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Abstract. In this paper we discuss a genetic version (GWA) of Whitehead

Algorithm, which is one of the basic algorithms in combinatorial group the-

ory. It turns out that GWA is surprisingly fast and outperforms the standard
Whitehead algorithm in free groups of rank > 5. Experimenting with GWA

we collected an interesting numerical data that clarifies the time-complexity

of Whitehead’s Problem in general. These experiments led us to several math-
ematical conjectures. If confirmed they will shed light on hidden mechanisms

of Whitehead Method and geometry of automorphic orbits in free groups.
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1. Introduction

Genetic Algorithms have been introduced in [4]. Since then they have been
successfully applied in solving a number of numerical and combinatorial problems.
In most cases genetic algorithms are used in optimization problems when searching
for an optimal solution or its approximation (see, for example, survey [17]).

The first applications of genetic algorithms to abstract algebra appeared in [12]
and [13], where we made some initial attempts to study Andrews-Curtis conjecture
from computational view-point. In the present paper we discuss a genetic version
of Whitehead aAlgorithm, which is one of the basic algorithms in combinatorial
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group theory. It turns out that this Genetic Whitehead Algorithm (GWA) is sur-
prisingly fast and outperforms the standard Whitehead algorithm in free groups of
rank > 5. Experimenting with GWA we were able to collect interesting numerical
data which clarifies the time-complexity of Whitehead’s Problem in general. These
experiments led us to several mathematical conjectures which we stated at the end
of the paper. If confirmed they will shed light on hidden mechanisms of Whitehead
Method and geometry of automorphic orbits in free groups. Actually, the remark-
able performance of GWA has already initiated investigation of automorphic orbits
in free groups of rank 2 [14, 8]. Some of the conclusions that one can draw from
our experiments are worth to be mentioned here.

One unexpected outcome of our experiments is that the time complexity func-
tions of Whitehead algorithms in all their variations do not depend “essentially”
on the length of the input words. We introduce a new type of size function (the
Whitehead complexity function) on input words which allows one to measure ade-
quately the time complexity of Whitehead algorithms. This type of size functions
is interesting in its own right, it makes possible to compare a given algorithm from
a class of algorithms K with the best possible non-deterministic algorithm in K.

This Whitehead complexity function takes care of the observed phenomena that
most words in a given free group are already Whitehead minimal (have minimal
length in their automorphic orbit). Such words have Whitehead complexity 0 and
the Whitehead descent algorithm is meaningless for such words.

Another our conclusion is that the actual generic (or average) time complexity
of the Whitehead descent algorithm (on non-minimal inputs, of course) is much less
than of the standard Whitehead algorithm. Moreover, it does not depend on rank
r of the ambient free group Fr exponentially, though the standard one does. We
believe that there exists a finite subset Tr (of polynomial size in r) of elementary
Whitehead automorphisms in Fr for which the classical Whitehead descent method
does nor encounter any “picks” on most inputs.

Genetic Whitehead Algorithm (GWA) was designed and implemented in 1999
and soon after some interesting facts transpired from experiments. But only re-
cently an adequate group-theoretic language (average case complexity, generic el-
ements, asymptotic probabilities on infinite groups) was developed which would
allow one to describe the group-theoretic part of the observed phenomena. We
refer to [2, 1, 5, 6] for details. On the other hand, a rigorous theory of genetic al-
gorithms is not developed yet up to the level which would explain fast performance
of such heuristic algorithms as GWA. In fact, we believe that thorough investigation
of particular genetic algorithms in abstract algebra might provide insight into the
general theory of genetic algorithms.

2. Whitehead method

2.1. Whitehead Theorem. Let X = {x1, . . . , xn} be a finite set and F =
Fn(X) be the free group with a basis X. Put X±1 = {x±1 | x ∈ X}. We will
represent elements of F by reduced words in the alphabet X±1 (that is, words
without subwords xx−1, x−1x for any x ∈ X). For a word u by |u| we denote the
length of u, similarly, for a tuple U = (u1, . . . , uk) ∈ F k we denote by |U | the total
length |U | = |u1|+ · · ·+ |uk|.

For an automorphism ϕ of F , and k-tuples U = (u1, . . . , uk), V = (v1, . . . , vk)
in F k we write Uϕ = V if uiϕ = vi, i = 1, . . . , k.
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In 1936 J. H. C. Whitehead introduced the following algorithmic problem,
which became a central problem of the theory of automorphisms of free groups
[18].

Problem W. Given two tuples U, V ∈ F k find out if there is an automorphism
ϕ ∈ Aut(F ) such that Uϕ = V .

In the same paper he showed (using a topological argument) that this problem
can be solved algorithmically and suggested an algorithm to find such an automor-
phism ϕ (if it exists). To explain this method we need the following definition. An
automorphism t ∈ Aut(F ) is called a Whitehead automorphism if it has one of the
following types:

1) t permutes elements in X±1;
2) t takes each element x ∈ X±1 to one of the elements x, xa, a−1x, or

a−1xa, where x 6= a±1 and a ∈ X±1 is a fixed element.
Denote by Ωn = Ω(F ) the set of all Whitehead automorphisms of a given free

group F = Fn(X). It follows from a result of [15] that Ωn generates Aut(Fn(X)) .
Let T be a subset of Aut(F ). We say that tuples U, V ∈ F k are T -equivalent,

and write U ∼T V , if there exists a finite sequence t1, . . . , tm (where ti ∈ T±1) such
that Ut1 · · · tm = V . The T -equivalence class of a tuple U is called the T -orbit
OrbT (U) of U . If T generates Aut(Fn) then the equivalence class of a tuple U is
called the orbit Orb(U) of U . Now Problem W can be stated as a membership
problem for a given orbit Orb(U). By Umin we denote any tuple of minimal total
length in the orbit Orb(U), and by Orbmin(U) the set of all minimal tuples Umin.

Sometimes it is convenient to look at Whitehead Problem from the graph-
theoretic view-point. Denote by Γ(F, k, T ) the following directed labelled graph:
F k is the vertex set of Γ; two vertices U, V ∈ F k are connected by a directed edge
from U to V with label t ∈ T if and only if Ut = V . We refer to Γk(F ) = Γ(F, k, Ω)
as to the Whitehead graph of F . In the case when k = 1 we write Γ(F ) instead of
Γ1(F ). Obviously, V ∈ Orb(U) if and only if U and V are in the same connected
component of Γk(F ).

The following theorem is one of the fundamental results in combinatorial group
theory.

Theorem 1 ([18]). Let U, V ∈ Fn(X)k and V ∈ Orb(U). Then:
(A) if |U | > |V |, then there exists t ∈ Ωn such that

|U | > |Ut|;

(B) if |U | = |V |, then there exist t1, . . . , tm ∈ Ωn such that

Ut1 · · · tm = V

and

|U | = |Ut1| = |Ut1t2| = · · · = |Ut1t2 · · · tm| = |V |.

In view of Theorem 1 Problem W can be divided into two subproblems:

Problem A. For a tuple U ∈ F k find a sequence t1, . . . , tm ∈ Ωn such that

Ut1 · · · tm = Umin.
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Problem B. For tuples U, V ∈ F k with

|U | = |Umin| = |Vmin| = |V |

find a sequence t1, . . . , tm ∈ Ωn such that Ut1 · · · tm = V .

Theorem 1 gives a solution to the both problems above, and hence to Problem
W.

2.2. Whitehead Algorithm. The procedures described below give algorith-
mic solutions to the Problems A and B, together they are known as Whitehead
Algorithm or Whitehead Method.

2.2.1. Decision algorithm for Problem A. Following Whitehead we describe be-
low a deterministic decision algorithm for Problem A; we refer to this algorithm
(and to various its modifications) as to DWA. This algorithm executes consequently
the following routine.

Elementary Length Reduction Routine (ELR):
Let U ∈ F k. ELR finds t ∈ Ωn with |Ut| < |U | (if it exists).
Namely, ELR performs the following search. For each t ∈ Ωn

compute the length of the tuple Ut until |U | > |Ut|, then put
t1 = t, U1 = Ut1 and output U1. Otherwise stop and output
Umin = U .

DWA performs ELR on U , then performs ELR on U1, and so on, until a minimal
tuple Umin is found. We refer to algorithms of this type as to Whitehead descent
method with respect to the set Ωn.

Clearly, there could be at most |U | repetitions of ELR:

|U | > |Ut1| > · · · > |Ut1 · · · tl| = Umin, l 6 |U |.

The sequence t1, . . . , tl is a solution to Problem A. Notice, that the iteration proce-
dure above simulates the classical gradient descent method (t1 is the best direction
from U , t2 is the best direction from U1, and etc.).

2.2.2. Decision algorithm for Problem B. Here we describe a deterministic de-
cision algorithm for Problem B, which is also due to Whitehead. In the sequel we
refer to this algorithm (and its variations) as to DWB.

Let U, V ∈ F k. DWB constructs Orbmin(U) (as well as Orbmin(V )) by repeat-
ing consequently the following

Local Search Routine (LS):
Let Ωn = {t1, . . . , tm} and ∆ be a finite graph with vertices from
F k. Given a vertex W in ∆ the local search at W results in a
graph ∆W which contains ∆. We define ∆W recursively. Put
Γ0 = ∆, and suppose that Γi has been already constructed. If
|Uti+1| = |U | and Uti+1 does not appear in Γi then add Uti+1

as a new vertex to Γi, also add a new edge from U to Uti+1 with
label ti+1, and denote the resulting graph by Γi+1. Otherwise,
put Γi+1 = Γi. The routine stops in m steps and results in a
graph Γm. Put ∆W = Γm.

The construction of Orbmin(U) is a variation of the standard

Breadth-First Search Procedure (BFS):
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Figure 1. Whitehead Method.

Start with a graph ∆0 consisting of a single vertex U . Put
∆1 = (∆0)W and “mark” the vertex U . If a graph ∆i has been
constructed, then take any unmarked vertex W in ∆i within
the shortest distance from U , put ∆i+1 = (∆i)W , and mark the
vertex W .

Since Orbmin(U) is finite BFS terminates, say in l steps, where

l 6 |Orbmin(U)||Ωn|

It is easy to see that ∆l is a tree, containing all vertices from Orbmin(U). This
implies that V ∈ Orbmin(U) if and only if V ∈ ∆l. Moreover, the unique path
connecting U and V in ∆l is a shortest path between U and V in Orbmin(U), and
the sequence of labels along this path is a sequence of Whitehead automorphisms
(required in Problem B) that connects U and V inside Orbmin(U).

From the computational view-point it is more efficient to start building maximal
trees in both graphs Orbmin(U) and Orbmin(V ) simultaneously, until a common
vertex occurs.

2.3. Estimates for the time-complexity of Whitehead algorithms.
2.3.1. Algorithm DWA. It is easy to see that transformations of the type 1)

cannot reduce the total length of a tuple. Hence, to solve Problem A one needs
only Whitehead automorphisms of the type 2). It is not hard to show that there
are

An = 2n4(n−1) − 2n

non-trivial Whitehead automorphisms of the type 2).
In the worst-case scenario to perform ELR it requires An executions of the

following

Substitution Routine (SR):

For a given automorphism t of the type 2) make a substitution
x → xt for each occurrence of each x ∈ X±1 in U , and then
make all possible cancellations.

Since the length of the word xt is at most 3 the time needed to perform this
routine is bounded from above by c|U |, where c is a constant which does not depend
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on |U | and the rank of F . Since DWA executes ELR at most |U | times the time-
complexity function of DWA is bounded from above by

cAn|U |2 = c(2n4n−1 − 2n)|U |2,

This bound depends exponentially on the rank n of the group F = Fn(X). For
example, if k = 1, n = 10, and |U | = 100, the estimated number of steps for DWA
is bounded above by

c(20 · 49 − 20)1002 > c(5 · 1010).

Whether this bound is tight in the worst case is an open question. In any event,
computer experiments which we ran on a dual Pentium III, 700 Mhz processor
computer with 1Gb memory show (see Table 8) that the standard DWA cannot
find Umin on almost all inputs U which are pseudo-randomly generated primitive
elements of length more then 100 in the group F10, while working non-stop for more
than an hour.

The accuracy of the bound depends on how many automorphisms from Ωn do
reduce the length of a given input U . To this end, put

LR(U) = {t ∈ Ωn | |Ut| < |U |}

Now, the number of steps that ELR performs on a worst-case input U is bounded
from above by

max{An − |LR(U)|, 1}
(if the ordering of Ωn is such that all automorphisms from LR(U) are located at
the end of the list Ωn = {t1, . . . , tm}).

If we assume that the automorphisms from LR(U) are distributed uniformly
in the list Ωn then DWA needs

A′
n =

An

|LR(U)|

steps on average to find a length reducing automorphism for U .
The results of our experiments (for k = 1) indicate that the average value of

|LR(U)| for a non-minimal U of the total length l rapidly converges to a constant
LRn when l →∞. In Table 1 and Figure 2 we present values of the LRn

An
that occur

in our experiments for k = 1. This allows us to make the following statement.

Conclusion 1. The average number of length reducing Whitehead automor-
phisms for a given “generic” non-minimal word w ∈ Fn does not depend on the
length of |w|, it depends only on the rank n of the free group Fr (for sufficiently
long words w).

A precise formulation of this statement is given in Section 6.
2.3.2. Algorithm DWB. The obvious upper bound for the time-complexity of

DWB is much higher, since one has to take into account all Whitehead automor-
phisms. It is easy to see that there are

Bn = 2n(2n− 2)(2n− 4) · · · 2 = 2n(n!)

Whitehead automorphisms of the type 1).
To run LS routine on U it requires at most d(An + Bn) runs of SR (which has

complexity c|U |), where d is a constant which does not depend on U and n. Now,
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|w| F2 F3 F4 F5

0 . . . 199 0.24 0.09 0.04 0.03
200 . . . 599 0.24 0.09 0.05 0.03
600 . . . 999 0.24 0.09 0.04 0.02
1000 . . . 1299 0.25 0.09 0.04 0.02
1400 . . . 1800 0.24 0.09 0.04 0.02

Table 1. Estimates of LRn

An
on inputs of various lengths.
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Figure 2. Estimates of LRn

An
on inputs of various lengths.

to construct Orbmin(U) it takes at most |Orbmin(U)| runs of LS, hence one can
bound the time complexity of DWA from above by

d · (An + Bn) · c · |U | · |Orbmin(U)|.
This shows that DWB may be very slow (in the worst-case) just because there are
too many Whitehead automorphisms in the rank n for large n. Moreover, the size
of Orbmin(U) can make the situation even worse. Obviously,

(1) |Orbmin(U)| 6 2n(2n− 1)|U |−1,

hence a very rough estimates give the following upper bound for the time-complexity
of DWB:

d · c · (2n4(n−1) − 2n + 2nn!) · |U | · 2n(2n− 1)|U |−1.

One can try to improve on this upper bound through better estimates of |Orbmin(U)|.
It has been shown in [14] that for k = 1 and n = 2 the number |Orbmin(U)| is
bounded from above by a polynomial in |Umin|. It was also conjectured in [14]
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that this result holds for arbitrary n > 2, and for n = 2 the upper bound is the
following:

|Orbmin(U)| 6 8|Umin|2 + 40|Umin|.
Recently, Khan [8] proved that the bound above holds, indeed. Still, indepen-
dently of the size of the set Orbmin(U), the number Bn of elementary Whitehead
automorphisms in rank n makes DWB impractical for sufficiently big n.

The net outcome of the discussion above is that the algorithms DWA and DWB
are intractable for “big” ranks, even though for a fixed rank n DWA is quadratic
in |U | and DWB could be polynomial in |U | (if Conjecture 2 from Section 6 holds).

2.4. General Length Reduction Problem. Observe that the main part
of DWA is the elementary length reduction routine ELR, which for a given tuple
U ∈ F k finds a Whitehead automorphism ϕ ∈ Ω(F ) such that

(2) |Uϕ| < |U |
An arbitrary automorphism ϕ ∈ Aut(F ) is called length-reducing for U if it satisfies
the condition (2) above.

Obviously, to solve Problem A it suffices to find an arbitrary (not necessary
Whitehead) length-reducing automorphism for a non-minimal tuple U . We have
seen in Section 2.3 that the time-complexity of the standard Whitehead algorithm
for Problem A depends mostly on the cardinality of the set Ωn which is huge for
big n. One of the key ideas on improving the efficiency of Whitehead algorithms is
to replace Ωn by another smaller set of automorphisms of F or to use a different
strategy to find length-reducing automorphisms. To this end we formulate the
following

Length-Reduction Problem (LRP). For a non-minimal tuple U ∈ F k find
a length-reducing automorphism.

Theorem 1 gives a solution to LRP, the algorithm DWA. In Section 3 we de-
scribe a genetic algorithm which, we believe, solves LRP much more efficiently on
average then DWA.

3. Description of the genetic algorithm

In this section we describe Genetic Whitehead Algorithm (GWA) for solving
Whitehead’s Problem A.

Genetic algorithms are stochastic search algorithms driven by a heuristic, which
is represented by an evaluation function, and special random operators: crossover,
mutation and selection.

Let S be a search space. We are looking for an element in S which is a solution
to a given problem. A tuple P ∈ Sr (r is a fixed positive integer) is called population
and components of P are called members of the population. The initial population
P0 is chosen randomly. On each iteration i = 1, 2, . . . Genetic Algorithm produces
a new population Pi by means of random operators. The goal is to produce a
population which contains a solution to the problem. One iteration of Genetic
Algorithm simulates natural evolution. A so-called fitness function Fit : S →
R+ implicitly directs this evolution: members of the current population Pi with
higher fitness value have more impact on generating the next population Pi+1. The
function Fit(m) measures on how close is the given member m to a solution. To
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halt the algorithm one has to provide in advance a termination condition and check
whether it holds or not on each iteration. The basic structure of the standard
Genetic Algorithm is given in Figure 3.

procedure Genetic Algorithm
Initialize current population P ∈ Sr;

Compute fitness values Fit(m), ∀m ∈ P ;
WHILE NOT the termination condition satisfied DO

If we assume that greater values of function Fit correspond to the better
solutions, then the probability Pr(m) of the member m ∈ P to be selected

Pr(m) =
Fit(m)∑

mi∈P Fit(mi)
,

Create new members by applying crossover and/or mutation to the selected
members;
Generate a new population by replacing members of the current population
by the new ones;
Recompute fitness values;

END WHILE LOOP

Figure 3. Structure of the standard Genetic Algorithm

The choice of random operators and evaluating functions is crucial here. This
requires some problem specific knowledge and a good deal of intuition. Below we
give detailed description of the major components of the genetic algorithm GWA
for solving Problem A.

3.1. Solutions and members of the population. Solutions to the Problem
A are finite sequences of Whitehead automorphisms which carry a given tuple
U ∈ F k to a minimal tuple Umin. As we have mentioned above one may use only
automorphisms of the type 2) for this problem. Moreover, not all automorphisms
of the type 2) are needed as well; recall that a big number of such automorphisms
is the main obstacle for the the standard Whitehead algorithm DWA. What are
optimal sets of automorphisms is an interesting problem which we are going to
address in [3], but our preliminary experiments show that the following set gives
the best results up to date.

Let X = {x1, . . . , xn} and F = Fn(X). Denote by T = Tn the following set of
Whitehead automorphisms:

(W1) xi → x−1
i , xl → xl,

(W2) xi → x±1
j xi, xl → xl,

(W3) xi → xix
±1
j , xl → xl,

(W4) xi → x−1
j xixj , xl → xl,
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where i 6= j and i 6= l.
We call T the restricted set of Whitehead transformations. It follows from [15]

that T generates Aut(F ). Hence any solution to Problem A can be represented by
a finite sequence of transformations from T . Notice that T has much fewer elements
than Ωn:

|T | = 5n2 − 4n.

We define the search space S as the set of all finite sequences µ =< t1, . . . , ts >
of transformations from T . For such m and a tuple U ∈ F k we define Uµ =
Ut1 . . . ts.

At the beginning the algorithm generates an initial population by randomly
selecting members. How to choose the size of the initial (and all other) population
is a non-trivial matter. It is clear that bigger the size larger the search space which
is explored in one generation. But the trade off is that we may be spending too
much time evaluating fitness value of members of the population. We do not know
the optimal size of the population, but populations with 50 members seem to give
satisfactory results.

3.2. Evaluation methods. Fitness function Fit provides a mechanism to
assess members of a given population P .

Recall that the aim of GWA is to find a sequence of transformations µ =
(t1, . . . , ts), ti ∈ T, such that

Uµ = Umin

for a given input U ∈ F k. So members µ of a given population P with smaller
total length |Uµ| are closer to a solution, i.e., “fitter”, than the other members.
Therefore we define the fitness function Fit as

Fit(µ) = max
λ∈P

{|Uλ|} − |Uµ|.

Observe, that members with higher fitness values are closer to a solution Umin

with respect to the metric on the graph Γ(F, k, T ). In fact, we have two different
implementations of the evaluation criterion: the one as above, and another one in
which a word is considered as a cyclic word, so we evaluate fitness values of cyclic
permutations of Uλ.

3.3. Termination condition. Termination condition is a tool to check whether
a given population contains a solution to the problem or not.

In the case of Whitehead method there are several ways to define a termination
condition.

(T1) Once a new population Pn has been defined and all members of it have
been evaluated one may check whether or not Pn contains a solution to
Problem A. To this end one can run Elementary Length Reduction Rou-
tine on Uµ∗ for each fittest member µ∗ ∈ Pn until Umin is found. The-
oretically, it is a good termination condition, but, as we have mentioned
already, to run ELR might be very costly.

(T2) If for a given tuple U we know in advance the length of a minimal tuple
|Umin| ( for example, when U is a part of a basis of F ), then we define
another (fast) termination condition as |Uµ∗| = |Umin| for some fittest
member µ∗ ∈ Pn.
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(T3) Suppose now that we do not know |Umin| in advance, but we know the
expected number of populations, say E = E(U), (or some estimates for
it) which is required for the genetic algorithm GWA to find Umin when
starting on a tuple U . In this case we can use the following strategy: if the
algorithm keeps working without improving on the fitness value Fit(µ∗)
of the fittest members µ∗ for long enough, say for the last pE generations
(where p > 1 is a fixed constant), then it halts and gives Uµ∗ for some
fittest µ∗ as an outcome.

If the number E = E(U) is sufficiently small this termination condition could be
efficient enough. Below, we will describe some techniques and numerical results on
how one can estimate the number E(U). Of course, in this case there is no guarantee
that the tuple Uµ∗ is indeed minimal. We refer to such termination conditions as
to heuristic ones, while the condition T1 is deterministic.

(T4) One can combine conditions T3 and T1 in the following way. The algo-
rithm uses the heuristic termination condition T3 and then checks (using
T1) whether or not the output Uµ∗ is indeed minimal. It is less costly
then T1 (since we do not apply T1 at every generation) and it is more
costly then T3.

3.4. Stochastic operators. There are five basic random operators that where
used in the algorithm.

3.4.1. One point crossover. Let µ1 =< t1, . . . , te > and µ2 =< s1, . . . , sl > be
two members of a population Pn which are chosen with respect to some selection
method. Given two random numbers 0 < p < e and 0 < q < l the algorithm
constructs two offsprings o1 and o2 by recombination as follows:

o1 =< t1, . . . , tp−1, sq, . . . , sl >, o2 =< s1, . . . , sq−1, tp, . . . , te > .

3.4.2. Mutations. The other four operators Matt,Mins,Mdel,Mrep act on a sin-
gle member of a population and are usually called mutations . They attach, insert,
delete, or replace some transformation in a member. Namely, let µ =< t1, . . . , tl >
be a member of a population. Then:

Matt attaches a random transformation s ∈ T

Matt :< t1, . . . , tl > → < t1, . . . , tl, s >;

Mins inserts a random transformation s ∈ T into a randomly chosen position i

Mins :< t1, . . . , tl > → < t1, . . . , ti−1, s, ti, . . . , tl >;

Mdel deletes the transformation in a randomly chosen position i

Mdel :< t1, . . . , tl > → < t1, . . . , ti−1, ti+1, . . . , tl >;

Mrep replaces the randomly chosen ti by a randomly chosen s ∈ T

Mrep :< t1, . . . , tl > → < t1, . . . , ti−1, s, ti+1, . . . , tl > .

Operator Matt is a special case of Mins, but it is convenient to have it as separate
operator (see remarks in the Section 3.5.1).



12 A. D. MIASNIKOV AND A. G. MYASNIKOV

3.4.3. Replacement. In this section we discuss a protocol to construct members
of the next population Pnew from the current population P .

First, we select randomly two members µ, λ from P . The probability to choose
a member from P is equal to

Pr(m) =
Fit(m)∑

mi∈P Fit(mi)
.

With small probability (0.10 - 0.15) we add both µ and λ to an intermediate pop-
ulation P ′

new. Otherwise, we apply the crossover operator to µ and λ and add
the offsprings to P ′

new. We repeat this step until we get the required number of
members in P ′

new (in our case 50).
Secondly, to every member m ∈ P ′

new we apply a random mutation M with
probability 0.85 and add the altered member to the new population Pnew. The
choice of M is governed by the corresponding probabilities pM . Otherwise (with
probability 0.15) we add the member m to Pnew unchanged. We refer to Section
3.5.1 for a detailed discussion of our choice of the probabilities pM .

In addition the solution with the highest fitness value among all previously
occurred solutions is always added to the new population (replacing a weakest one).
This implies that if we denote by µn one of the fittest members of a population Pn

then

|Uµ0| > |Uµ1| > . . .

3.5. Some important features of the algorithm.
3.5.1. Precise solutions and local search. It has been shown that different heuris-

tics and randomized methods can be combined together, often resulting in more
efficient hybrid algorithms. Genetic algorithms are good in covering large areas of
the search space. However, they may fail when a more thorough trace of a local
neighborhood is required. In case of symbolic computations this becomes an im-
portant issue since we are looking for an exact solution, not an approximate one.
Even if the current best member of a population is one step away from the opti-
mum it might take some time for the standard genetic algorithm to find it. In our
case, experiments show that the standard genetic algorithms can quickly reach the
neighborhood of the optimum, but it may be stuck being unable to hit the right
solution. To avoid that one could add a variation of the local search procedures to
the standard genetic algorithm.

In GWA some kind of gradient descent procedure was implicitly introduced via
mutation operators. Observe, that in general, if M 6= Matt then for a given member
µ the tuple UM(µ) lies far apart from Uµ in the graph Γ(F, k, T ). However, the
mutation Matt always gives a tuple UMatt(µ) at distance 1 from Uµ in the graph
Γ(F, k, T ). Therefore, the greater chance to apply Matt, the more neighbors of Uµ
we can explore. It was shown experimentally that GWA performs much better
when Matt has a greater chance to occur. We used pMatt = 0.7, and pM = 0.1 for
M 6= Matt.

3.5.2. Substitution method. One of the major concerns when dealing with a
search problem is that the algorithm may fall into a local minimum. Fortunately,
Theorem 1 shows that every local minimum of the fitness function Fit is, in fact,
a global one. This allows one to introduce another operator, which we call Substi-
tution, and which is used to speed up the convergence of the algorithm.
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Suppose that the algorithm found a member µn ∈ Pn which is fitter than all
the members of the previous population Pn−1 (a genetic variation of ELR routine).
Then we want our algorithm to focus more on the tuple Uµ rather then to spread
its own resources for useless search elsewhere. To this end, we stop the algorithm
and restart it replacing the initial tuple U with the tuple Uµ (of course, memorizing
the sequence µ). That is a genetic variation of the Whitehead gradient descent (see
Section 2.2). This simple method has tremendously improved the performance of
the algorithm. In a sense, this substitution turns GWA into an algorithm which
solves a sequence of Length Reduction Problems.

4. Experiments and results

Let F = Fr(X) be a free group of rank r with basis X. For simplicity we
describe here only experiments with Whitehead algorithms on inputs from F (not
arbitrary k-tuples from F k). Moreover, in the present paper we focus only on the
time-complexity of Problem A, leaving discussion on Problem B for the future. In
fact, we discuss mostly the length reduction problem LRP, as a more fundamental
problem. In our experiments we choose ranks r = 2, 5, 10, 15, 20. Before we going
into details it is worthwhile to discuss a few basic problems on statistical analysis
of experiments with infinite groups.

4.1. Experimenting with infinite groups. In this section we discuss briefly
several general problems arising in experiments with infinite groups.

Let A be an algorithm for computing with elements from a free group F =
Fr(X). Suppose that the set of all possible inputs for A is an infinite subset S ⊂ F .
Statistical analysis of experiments with A involves three basic parts:

• creating a finite set of test inputs Stest ⊂ S,
• running A on inputs from Stest and collecting outputs,
• statistical analysis of the resulting data.

The following is the main concern when creating Stest.

Random Generation of the test data: How one can generate pseudo-
randomly a finite subset Stest ⊂ S which represents adequately the whole set S?

The notion of a random element in F , or in S, depends on a chosen measure on
F . Since F is infinite, elements in F are not uniformly distributed. The problem
cannot be solved just by replacing F with a finite ball Bn, of all elements in F of
length at most n, for a big number n. Indeed, firstly, the ball Bn is too big for
any practical computations; secondly, from group-theoretic view-point elements in
Bn usually are not uniformly distributed. We refer to [2] and [1] for a thorough
discussion of this matter.

The main problem when collecting results of the runs of the algorithm A on
inputs from Stest is pure practical: our resources in time and computer power are
limited, so the set Stest has to be as small as possible, though still representative.

Minimizing the cost: How to make the set Stest as small as possible, but
still representative?

Below we used the following technique to ensure representativeness of Stest. Assume
we have already a procedure to generate pseudo-random elements in S. Let χ(Stest)
be some computable numerical characteristic of the set Stest, which represents a
“feature” that we are going to test. Fix a small real number ε > 0. We start
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creating Stest by generating an initial subset S0 ⊂ S which we can easily handle
within our recourses. Now we enlarge the set S0 to a new set S1 by pseudo-randomly
adding reasonably many of new elements from S, and check whether the equality

|χ(S0)− χ(S1)| 6 ε

holds or not. We repeat this procedure until the equality holds for N consecutive
steps Si, Si+1, . . . , Si+N , where N is a fixed preassign number. In this event we
stop and take Stest = Si.

Statistical analysis of the experiments depends on the features that are going to
be tested (average running time of the algorithm, expected frequencies of outputs of
a given type, etc.). For example, estimations of the running time of the algorithm
A depends on how we measure “complexity” or “size” of the inputs s ∈ S. For
example, it turned out that the running time of the Whitehead algorithm GWA does
not depend essentially on the length of an input word s, so it would be meaningless
to measure the time complexity of DWA in terms of the length of s, as it is
customary in computer science. So the following problem is crucial here.

Finding adequate complexity functions: Find a complexity function on
S which is compatible with the algorithm A.

Below we suggest some particular ways to approach all these problems in the
case of Whitehead algorithms.

4.2. Random elements in F and Whitehead algorithms. It seems that
the most obvious choice for the set Stest to test performance of various Whitehead
algorithms would be a finite set SF of randomly chosen elements from F . It turned
out, that this choice is not good at all since with a high probability a random
element in F is already minimal. Nevertheless, the set SF plays an important part
in the sequel as a base for other constructions.

A random element w in F = Fr(X) can be produced as the result of a no-
return simple random walk on the Cayley graph of F with respect to the set of
generators X (see [1] for details). In practice this amounts to a pseudo-random
choice of a number l (the length of w), and a pseudo-random sequence y1, . . . , yl of
elements yi ∈ X±1 such that yi 6= y−1

i+1, where y1 is chosen randomly from X±1 with
probability 1/2r, and all others are chosen randomly with probability 1/(2r − 1).
It is convenient to structure the set SF as follows:

SF =
L⋃

l=1

SF,l, SF,l =
K⋃

i=1

wi,l

where wi,l is a random word of length l and L, K are parameters.
To find all minimal elements in SF we run the standard deterministic White-

head algorithm DWA on every s ∈ SF . Since DWA is very slow for big ranks we
experimented with free groups F = Fr for r = 3, 4, 5. In Figure 4 we present the
fractions of minimal elements among all elements of a given length in SF .

This experimental data leads to the following statement.

Conclusion 2. Almost all elements in Fr, r > 2 are Whitehead minimal.

We refer to Section 6 for a rigorous formulation of the corresponding mathe-
matical statement.
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The running time TDWA(w) of the standard Whitehead algorithm DWA on a
minimal input w is very easy to estimate. Indeed, in this case DWA applies the
substitution routine SR for every Whitehead automorphism of the second type.
Since there are Ar such automorphisms (see Section 2.2), then

Ar 6 TDWA(w) 6 c ·Ar|w|.
The time spent by the genetic algorithm GWA on a random input w depends

solely on the build-in termination condition: if it is heuristic (see Section 3.3), then
GWA stops after pE(w) iterations, where E(w) is the expected running time for
GWA on the input w; if it is deterministic then again it takes Ar steps for GWA
to halt. This shows that the set SF does not really test how GWA works, instead,
it tests only the termination conditions.

We summarize the discussion above in the following statement.

Conclusion 3. The time-complexity of Whitehead algorithms DWA and GWA
on generic inputs from SF is easy to estimate. The set SF does not provide any
means to compare algorithms DWA and GWA.

It follows that one has to test Whitehead algorithms on inputs w ∈ F which
are non-minimal.

4.3. Complexity of Length Reduction Problem. In this section we test
our genetic algorithm GWA on the length reduction problem LRP, which is the
main component of the Whitehead Method.

To this end we generate a finite set SNMin(r) of non-minimal elements in a free
group Fr, for r = 2, 5, 10, 15, 20, by applying random Whitehead automorphisms to
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elements form SF . More precisely, put

SNMin(r) =
⋃
l

⋃
16i6K

wi,lϕi,

where ϕi is a randomly chosen Whitehead automorphism of type 2), wi,l ∈ SF

with |wi,l| < |wi,lϕi|. Since almost all elements from SF are minimal it is easy to
generate a set like SNMin(r). Notice that elements in SNMin(r) are not randomly
chosen non-minimal elements from F , they are non-minimal elements at distance 1
from minimal ones. We will have to say more about this in the next section.

The results of our experiments indicate that the average time required for GWA
to find a length reducing Whitehead automorphism for a given non-minimal element
w ∈ SNMin(r) does not depend significantly on the length of the word w.

Let Tgen(w) be the number of iterations required for GWA to find a length-
reducing automorphism for a given w ∈ F during a particular run of GWA on the
input w. We compute the average value of Tgen(w) on inputs w ∈ SNMin(r) of
a given “size”. If the length of a word w is taken as its size then we obtain the
following time complexity function with respect to the test data SNMin(r):

Tr(m) =
1

|Sm|
∑

w∈Sm

Tgen(w)

where Sm = {w ∈ SNMin(r) | |w| = m}.
Values of Tr(m) are presented in Figure 5 for free groups Fr with r = 2, 3, 5, 10, 15, 20.
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We can see from the graphs that the function Tr grows for small values of |w|
and then stabilizes at some constant value T ∗r . This shows that Tr does not depend
on the word’s length and depends only on the rank r (for long enough words w).
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In Table 2 we give correlation coefficients between Tr and |w| for r = 2, 5, 10, 15, 20,
which are sufficiently small.

F2 F5 F10 F15 F20

all words -0.012 -0.016 0.015 0.03 0.072
|w| > 100 -0.011 -0.03 -0.019 -0.025 -0.005

Table 2. Correlation between |w| and Tr.

We summarize the discussion above in the following statements.

Conclusion 4. The number of iterations required for GWA to find a length
reducing automorphism for a given non-minimal input w does not depend on the
length of |w|, it depends only on the rank r (for long enough input words).

Recall that a similar phenomena was observed for the deterministic Whitehead
algorithm in Conclusion 1.

Conclusion 5. One has to replace the length size function by a more sensi-
tive “size” function when measuring the time-complexity of the Length Reduction
Problem.

Conclusion 6. For each free group Fr the time-complexity function Tr is
bounded from above by some constant value T ∗r .

We can try to estimate the value T ∗r as the expected number of generations

E(r) =
1

|SNMin(r)|
∑

w∈SNMin(r)

Tgen(w).

required for GWA to find a length-reducing automorphism for generic non-minimal
elements from Fr. Notice, that we use E(r) in the heuristic termination condition
TC3 (see Section 3.3) for the algorithm GWA.

Of course, the conclusions above are not mathematical theorems, they are just
empirical phenomena that can be seen from our experiments based on the test
set SNMin(r). It is important to make sure that the set SNMin(r) is sufficiently
representative.

To this end, we made sure, firstly, that the distributions of lengths of words from
the set SNMin(r) are similar for different ranks (using the variable l). Secondly,
our choice of the parameter K in the construction of SNMin(r) ensures representa-
tiveness of the test data with respect to the characteristic E(r). Namely, we select
K such that for larger values K ′ > K the corresponding value EK′(r) does not
differ significantly from EK(r) (here EK(r) is the value corresponding to the data
set SNMin(r) with the parameter K).

Values of E(r) for different K and r are given in Table 3.

4.4. Complexity functions. In this section we discuss possible complexity,
or size, functions suitable to estimate the time-complexity of different variations of
Whitehead algorithms. Below we suggest a new complexity function based on the
distance in the Whitehead graph.
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K E(2) E(5) E(10) E(15) E(20)
100 1.007 2.43 6.55 11.48 16.98
200 1.009 2.42 6.44 11.47 17.17
300 1.008 2.42 6.43 11.39 17.3
400 1.007 2.39 6.43 11.40 17.38
500 1.007 2.44 6.43 11.39 17.4

Table 3. EK(r) for different values of K and r.

Let F = Fr, Y ⊂ Aut(F ) a set of generators of the group Aut(F ), Γ(F, Y ) =
Γ(F, 1, Y ) the Whitehead graph on F relative to Y (see Section 2.1). For a word w ∈
F we define WCY (w) as a minimal number of automorphisms from Y ±1 required
to reduce w to a minimal one wmin. Notice that WCY (w) is the length of a geodesic
path in Γ(F, Y ) from w to some wmin. If Y is the set of all Whitehead automorphism
Ωr then we call WCY (w) the Whitehead complexity of w and denote it by WC(w).
Similarly, one can introduce the Nielsen complexity of w, T -complexity, etc. In this
context minimal elements have zero Whitehead complexity.

Claim The Whitehead complexity function WC(w) is an adequate complexity
function to measure performance of various modifications of Whitehead algorithms.

Indeed, let K be a class of Whitehead-type algorithms which use an arbitrary gen-
erating set Y ⊂ Ωr of Whitehead automorphisms to find a minimal word wmin for
an input word w. The best possible algorithm of this type is the non-deterministic
Whitehead algorithm NDWA with an oracle that at each step i gives a length re-
ducing automorphism ti ∈ Y such that |wt1 · · · ti| < |wt1 · · · ti−1|. Clearly, it takes
WCY (w) steps for NDWA to produce wmin. Thus, measuring efficiency of an algo-
rithm A ∈ K in terms of CWY gives us a comparison of performance of A to the
performance of the best possible algorithm in the class.

Remark 1. Notice that the set SNMin(r) is a pseudo-random sampling of el-
ements w ∈ Fr with WC(w) = 1. This explains the behavior of the function Tr

in Figure 5. The number of iterations required for GWA to find a length reducing
automorphism depends on Whitehead complexity not on the lengths of the words.

Of course, WC complexity is mostly a theoretical tool, since, in general, it is
harder to compute WC(w) then to find wmin. It follows from the Whitehead’s
fundamental theorem that WC(w) 6 |w| for every w ∈ F . In Table 4 we collect
some experimental results on relation between WC(w) and |w|.

F2 F5 F10 F15 F20

|wt|/|w|, t ∈ Ω 1.04 1.20 1.26 1.28 1.29
|wt|/|w|, t ∈ T 1.06 1.15 1.10 1.07 1.06

Table 4. WC(w) vs |w|.

This leads to the following
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Conclusion 7. Let Wm = {w ∈ Fr | WC(w) = m}. Then there exists a
constant cr such that

|w| > cm
r

for the “most” elements in Wm.

For the stochastic algorithm GWA one can define an average time complexity
function Tr,Y (m) with respect to the test data SNMin(r) and the “size” function
WCY as follows:

Tr,Y (m) =
1

|Sm|
∑

w∈Sm

Tgen(w)

where Sm = {w ∈ SNMin | WCY (w) = m}.

Conjecture 1. The average number of iterations required for GWA to find
wmin on an input w ∈ F depends only on WC(w) and the rank of the group F .

We discuss some experiments made to verify Conjecture 1 in Section 4.5.

4.5. Experiments with primitive elements. In this section we discuss re-
sults of experiments with primitive elements. Recall that elements from the orbit
Orb(xi), where xi ∈ X, are called primitive in F (X). Experimenting with primitive
elements has several important advantages:

• in general, primitive elements w require long chains of Whitehead auto-
morphisms (relative to |w|) to get to wmin,

• one can easily generate pseudo-random primitive elements,
• the genetic algorithm GWA has a perfect termination condition |wmin| = 1

for primitive elements w.

Thus, primitive elements provide an optimal test data to compare various modifi-
cations of Whitehead algorithm and to verify (experimentally) the conjectures and
conclusions stated in the previous sections.

We generate primitive elements in the form xϕ, where x is a random element
from X and ϕ is a random automorphism of F given by a freely reduced product
ϕ = t1 . . . tl of l randomly and uniformly chosen automorphisms from T with ti 6=
t−1
i+1 (see the comments for SF ). The number l = l(ϕ) is called the length of ϕ.

In general, a random automorphism ϕ with respect to a fixed finite set T of
generators of the group Aut(F ) can be generated as the result of a no-return simple
random walk on the Cayley graph Γ(Aut(F ), T ) of Aut(F ) with respect to the set
of generators T . Unfortunately, the structure of Γ(Aut(F ), T ) is very complex, and
it is hard to simulate such a random walk effectively.

Again, for each free group Fr (r = 2, 5, 10, 15, 20), we construct a set SP (r) of
test primitive elements as follows:

SP (r) =
L⋃

l=1

K⋃
i=1

xϕ
(l)
i ,

where ϕ
(l)
i is a random automorphism of length l.

We use the data sets SP (r) to verify, using independent experiments, the con-
clusions of Section 4.3 on the average expected time E(r) required for GWA to solve
the length reduction problem in the group Fr. If they are true then the expected
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number of iterations Genr(w) required for GWA to produce wmin for a given input
w ∈ Fr satisfies the following estimate:

(3) Genr(w) 6 E(r)CW (w) 6 E(r)|w|
Let Qr be the fraction of such elements w in the set SP (r) for which Genr(w) 6

E(r)|w| holds. Table 5 shows values of Qr for r = 2, 5, 10, 20. We can see that Qr

is closed to 1 for all tested ranks, as predicted.
In particular, we can make the following

Conclusion 8. The genetic algorithm GWA with the termination condition
T3 gives reliable results.

F2 F5 F10 F15 F20

E(r) 1 3 7 12 18
all words 0.93 0.93 0.99 0.99 0.99
|w| > 100 1.0 0.99 0.99 0.99 1.0

Table 5. Fraction of elements w ∈ SP (r) with TGenr(w) 6 E(r)|w|.

In constructing the set SP (r) we select K to ensure the representativeness of
characteristic Qr (see table 6).

K Q2 Q5 Q10 Q15 Q20

100 0.932 0.923 0.996 0.995 0.992
200 0.93 0.926 0.996 0.995 0.993
300 0.928 0.929 0.996 0.995 0.993
400 0.928 0.928 0.996 0.995 0.993
500 0.93 0.926 0.996 0.995 0.993

Table 6. Values of Qr computed with different values of K.

The data stabilizes at K = 500 and this is the value of K used in our experi-
ments.

5. Time complexity of GWA

It is not easy to estimate, or even to define, time complexity of GWA because of
its stochastic nature. However, one can estimate the time complexity of the major
components of GWA on each given iteration. Afterward, one may define a time
complexity function TGWA(s) as an average number of iterations required by GWA
to find a solution starting on a given input s.

Let GWA starts to work on an input w ∈ F . Below we give some estimates
for the time required for GWA to make one iteration. It is easy to see that the
total execution time TCMR(P ) of Crossover, Mutation, and Replacement operators,
needed to generate the a population Pnew from a given population P , does not
depend on the length of the input w and depends only on the cardinality of the
population P (which is fixed), and the length |µ| of members µ of the current
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population P (here |µ| is the length of the sequence µ). Therefore, for some constant
CCMR the following estimate holds

TCMR(P ) 6 CCMR ·MP

where MP = max{|µ| | µ ∈ P}.
To compute Fit(µ) for a given µ ∈ P it requires to run the substitution routine

SR on the input wµ. Since |wt| 6 3|w| for any restricted Whitehead automorphism
t ∈ T one has |wµ| 6 3|µ||w| for each µ ∈ P . Hence the execution time TFit required
to compute Fit(µ) can be bounded from above by

TFit 6 CFit · |wµ| 6 CFit · 3MP · |w|

This argument shows that the time Tgen(P ) required for GWA to generate a
new population from a given one P can be estimated from above by

Tgen(P ) 6 TCMR(P ) + TFit 6 CCMR ·MP + CFit · 3MP · |w|.

In fact, the estimate |wt| 6 3|w| is very crude, as we have seen in Section 4.4 one
has on average |wt| 6 cr|w| and the values of cr are much smaller than 3 (see Table
4). So on average one can make the following estimate:

Tgen(P ) 6 CCMR ·MP + CFit · cr
MP · |w|.

Thus, the length of members of the current population P has crucial impact on the
time complexity of the procedure that generates the next population.

A priori, there are no limits on the length of the population members µ ∈ P .
However, application of the Substitution Method (Section 3.5.2) divides GWA into
a sequence of separate runs, each of which solves the Length Reduction Problem
for a current word wi = wt1 · · · ti. Furthermore, our experiments show that to solve
this problem GWA generates population members in P of the average length E|µ|
which does not depend on the length of the input wi, it depends only on the rank of
F . In Figure 6 we present results of our experiments with computing |µ|, (µ ∈ P )
when running GWA on inputs w from SNMin(r).
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Figure 6. Values of |µ| for various word lengths: a) maximal |µ|,
b) average |µ|.

In Table 7 we collect average and maximal values of |µ| for inputs w ∈ SNMin(r)
for various ranks r.
This experimental data allows us to state the following observed phenomena.
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F2 F5 F10 F15 F20

Average |µ| 1.0 1.3 1.7 2.0 2.3
Maximal |µ| 1.0 2.2 3.8 5.1 6.3

Table 7. Maximal and average lengths of the population members.

Conclusion 9. To solve the Length Reduction problem for a given non-minimal
w ∈ F GWA generates new populations in time bounded from above by Cr|w| where
Cr is a constant bounded from above in the worst case by

Cr 6 CCMR ·MP + CFit · 3MP ,

and on average by
Cr 6 CCMR ·MP + CFit · cMP

r ,

Now we can estimate the expected time-complexity TGWAr(w) of GWA on
an input w ∈ Fr as follows:

TGWAr(w) ≈ Genr(w) · average(Tgen(P )) 6 E(r) ·WCT (w) · Cr · |w|.
We conclude this section with a comment that average values of |µ|(µ ∈ P )

shed some light on the average height of “picks” (see Section 6) for the set T of
restricted Whitehead automorphisms. This topic needs a separate research and we
plan to address this issue in the future.

5.1. Comparison of the standard Whitehead algorithm with the ge-
netic Whitehead algorithm. In this section we compare results of our exper-
iments with the standard Whitehead algorithm DWA and the genetic algorithm
GWA. We tested these algorithms on the set SP of pseudo-random primitive ele-
ments.

As we have seen in Section 5 we may estimate the expected time required for
GWA to find a length reducing automorphism on a non-minimal input w ∈ Fr as:

Cr · E(r) · |w|.
Recall from Section 2.3.1 that the expected time required for DWA to find such an
automorphism can be estimated by

Ar

|LRr|
· |w|.

In Table 3 and Figure 2 we collected an experimental data on average values of
E(r) and Ar

|LRr| for various free groups Fr. It seems from our experiments that

Cr · E(r) <<
Ar

|LRr|
for big enough r. Thus, we should expect much better performance of GWA than
DWA on groups of higher ranks.

In Table 8 and Figures 7 we present results on performance comparison of GWA
with an implementation of the standard Whitehead algorithm DWA available in
[11] software package. We run the algorithms on words w ∈ SP (r) and measured
the execution time. We terminated an algorithm if it was unable to obtain the
minimal element (of length 1) on an input w after being running for more then an
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hour. There were very few runs of DWA for words w ∈ F10 with |w| > 100 that
finished within an hour. There were no such runs for |w| > 200 at all, and therefore
results of these experiments are marked “na” (not available).

F2 F5 F10

|U | 57 104 268 57 106 228 52 102 268
Time spent
by the standard 0.03 0.07 0.18 13.29 27.4 85.9 1995 na1 na
algorithm, s
Time spent
by the genetic 0.52 1.2 2.7 1.4 2.6 5.6 2.6 6.07 17.4
algorithm, s

Table 8. Performance comparison of DWA and GWA.
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Figure 7. Time comparison between standard and genetic algo-
rithms on primitive elements in a) F2, b) F5 and c) F10.

Conclusion 10. GWA performs much better than DWA in free groups Fr for
sufficiently big r (in our experiments, r > 5) and on sufficiently long inputs (in our
experiments, |w| > 10).
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6. Mathematical problems arising from the experiments

We believe that there must be some hidden mathematical reasons for the ge-
netic algorithm GWA to perform so fast. In this section we formulate several
mathematical questions which, if confirmed, would explain the robust performance
of GWA, and lead to improved versions of the standard GWA, or to essentially new
algorithms. We focus mostly on particular choices of the finite set of initial ele-
mentary automorphisms, and geometry of connected components of the Whitehead
graph Γ(Fr, 1,Ωr).

Conjecture 2. Let U ∈ F k
r . Then there exists a polynomial Pr,k such that

|Orbmin(U)| 6 Pr,k(|Umin|)

Conjecture 3. Almost all elements in Fr, r > 2 are Whitehead minimal.

Of course, a rigorous formulation of this conjecture has to involve some proba-
bility measure on the free group F . One of the typical approaches to such problems
is based on an asymptotic density on F as a measuring tool. Recently, a theoretical
justification of this conjecture, relative to the asymptotic density, appeared in [7].
Below we use the asymptotic density as our standard measuring tool, though the
measures µs from [1] would provide more precise results.

The first conjecture deals with the average complexity of the standard White-
head descent algorithm DWA.

Conjecture 4. Let F = Fn be a free group of rank n, NMinl ⊂ F the set of
all non-minimal elements in F of length l. Then there is a constant LRn such that

lim sup
l→∞

1
|NMinl|

∑
w∈NMinl

|LR(w)| = LRn.

Conjecture 5. Let

Wm = {w ∈ Fr | WC(w) = m}

and
Wm,cr

= {w ∈ Wm | |w| > cm
r }

There exists a constant cr > 1 such that

lim
m→∞

|Wm,cr
|

|Wm|
= 1

Moreover, the convergence is exponentially fast.

Let T = Tr be the restricted set of Whitehead automorphisms of the group Fr

defined in Section 3.1. Recall that

|T | = 5r2 − 4r.

We say that u ∈ Orb(w) is a local minimum (with respect to the length function),
if for u 6= wmin but |ut| > |u| for any t ∈ T . If u is a local minimum in Orb(w) then
a sequence of moves t1, . . . , tk such that |ut1 . . . tk| < |u| and k is minimal with this
property is called a pick at u. We say that the Whitehead descent algorithm with
respect to T (see Section 2.2) is monotone on w if it does not encounter any local
minima.
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Conjecture 6. For “most” non-minimal elements w ∈ Fr the Whitehead
descent algorithm with respect to T is monotone. More precisely, let NMinl ⊂ Fr

be the set of all non-minimal elements in Fr of length l, and NMinl,T is the subset
of those for which the Whitehead descent algorithm with respect to T is monotone.
Then

lim
m→∞

|NMinl,T |
|NMinl|

= 1

Moreover, the convergence is exponentially fast.

Observe, that if Conjecture 6 holds then on most inputs w ∈ NMin ⊂ Fr the
Whitehead descent algorithm with respect to T requires at most C ·r2 ·WC(w) · |w|
steps to find wmin.

Now we are in a position to formulate the following conjecture

Conjecture 7. The time complexity (or, at least, the average-case time com-
plexity) of the Problem A on inputs w ∈ NMin ⊂ Fr is bounded from above by

P (r)WC(w)|w|

where P (r) is a fixed polynomial.

Problem 1. What is geometry of the graph Γ(Fr, 1,Ωr)? In particular, are
connected components of Γ(Fr, 1,Ωr) hyperbolic?

If uncovered, the geometric properties of the graphs Γ(Fr, 1,Ωr) should provide
fast deterministic algorithms for Problems A and B.
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