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Abstract

We describe a linear time probabilistic algorithm to recognize White-
head minimal elements (elements of minimal length in their automorphic
orbits) in free groups of rank 2. Moreover, for a non-minimal element the
algorithm gives an automorphism that is most likely to reduce the length
of the element. This method is based on linear regression and pattern
recognition techniques.

1 Introduction

The field of pattern recognition (PR) has been actively developing for several
decades. It has been successfully applied in a large number of diverse fields,
ranging from computer vision and speech recognition to geological analysis.

The present paper shows that PR techniques can be successfully used in
group theory. There are several potential benefits of this approach. Firstly, it
helps to produce fast stochastic algorithms to solve problems in groups; secondly,
PR suggests heuristics which improve, on average, the performance of known
group theoretic algorithms; and, the last but not least, one may use PR to reveal
hidden algebraic structures and formulate rigorous mathematical hypotheses
(see [5, 8] for more examples). Indeed, we believe that if a stochastic algorithm
performs very well or some statistical observations persistently occur, then there
must be a pure mathematical reason behind this phenomenon, which can be
uncovered by a proper statistical analysis.

We introduce a PR system that recognizes minimal (sometimes also called
Whitehead minimal) words, i.e., words of minimal length in their automorphic
orbits, in free groups of rank 2. The corresponding probabilistic classification
algorithm, a classifier, is very fast (linear time algorithm) and recognizes mini-
mal words correctly with the accuracy rate of more then 98%. The recognition
system is based on linear regression and does not use any particular results from
group theory. To the contrary, some recovered patterns suggest a new notion of
a weighted labeled directed graph Γ(w) associated with a word w in a free group
F . The graph Γ(w) seems to be quite useful in recognizing minimal elements
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in F ; indeed, our classifiers of minimal elements based on Γ(w) outperform the
classifiers based on the Whitehead graph of w (at least, in the case of a simple
linear regression model). Moreover, we have found a very simple PR system
which partitions all non-minimal elements in F2 into two clusters M1 and M2.
It also partitions the set of all elementary Whitehead automorphisms into two
subsets T1 and T2 such that, with high probability, only automorphisms from
Ti can reduce the length of elements in Mi, i = 1, 2. This allows one to reduce
the search for a length reducing automorphism for a given w ∈ F2 by half.

We used here a very simple linear regression model as a base for our clas-
sifiers. For free groups of higher ranks other models (quadratic regression and
vector support machines) provide more accurate classification [5].

2 Whitehead’s minimization algorithm

In this section we give a brief introduction to Whitehead’s minimization prob-
lem.

Let F = F (X) = F2(X) be a free group of rank 2 with basis X. Put
X±1 = {x±1 | x ∈ X}. A word w = x1 · · ·xn in the alphabet X±1 is called
reduced if xi 6= x−1

i+1, and it is cyclically reduced if x1 6= x−1
n . We view elements

in F as reduced words in X±1. Clearly, every element w in F can be presented
in the form w = u−1w̃u for some u ∈ F (X) and a cyclically reduced element
w̃ ∈ F (X) such that |w| = |w̃|+2|u|. This w̃ is unique and is called the cyclically
reduced form of w.

Let Aut(F ) be the set of all automorphisms of the group F . The automorphic
orbit Orb(w) of a word w ∈ F is the set of all automorphic images of w in F :

Orb(w) = {v ∈ F | ∃ϕ ∈ Aut(F ) such that ϕ(w) = v}.

A word w ∈ F is called minimal (or automorphicaly minimal) if |w| ≤ |ϕ(w)|
for any ϕ ∈ Aut(F ). By wmin we denote a word of minimal length in Orb(w).
Notice that wmin is not unique.

A classifier for minimal elements in a free group F has to determine, for an
arbitrary given element w ∈ F , whether w is minimal or not. Since every mini-
mal word in F is cyclically reduced and since there exists a very fast algorithm
for cyclic reduction, it suffices to construct a classifier for cyclically reduced
words in F .

There is a famous deterministic Whitehead’s algorithm which, for a given
w ∈ F , finds some wmin in at most quadratic number of steps with respect to
|w| [11]. In fact, this algorithm works for arbitrary free groups, but in higher
ranks it becomes extremely inefficient (it is still quadratic in the length of the
input, but the constants grow exponentially with the rank). We refer to [8] for a
detailed discussion of the complexity of Whitehead’s algorithms. Here we want
to mention only a few basic ideas related to Whitehead’s description of minimal
words. We denote by Ω(X) the following set of automorphisms t ∈ Aut(F (X))
(called Whitehead’s automorphisms):



Haralick, Miasnikov, Myasnikov • Pattern Recognition • 11.04.04 3

(1) t permutes elements in X±1;

(2) t fixes a given element a ∈ X±1 and maps each element x ∈ X±1, x 6= a±1

to one of the elements x, xa, a−1x, or a−1xa.

An element w ∈ F (X) is called Whitehead minimal if |t(w)| ≥ |w| for every
t ∈ Ω(X). In 1936 Whitehead proved that w ∈ F is minimal if and only if it
is Whitehead minimal [11]. This allows one to construct a simple deterministic
classifier for minimal words in F (X), its complexity depends on cardinality of
Ω(X).

In the free group of rank 2 with basis X = {a, b} the set Ω(X) consists of
some permutations of X±1, conjugations by letters from X±1, and the set T of
eight Nielsen automorphisms:

T = {x → xy±1, x → y±1x | x, y ∈ {a, b}, x 6= y}.

Since we are working only with cyclically reduced elements we can ignore
conjugations in the deterministic decision algorithm for the minimality problem,
as well as permutations (they always preserve the length of the word).

Our goal here is to study minimal elements in F (X) by pattern recognition
methods and construct a probabilistic classifier which has linear time complexity
and gives correct answers with a small classification error.

3 Recognition of minimal words in F2

One of the main applications of pattern recognition (PR) techniques is classifi-
cation of a variety of given objects into categories. Usually classification algo-
rithms or classifiers use a set of measurements (properties, characteristics) of
objects, called features, which gives a descriptive representation for the objects.

In this section we describe a pattern recognition system MIN2 for recog-
nizing minimal elements in free groups of rank 2. The corresponding classifier
is a supervised learning classifier which means that the decision algorithm is
“trained” on a prearranged training dataset, in which each pattern is labeled
with its true class label. The algorithm is based on linear regression model with
a decision rule of the Bayes type.

We refer to [3] for a detailed introduction to pattern recognition techniques.

3.1 Data generation: training datasets

A random element w of F = F2(X) can be produced as the result of a no-
return simple random walk on the Cayley graph of F with respect to the set of
generators X (see [1] for details). In practice this amounts to a pseudo-random
choice of a number l (the length of w), and a pseudo-random sequence y1, . . . , yl

of elements yi ∈ X±1 such that yi 6= y−1
i+1, where y1 is chosen randomly from

X±1 with probability 1/4, and all others are chosen randomly with probability
1/3. Similarly, one can pseudo-randomly generate cyclically reduced words in
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F , i.e., words w = y1 · · · yl where y1 6= y−1
l . As we have mentioned in the

introduction it suffices to construct a classifier for cyclically reduced words in
X±1.

At first glance, the obvious choice for the training dataset would be the set
of randomly generated cyclically reduced words from F . However, it has been
shown in [6] that randomly taken cyclic words in F are already minimal with
asymptotic probability 1. Therefore, a set of randomly generated words would
be highly biased toward the class of minimal elements. To obtain fair numbers
of representatives from both classes we use the following procedure.

For each positive integer l = 1, . . . , 1000 we generate pseudo-randomly and
uniformly 10 cyclically reduced words from F (X) of length l. This choice of
parameters is purely practical: we want to have long words but be able to
execute experiments in reasonable amount of time. Denote the resulting set
by W . Then, using the deterministic Whitehead algorithm, one can effectively
construct the corresponding set of minimal elements

Wmin = {wmin|w ∈ W}.
With probability 0.5 we substitute each v ∈ Wmin with the word t̃(v), where t is a
randomly and uniformly chosen automorphism from Ω(X) such that |t̃(v)| > |v|
(if |t̃(v)| = |v| we chose another t ∈ Ω(X), and so on). Now, the resulting set
L is a set of pseudo-randomly generated cyclically reduced words representing
the classes of minimal and non-minimal elements in approximately equal pro-
portions. However, it seems that the class of non-minimal elements is not quite
representative, since every its element w has Whitehead complexity 1, i.e., there
exists a single Whitehead automorphism which reduces w to wmin (see [8] for de-
tails on Whitehead complexity). We will see in Section 4 that the set described
above is a sufficiently good training dataset which is much easier to generate
than a set with uniformly distributed Whitehead complexity of elements. A
possible mathematical explanation of this phenomenon is mentioned in [8].

From the construction of the set L we know for each element v ∈ L whether
it is minimal or not. Finally, we construct a training set

D = {< v, P (v) > |v ∈ L},
where

P (v) =
{

1, v is minimal;
0, otherwise.

3.2 Features

Let w be a reduced word in the alphabet ∈ X±1. In this section we describe
the features of w which characterize the pattern of occurrences of specific words
from F (X) as subwords in w.

Let K ∈ N be a natural number, v1, . . . , vK ∈ F (X) be words from F (X),
and U1, . . . , UK+1 ⊆ F (X) be subsets of F (X). Denote by

C(w,U1v1U2v2 · · ·UKvKUK+1)
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the number of subwords of the type u1v1u2 · · · vKuK+1, where uj ∈ Uj , which
occur in w. For fixed K, v1, . . . , vK , U1, . . . , UK+1, this defines a counting func-
tion

w ∈ F −→ C(w,U1v1 · · · vKUK+1) ∈ N (1)

The normalized value
1
|w|C(w, U1v1 · · · vKUK+1)

is called a feature of w and the function

w ∈ F −→ 1
|w|C(w,U1v1 · · · vKUK+1) ∈ R

is called a feature function on F . Usually we omit Ui in our notations if Ui = ∅.
If C̄ = (C1(w), . . . , CN (w)) is a sequence of counting functions like (1) one can
associate with w a vector of real numbers:

fC̄(w) =
1
|w| < C1(w), . . . , CN (w) >∈ RN

which is called a feature vector. Every choice of the sequence C̄ gives a vector
fC̄(w) which reflects the structure of w.

For example, if a ∈ X±1 then C(w, a) counts the number of occurrences of
the letter a in w. The feature vector (where for simplicity we assume that the
components are written in some order which we do not specify)

f0(w) =
1
|w| < C(w, a) | a ∈ X±1 >

shows the frequencies of occurrences of letters from X±1 in w. The feature
vector

f1(w) =
1
|w| < C(w, v) | |v| = 2 >

shows the numbers of occurrences of words of length two in w relative to the
length of w. If x1, x2 ∈ X±1 then the counting function C(w, x1Ux2), where
U = X±1 gives the number of occurrences of x1 and x2 in w one letter apart.

To visualize some structures described by the counting functions above we
associate with a given word w ∈ F (X) a weighted labeled directed graph Γ(w).
Put V (Γ(w)) = X±1. For given x, y ∈ X±1 and v ∈ F (X) we connect the
vertex x to the vertex y by an edge with a label v and weight C(w, xvy). Now,
with every edge from x to y with label xvy one can associate a counting function
C(w, xvy), and vice versa. It follows that every subgraph Γ of Γ(w) gives rise to
a particular set of counting functions C̄Γ of the type C(w, xvy), and conversely,
every set C̄ of counting functions of the type C(w, xvy) determines a subgraph
ΓC̄ of Γ(w).

For instance, the feature mapping f1 corresponds to the subgraph Γ1(w) of
Γ(w) which is in a sense a directed version of the so-called Whitehead graph of
w [12]. Here is a

reference to
Whitehead
graph
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3.3 Model

The classification algorithm has to predict the value P (w) of the predicate P for
a given word w. One of the approaches is to explore the relationship between
P (w) and the corresponding feature vector v = f(w) of the word w. We can
try to approximate the value of P (w) via a linear function on f(w):

P (w) ≈ βT f(w),

where β is an unknown column vector of coefficients. Inferring β from the
training set is the task of the classical linear regression analysis [2, 10]. Given
a dataset

D = {(wi, P (wi) | i = 1, . . . , n}
one can compute the feature vectors f(wi), i = 1, . . . , n and form the standard
regression model as:

P = V β + ε,

where P =< P (w1), . . . , P (wn) > is a (column) vector of the known values of
P , V is the matrix

V =




f(w1)
...

f(wn)




with the feature vectors as rows, β is a vector of unknown regression coefficients
and ε represents the approximation error. Using the least squares method we
find β such that the mean square error

‖P − V β‖2 = ‖ε‖2

is as small as possible.
Now, for a given word w and the computed vector β one can obtain the

value P̂ (w) predicted by the regression model as

P̂ (w) = βT f(w).

Packages for computing linear regression models are now standard and they are
available in many software distributions [4, 7]. We used routines from SYLModel
Library [9].

One of the possible classifiers based on linear regression model is as follows.
Given a word w ∈ F (X) it returns the answer decide(w) according to the
following formula:

decide(w) =
{

1, if P̂ (w) > Θ;
0, otherwise.

(2)

where Θ is a given threshold. However, there is an ambiguity in selection of the
parameter Θ in the decision rule (2). Therefore we elected to use the following
Bayesian the decision rule. Suppose an event P̂ (w) = α, where α ∈ R, is
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observed. We are going to make a prediction on whether P (w) = 1 or P (w) = 0
based on estimations of conditional probabilities

Pr(P (w) = 1 | P̂ (w) = α) and Pr(P (w) = 0 | P̂ (w) = α)

so, theoretically, the corresponding decision rule is:

decide(w) =
{

1, if Pr(P (w) = 1 | P̂ (w) = α) > Pr(P (w) = 0 | P̂ (w) = α);
0, otherwise.

(3)
Since we cannot compute the conditional probabilities above precisely, we esti-
mate them as follows. We partition the set R into intervals ∆ of equal length
and estimate the conditional probabilities:

Pr(P (w) = 1 | P̂ (w) ∈ ∆) and Pr(P (w) = 0 | P̂ (w) ∈ ∆)

Using Bayes’ formula, one can rewrite these probabilities as:

Pr(P (w) = i | P̂ (w) ∈ ∆) =
Pr(P̂ (w) ∈ ∆ | P (w) = i) · Pr(P (w) = i)

Pr(P̂ (w) ∈ ∆)

(Here i = 0, 1.) Therefore

Pr(P (w) = 1 | P̂ (w) ∈ ∆) > Pr(P (w) = 0 | P̂ (w) ∈ ∆)

if and only if

Pr(P̂ (w) ∈ ∆ | P (w) = 1)P1 > Pr(P̂ (w) ∈ ∆ | P (w) = 0)P0, (4)

where the probabilities P1 = Pr(P (w) = 1) and P0 = Pr(P (w) = 0) are prior
probabilities corresponding to the distribution of minimal and non-minimal ele-
ments among the inputs given to the classifier. We have already mentioned that
in general situation a randomly chosen element of a free group is Whitehead-
minimal with probability 1. This makes the classification task simple if we
assume that inputs will be chosen randomly. However, the rate of false posi-
tive error (the error of classifying non-minimal element as minimal, see Section
3.4.2) in this case will be very high. The class of non-minimal elements is of
the same interest as the class of minimal elements. To avoid bias toward mini-
mal elements, we choose a more conservative approach by choosing equal prior
probabilities for both classes.

Thus the inequality (4) takes the form

Pr(P̂ (w) ∈ ∆ | P (w) = 1) > Pr(P̂ (w) ∈ ∆ | P (w) = 0)

The conditional probabilities above can be estimated from the given training
dataset D. For i = 0, 1 put

di(∆) = |{w | P̂ (w) ∈ ∆, < w, i >∈ D}| / |D|.



Haralick, Miasnikov, Myasnikov • Pattern Recognition • 11.04.04 8

Then
Pr(P̂ (w) ∈ ∆ | P (w) = i) ≈ di(∆), i = 0, 1.

Finally we can define the following decision rule, which is a variation of the
Bayes’ decision rule above:

decide(w) =
{

1, if P̂ (w) ∈ ∆ and d1(∆) > d0(∆) for some interval ∆;
0, if P̂ (w) ∈ ∆ and d0(∆) > d1(∆) for some interval ∆.

(5)

3.4 Evaluation

3.4.1 Test datasets

To test and evaluate our pattern recognition system MIN2 we generate several
test datasets of different type:

• A test set Se which is generated by the same procedure as for the training
set D, but independently of D.

• A test set SR of (pseudo-) randomly generated elements of F (X). We used
the random walk described in the beginning of Section 3.1 to generate SR.

• A test set SP of (pseudo-) randomly generated primitive elements in F (X).
Recall that w ∈ F (X) is primitive if and only if there exists a sequence
of Whitehead automorphisms t1 . . . tl ∈ Ω(X) such that xt1 . . . tl = w
for some x ∈ X±1 (here wt = t(w) for t ∈ Ω(X)). Elements in SP

are generated by the procedure described in [8], which, roughly speaking,
amounts to a random choice of x ∈ X±1 and a random choice of a sequence
of automorphisms t1 . . . tl ∈ Ω(X).

• A test set S10 which is generated in a way similar to the procedure used to
generate the training set D. The only difference is that the non-minimal
elements are obtained by applying not one, but several randomly chosen
automorphisms from Ω(X). The number of such automorphisms is chosen
uniformly randomly from the set {1, . . . , 10}, hence the name.

Some comparative characteristics of the generated datasets are given in Table
1.

Dataset size % min % non-min (min,avg,max) word lengths
D 10000 51.9 48.1 (1,541,1202)
Se 5000 49.5 50.5 (1,542,1200)
S10 5000 48.6 51.4 (1,691,10629)
SR 5000 98.8 1.2 (1,499,998)
SP 6000 0 100 (2,30,3443)

Table 1: Description of the datasets.
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3.4.2 Accuracy measure

Let Deval be a test data set. To evaluate the performance of the given PR
system we use a simple accuracy measure:

A = |{w | decide(w) = P (w), w ∈ Deval}| / |Deval|,
which gives the fraction of the correctly classified elements from the test set
Deval.

Notice, that the numbers of correctly classified elements follow the Binomial
distribution and A is approximately normally distributed with mean µ and
estimated variance A(1− A)/|Deval|. One can compute a particular confidence
interval for A. The estimated length of such an interval gives another measure
of accuracy of the classifier.

For example, suppose we choose to compute the length of the 95 percent
confidence interval for the mean of A. It is known that for the standard normal
variable z

Pr{|z| < 1.96} ≈ 0.95.

Therefore

Pr
{∣∣∣(A− µ) /

√
A(1−A)/|Deval|

∣∣∣ < 1.96
}
≈ 0.95

Pr
{

A− 1.96
√

A(1−A)/|Deval| < µ < A + 1.96
√

A(1−A)/|Deval|
}
≈ 0.95

The formula above gives an interval I(A) where the expected value for accuracy
A lies with nearly 95 percent confidence. Obviously, the smaller is the interval
the better is our approximation.

Note, that there are two types of error, called false positive and false negative,
that can occur during the classification of minimal elements. A false positive is
an error of classifying a non-minimal element as minimal. A false negative error
is when a minimal element is classified as a non-minimal element.

In some applications it could be important to maintain one of the errors at
the predefined level even if it will cause the second error to increase. In our case
we do not give any preference to either of the classes and will expect the rates
of the two errors be relatively equal.

3.5 Feature selection algorithm

Let S be a PR system and P be the corresponding classifier. The performance
of the classifier P often directly depends on the set of features built into S.
Sometimes it is possible to reduce the number of features in S maintaining the
same level of classification accuracy of P, and even find more efficient com-
binations of the given features. The corresponding procedure is called feature
selection. We give a description of one of possible procedures below.

Let C be a finite collection of counting functions (see Section 3.2). Every
sequence C̄ =< C1, . . . , Cl > of functions from C gives rise to the corresponding
feature mapping fC̄ . Denote by SC̄ the PR system obtained from S by replacing
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the feature set in S by C̄. Let PC̄ be the classifier that corresponds to the system
SC̄ . Every system SC̄ has one and the same test data set Deval and the same
accuracy measure A. Denote by A(fC̄) = A(C̄) the accuracy of the classifier
PC̄ evaluated on the set Deval.

We implement the feature selection as an iterative greedy procedure. At each
iteration i, we select a new feature mapping fi with the current best evaluation
value A(fi) and add it to the set F of feature mappings constructed before.
The procedure stops in at most |C| iterations. The best overall feature mapping
f∗ ∈ F of minimal length is returned as the output of the procedure. More
precisely, the algorithm proceeds as follows:

Iteration 1:

Choose C1 ∈ C such that A(C1) = max {A(C) | C ∈ C};
Set f1 = fC1 and F = {f1}

Iteration N :

Suppose feature mappings f1, . . . , fN−1 are constructed and

fN−1 = f<C1,...CN−1>

for some C1, . . . , CN−1 ∈ C. Choose CN ∈ C r {C1, . . . , CN−1} such
that the sequence C̄N =< C1, . . . , CN > satisfies the following con-
dition:

A(C̄N ) = max
{
A(C̄) | C̄ =< C1, . . . , CN−1, C >, C ∈ C} .

Put fN = fC̄N
and F = F ∪ {fN}.

If N = |C| then STOP.

Output:

Put Amax = max {A(f) | f ∈ F .}

Select the mapping f∗ ∈ F such that A(f∗) ∈ I(Amax), where
I(Amax) is the 95% confidence interval described in Section 3.4.2,
and f∗ has the smallest possible length among all such feature map-
pings.

Observe that this feature selection procedure does not check all possible feature
mappings that can be built from the counting functions from C. There would be
too many of them even for reasonably small sets C. Instead, it makes at most
|C| iterations, though each iteration could be time consuming since it requires
evaluation of the current classifier PC̄ .
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4 Experiments

4.1 Evaluating classifiers

In this section we present results of evaluation of classifiers Pf on the test
dataset Se when f runs over a particular set of feature mappings. By A(f) we
denote the accuracy of the classifier Pf .

Let
f1(w) =

1
|w| < C(w, v) | |v| = 2 >

be the feature mapping discussed in Section 3.2. Recall that in view of the
characterization of feature mappings as corresponding to the subgraphs of the
graph Γ(w) (see the end of Section 3.2) the mapping f1 corresponds to the
subgraph Γ1(w) which is a directed analog of the Whitehead graph of w. The
accuracy of the classifier P1 = Pf1 is over 95%, which is quite good, but leaves
some room for improvements. Consider the following feature mappings which
correspond to various subgraphs of the graph Γ(w):

f2(w) =
1
|w| < C(w, x1vx2) | x1, x2 ∈ X±1, |v| = 1 >;

f3(w) =
1
|w| < C(w, x1vx2) | x1, x2 ∈ X±1, |v| = 2 >;

f4(w) =
1
|w| < C(w, x1vx2) | x1, x2 ∈ X±1, |v| = 3 >;

f5(w) =
1
|w| < C(w, x1vx2) | x1, x2 ∈ X±1, 0 ≤ |v| ≤ 1 >;

f6(w) =
1
|w| < C(w, x1vx2) | x1, x2 ∈ X±1, 0 ≤ |v| ≤ 3 > .

The results of evaluation of the classifiers Pi = Pfi , i = 1, . . . , 6 on Se are given
in Table 2. In all cases rates of false positive and false negative errors were very
close to each other.

A(f1) A(f2) A(f3) A(f4) A(f5) A(f6)
|w| > 0 0.954 0.968 0.926 0.869 0.977 0.980
|w| > 4 0.957 0.969 0.927 0.870 0.977 0.981
|w| > 100 0.975 0.984 0.947 0.893 0.992 0.994

Table 2: Performance of the classifiers P1, . . . ,P6 on the set Se.

Conclusions:

• The accuracy of the classifiers increases when one adds new edges to the
graphs related to the feature mappings (though it is not clear what is the
optimum set of features);

• The classifier P6 is the best so far, it is remarkably reliable;
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• Very short words are difficult to classify (possibly because they do not
provide sufficient information for the classifiers);

• The estimated conditional probabilities for P6 (which come from the
Bayes’ decision rule, see Section 3.3) are presented in Figure 1. Clearly,
the classes of minimal and non-minimal elements are separated around 0.5
with a small overlap. So the regression works perfectly with the threshold
Θ = 0.5.
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Figure 1: Conditional probabilities for P6.

4.2 Feature selection and analysis of the pattern recogni-
tion systems

In this section we are looking for a feature mapping which is at least as effective
as f6, but contains considerably less features. Observe, that f6, as a vector,
consists of 60 components (features). In search for the most effective feature
mapping we apply the Feature Selection Algorithm from Section 3.5 to the set
of all counting functions involved in f6. Put

C = {C(w, xvy) | x, y ∈ X±1, v ∈ F (X), 1 ≤ |v| ≤ 3},
so counting functions from C correspond to edges of the graph Γ6(w).

We were very surprised when the Feature Selection Algorithm, when applied
to the set C, found a feature mapping based on only two counting functions:

f∗(w) =
1
|w| < C(w, a−1b), C(w, b−1a) >

where X = {a, b}.
The corresponding classifier P∗ = Pf∗ showed the best overall performance

when tested on the dataset Se, the results of comparison of P∗ with P1 and
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A(f1) A(f6) A(f∗)
|w| > 0 0.954 0.980 0.987
|w| > 4 0.957 0.981 0.989
|w| > 100 0.975 0.994 0.993

Table 3: Comparative results for P∗.
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Figure 2: Results of experiments with P∗: (a) Conditional probabilities for P∗;
(b) Scatter plot of points f∗(w), w ∈ Se.

P6 are presented in Table 3. The estimated conditional probabilities for P∗ are
given on Figure 2a.

One can see that non-minimal elements in Se are divided into two clusters
M1 (left) and M2 (right) such that the regression values for the class of the
minimal elements lay in between the regression values for elements in M1 and
M2. This shows that the linear regression cannot predict correctly values P (w)
of the predicate P for w ∈ Se. Indeed, the standard threshold-based decision
rule (2) will always give an error, at least, in 25% of trials, no matter what
threshold value is chosen.

However, there is an obvious separation between minimal and non-minimal
elements on Figure 2a and the Bayesian decision rule (5) was able to catch it.
Since f∗(w) is a two-dimensional vector, one can plot points f∗(w), w ∈ Se, on
a Euclidean plane. On Figure 2b we show scatter plot for f∗. Again, one can
clearly see three groups of points. The one in the middle corresponds to the
class of minimal elements, two others formed by non-minimal elements.

Now we test classifiers P1,P6, and P∗ on the datasets SR, S10, and SP . The
results of these tests are given in Table 4.

One can see that the classifiers P6,P∗ are robust and perform well even
on datasets which are essentially different from the training dataset D. The
classifier P1 has some difficulties with primitive elements.

What is left with no explanation so far is the unexpected partition of the
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S10 SR SP

A(f1) A(f6) A(f∗) A(f1) A(f6) A(f∗) A(f1) A(f6) A(f∗)
|w| > 0 0.828 0.981 0.981 0.960 0.978 0.967 0.567 0.879 0.945
|w| > 4 0.828 0.982 0.983 0.962 0.979 0.975 0.532 0.922 0.922
|w| > 100 0.842 0.994 0.993 0.984 0.993 0.992 0.494 1.000 0.979

Table 4: Performance of the classifiers P1,P6,P∗ on the test datasets
SR, S10, SP .

class NM(Se) of non-minimal elements from Se into the clusters M1 and M2

reflected on Figure 2a for the conditional probabilities for f∗.
A direct inspection of clusters M1 and M2 shows that the clustering was

based on the type of elementary Whitehead automorphisms that reduce the
length of a given element from NM(Se). More precisely, Table 5 shows that the
set of elementary Nielsen automorphisms T can be partitioned into two subsets
T = T1 ∪ T2, where

T1 =
{(

a → ba
b → b

)
,

(
a → ab
b → b

)
,

(
a → a
b → ab

)
,

(
a → a
b → ba

)}

T2 =
{(

a → b−1a
b → b

)
,

(
a → ab−1

b → b

)
,

(
a → a
b → a−1b

)
,

(
a → a
b → ba−1

)}

such that automorphisms from Ti are most likely to reduce the length of elements
from the cluster Mi, and very rarely reduce the length of elements from the other
cluster. Therefore, the classifier P∗ not only solves the minimality classification
problem, but it also appears to predict length reducing automorphisms for a
given w ∈ F (X). The clusters

M1 and M2

are defined
on page 14

To find further evidence in support of this observation, we looked at the dis-
tributions of the conditional probabilities for f∗ on the test datasets S10 and SP .
Even though the clustering structure of these datasets was more complicated,
we were able to see a similar decomposition of the sets NM(S10), NM(SP ) of
non-minimal elements in S10 and SP into two clusters M1 and M2.

Table 5 shows that the sets T1 and T2 of Nielsen automorphisms play a sim-
ilar role in clustering of NM(S10) and NM(SP ) as in NM(Se), thus expanding
the scope of the observation made for NM(Se). It is significant that, for ele-
ments of length more than 100, the two clusters become mutually exclusive, i.e.
none of the automorphisms from T1 reduces elements in M1 and vice versa. It
shows again that “long” words are easier to classify.

One of the reasons why automorphisms from T1 reduce length of elements
from M1 is that about 75 percent of elements in M1 have positive exponent sum
for one letter and negative exponent sum for another letter. Similarly, in about
75 percent of elements in M2 the exponents sums are positive for both letters,
so automorphisms from T2 have a better chance to reduce the length of such
elements. However, the accuracy of the recognizer is much higher then that, so
there must be some other governing rule for such clustering. We are going to
address this problem in the future, here we state the following conjecture.
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Conjecture 1 The set of feature vectors of non-minimal elements in a free
group of rank 2 can be partition into finitely many bounded disjoint clusters in
such a way that the length of elements in a cluster can be reduced by Nielsen au-
tomorphisms of a very particular type that correspond to this cluster. Moreover,
these clusters can be separated from each other by hyperplanes.

NM(Se) NM(S10) NM(SP )
M1 M2 M1 M2 M1 M2

a → ba, b → b 0.7152 0.0008 0.7480 0.0008 0.76714 0.04057
a → ab, b → b 0.7136 0.0023 0.7488 0.0023 0.76714 0.04057
a → a, b → ab 0.7522 0.0000 0.7457 0.0023 0.76633 0.05428
a → a, b → ba 0.7458 0.0038 0.7417 0.0031 0.76633 0.05428
a → b−1a, b → b 0.0016 0.7320 0.0000 0.7567 0.00000 0.69956
a → ab−1, b → b 0.0016 0.7328 0.0008 0.7559 0.00000 0.69956
a → a, b → a−1b 0.0000 0.7199 0.0008 0.7291 0.00000 0.69243
a → a, b → ba−1 0.0008 0.7184 0.0000 0.7322 0.00000 0.69243

Table 5: Fraction of elements in NM(Se), NM(S10) and NM(SP ) reduced by
automorphisms from T1 and T2.

Conclusions:

1. Feature Selection Algorithm is useful, it found by far the most economic
and effective feature mapping f∗;

2. The classifier P∗ not only solves the minimality classification problem, as
a bonus it also predicts what are the most likely automorphisms which
reduce the length of a given non-minimal element w ∈ F (X).
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