ for $n \ge 5$. Again, we use induction!

base case: $5^2 = 25$ and 2 * 5 + 1. So, 25 > 11

inductive hypothesis1: assume that $n^2 > 2n + 1$

$$(n+1)^2 = n^2 + 2n + 1$$

> $2n+1+2n+1$ by inductive hypothesis1
> $2n+3 = 2(n+1)+1$ clearly, for $n \ge 5$

Thus,

$$2^{n+1}$$
 = $2 * 2^n$
 $> 2 * n^2$ by inductive hypothesis
= $n^2 + n^2$
 $> n^2 + 2n + 1$ using claim
= $(n+1)^2$

Therefore, $2^n > n^2$ by induction.

Question #3

Suppose A is a set with |A| = n. Show that A has precisely 2^n subsets. proof:

Again, we use induction!

base case: 2^n is true for n = 0 since A is the empty set and hence, A has only one subset, the empty set. inductive hypothesis: assume that if A has n elements then it has 2^n subsets.

Now, suppose we add another element to A, a_{n+1} . Then, choose any subset B of $A \cup \{a_{n+1}\}$. Then, either a_{n+1} is in B or not in B.

case 1: $a_{n+1} \in B$ then $B = B' \cup \{a_{n+1}\}$. Since $a_{n+1} \notin B'$, the induction hypothesis tells us that there are 2^n possible such B'.

case 2: $a_{n+1} \notin B$ then B is a subset of A. Again, by the induction hypothesis, there are 2^n such subset. Thus, combining case 1 and 2, we have a total of $2^n + 2^n = 2^{n+1}$ subsets of $A \cup \{a_{n+1}\}$.

Therefore, A has precisely 2^n subsets if it has n elements.

Question #4

Show that $f: \mathbf{R} \to \mathbf{R}$ given by f(x) = -2x + 3 is a bijection. proof:

injection:

$$\begin{array}{ll} if & f(a) = f(b) \\ then & -2a + 3 = -2b + 3 \\ \Longrightarrow & a = b \end{array}$$

surjection: $\forall c \in \mathbf{R}$ we must find $b \in \mathbf{R}$ such that f(b) = c i.e we must solve the following equation for c:

$$c = -2b + 3 \Longrightarrow b = \frac{3 - c}{2}$$

Therefore, f is a bijection

Question #5

Find a bijection $f: \mathbf{N} \to \mathbf{Z}$. Consider,

$$f(x) = \begin{cases} \frac{x}{2} & \text{if x is even} \\ \frac{-(x+1)}{2} & \text{if x is odd} \\ 0 & \text{if x} = 0 \end{cases}$$

```
claim: f is a bijection
```

proof:

 $\overline{\text{injection:}}$ if f(a) = f(b)

case1: a and b are even $\Longrightarrow \frac{a}{2} = \frac{b}{2} \Longrightarrow a = b$ case2: a and b are odd $\Longrightarrow \frac{-a-1}{2} = \frac{-b-1}{2} \Longrightarrow a = b$

else the 0 case is trivial.

surjection: Must show that $\forall c \in \mathbf{Z} \quad \exists \quad b \in \mathbf{N} \quad \text{such that } f(b) = c$

case1: If c is ≥ 0 then b = 2c.

case 2: if c < 0 then b = -2c - 1.

Therefore, f is a bijection.

Question #6

Prove that $U - (A \cup B) = (U - A) \cap (U - B)$

proof:

$$\overline{x \in U} - (A \cup B)$$

$$\iff x \in U, x \notin (A \cup B)$$

$$\iff x \in U, x \notin A \quad \underline{\text{and}} \quad x \notin B$$

$$\iff x \in U, x \notin A \quad \text{and} \quad x \in U, x \notin B$$

$$\iff x \in (U - A) \cap (U - B)$$

Therefore,
$$U - (A \cup B) = (U - A) \cap (U - B)$$