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Abstract

We introduce the notion of a regular quadratic equation and a regular NTQ system
over a free group. We prove the results that can be described as Implicit function
theorems for algebraic varieties corresponding to regular quadratic and NTQ systems.
We will also show that the Implicit function theorem is true only for these varieties.
In algebraic geometry such results would be described as lifting solutions of equations
into generic points. From the model theoretic view-point we claim the existence of
simple Skolem functions for particular V3-formulas over free groups. Proving these
theorems we describe in details a new version of the Makanin-Razborov process for
solving equations in free groups. We also prove a weak version of the Implicit function
theorem for NTQ systems which is one of the key results in the solution of the Tarski’s
problems about the elementary theory of a free group. We call it the Parametrization
theorem.
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1 Introduction

In this paper we prove so-called Implicit function theorems for regular quadratic and NTQ
systems over free groups (Theorems 3, 9, 11). They can be viewed as analogs of the cor-
responding result from analysis, hence the name. To show this we formulate a very basic
version of the Implicit function theorem.
Let
S(x1,. . T, a1,...,a;) =1

be a “regular” quadratic equation in variables X = (x1,...,x,) with constants ay, ..., a
in a free group F' (roughly speaking “regular” means that the radical of S coincides with
the normal closure of S and S is not an equation of one of few very specific types). Suppose
now that for each solution of the equation S(X) = 1 some other equation

T(xla'"7xn7y1a"'ym7a17"'vak) :1

has a solution in F, then T(X,Y) = 1 has a solution Y = (y1,...,¥ym) in the coordinate
group Gr(g) of the equation S(X) = 1.

This implies, that locally (in terms of Zariski topology), i.e., in the neighborhood defined
by the equation S(X) = 1, the implicit functions g1, ..., ¥, can be expressed as explicit
words in variables x1,...,x, and constants from F', say Y = P(X). This result allows one
to eliminate a quantifier from the following formula

P=VYXIV(S(X)=1 — T(X,Y)=1).

Indeed, the sentence ® is equivalent in F' to the following one:

U=VX(S(X)=1 — T(X,P(X)) =1).

From model theoretic view-point the theorems claim existence of very simple Skolem
functions for particular V3-formulas over free groups. While in algebraic geometry such
results would be described as lifting solutions of equations into generic points. We discuss
definitions and general properties of liftings in Section 6. We also prove Theorem 12 which
is a weak version of the Implicit function theorem for NTQ systems. We call it the Parame-
trization theorem. This weak version of the Implicit function theorems forms an important
part of the solution of Tarski’s problems in [24]. All Implicit function theorems will be
proved in Section 7.



In Sections 4 and 5 we describe a new version of the Makanin-Razborov process for a
system of equations with parameters, describe a solution set of such a system (Theorems
5 and 7) and introduce a new type of equations over groups, so-called cut equations (see
Definition 21 and Theorem 8).

We collect some preliminary results and basic notions of algebraic geometry for free
groups in Section 2. In Section 3 we discuss first order formulas over a free group and
reduce an arbitrary sentence to a relatively simple form.

This paper is an extended version of the paper [23], the basic version of the Implicit
function theorem was announced at the Model Theory conference at MSRI in 1998 (see [37]
and [22]).

We thank Igor Lysenok who carefully read the manuscript and whose numerous remarks
and suggestions have substantially improved the exposition.

2 Preliminaries

2.1 Free monoids and free groups

Let A = {a1,...,an} be a set. By Fpon(A) we denote the free monoid generated by A
which is defined as the set of all words (including the empty word 1) over the alphabet A
with concatenation as multiplication. For a word w = by ... b, where b; € A, by |w]| or d(w)
we denote the length n of w.

To each a € A we associate a symbol a~!. Put A=! = {a=! | a € A}, and suppose that
AN A~ = (). We assume that a' = a, (a7!)"! =a and A' = A. Denote A*' = AUA~L If
w=b"...05" € Fpon(A*Y), where (g; € {1,—1}), then we put w=! = b, " ...b;°"; we see
that w™! € M(A*') and say that w™! is an inverse of w. Furthermore, we put 1=! = 1.

A word w € Fmon(Ail) is called reduced if it does not contain subwords bb~! for b €
AL If w = wibb twe, w € Fron(AT!) then we say that wjws is obtained from w by
an elementary reduction bb~! — 1. A reduction process for w consists of finitely many
reductions which bring w to a reduced word w. This w does not depend on a particular
reduction process and is called the reduced form of w.

Consider a congruence relation on F,,,(A*!), defined the following way: two words
are congruent if a reduction process brings them to the same reduced word. The set of
congruence classes with respect to this relation forms a free group F(A) with basis A. If
not said otherwise, we assume that F'(A) is given as the set of all reduced words in AT
Multiplication in F(A) of two words u, w is given by the reduced form of their concatenation,
i.e., uv = uw. A word w € Fppn (A1) determines the element w € F(A), in this event we
sometimes say that w is an element of F'(A) (even though w may not be reduced).

Words u, w € Fyon(AT1) are graphically equal if they are equal in the monoid F,,, (A*!)
(for example, a1a2a5 ! is not graphically equal to ap).

Let X = {x1,..., 2, }be afinite set of elements disjoint with A. Let w(X) = w(z1,...,zy)
be a word in the alphabet (X U A)*! and U = (uy(A),...,u,(A)) be a tuple of words in
the alphabet A*!. By w(U) we denote the word which is obtained from w by replacing
each x; by wu;. Similarly, if W = (wi(X),...,wn (X)) is an m-tuple of words in vari-
ables X then by W(U) we denote the tuple (wy(U),...,w,(U)). For any set S we denote
by S™ the set of all n-tuples of elements from S. Every word w(X) gives rise to a map



Pw : (Fron (AT — Fon(ATY) defined by p,,(U) = w(U) for U € Fypn (AT, We call
Py the word map defined by w(X). If W(X) = (w1(X),...,w,(X)) is an m-tuple of words
in variables X then we define a word map Py : (Fiuon (A1) — Frion(AT)™ by the rule
Py (U) =W(U).

2.2  On G-groups

For the purpose of algebraic geometry over a given fixed group G, one has to consider the
category of G-groups, i.e., groups which contain the group G as a distinguished subgroup.
If H and K are G-groups then a homomorphism ¢ : H — K is a G- homomorphism if
g® = g for every g € G, in this event we write ¢ : H —¢ K. In this category morphisms are
G-homomorphisms; subgroups are G-subgroups, etc. By Homg(H, K) we denote the set of
all G-homomorphisms from H into K. It is not hard to see that the free product G * F(X)
is a free object in the category of G-groups. This group is called a free G-group with basis
X, and we denote it by G[X]. A G-group H is termed finitely generated G-group if there
exists a finite subset A C H such that the set G U A generates H. We refer to [4] for a
general discussion on G-groups.

To deal with cancellation in the group G[X] we need the following notation. Let u =
up...u, € GIX] = Gx* F(X). We say that u is reduced (as written) if u; # 1, u; and w41
are in different factors of the free product, and if u; € F(X) then it is reduced in the free
group F(X). By red(u) we denote the reduced form of w. If red(u) = u;y...u, € G[X],
then we define |u| = n, so |u| is the syllable length of u in the free product G[X]. For
reduced u, v € G[X], we write u o v if the product uv is reduced as written. If u = u; ... u,
is reduced and u1,u, are in different factors, then we say that u is cyclically reduced.

Ifu=ros,v=s"tot, and rt = rot then we say that the word s cancels out in reducing
uw, or, simply, s cancels out in uv. Therefore s corresponds to the maximal cancellation in
uv.

2.3 Formulas in the language L4

Let G be a group generated by a set of generators A. The standard first-order language of
group theory, which we denote by L, consists of a symbol for multiplication -, a symbol for
inversion ~!, and a symbol for the identity 1. To deal with G-groups, we have to enlarge
the language L by all non-trivial elements from G as constants. In fact, we do not need to
add all the elements of G as constants, it suffices to add only new constants corresponding
to the generating set A. By L4 we denote the language L with constants from A.

A group word in variables X and constants A is a word S(X, A) in the alphabet (X U
A)*L. One may consider the word S(X, A) as a term in the language L4. Observe that
every term in the language L 4 is equivalent modulo the axioms of group theory to a group
word in variables X and constants AU {1}. An atomic formula in the language L, is a
formula of the type S(X, A) = 1, where S(X, A) is a group word in X and A. With a slight
abuse of language we will consider atomic formulas in L4 as equations over G, and vice
versa. A Boolean combination of atomic formulas in the language L4 is a disjunction of
conjunctions of atomic formulas or their negations. Thus every Boolean combination ® of
atomic formulas in L4 can be written in the form & = \/ZL:1 W;, where each ¥; has one of
the following forms:



~.

A (55X, 4) =1), (T;(X,4) #1), N\ (Si(X,4) =D& \ (Te(X, A) #1).
j=1 j=1 k=1

j=1

Observe that if the group G is not trivial, then every formula ¥, as above, can be written

in the from
n

ASi(X,A) =1 & Tj(X,4) #1),

Jj=1

where (if necessary) we add into the formula the trivial equality 1 = 1, or an inequality of
the type a # 1 for a given fixed non-trivial a € A.

It follows from general results on disjunctive normal forms in propositional logic that
every quantifier-free formula in the language L 4 is logically equivalent (modulo the axioms
of group theory) to a Boolean combination of atomic ones. Moreover, every formula ® in
L4 with variables Z{z1,..., 2z} is logically equivalent to a formula of the type

Q1m1Q2x2 e ann\Il(Xv Z? A)u

where Q; € {V,3}, and (X, Z, A) is a Boolean combination of atomic formulas in variables
from X U Z. Using vector notations QY = Qyi ... Qy, for strings of similar quantifiers we
can rewrite such formulas in the form

D(Z)=Q1Z1...QrZyY (2, ..., Z;, X).
Introducing fictitious quantifiers, one can always rewrite the formula ® in the form
O(Z) =vX13Y:.. VX AV, U (X1, Y1, ..., X, Yy, Z).

If H is a G-group, then the set Th,(H) of all sentences in Ly which are valid in H
is called the elementary theory of H in the language Ls. Two G-groups H and K are
elementarily equivalent in the language L4 (or G-elementarily equivalent) if Tha(H) =
Tha(K).

Let T be a set of sentences in the language L4. For a formula ®(X) in the language
L4, we write T F ® if ® is a logical consequence of the theory T. If K is a G-group, then
we write K |= T if every sentence from T holds in K (where we interpret constants from A
by corresponding elements in the subgroup G of K). Notice, that Tha(H) F ® holds if and
only if K = VX®(X) for every G-group K which is G-elementarily equivalent to H. Two
formulas ®(X) and ¥(X) in the language L4 are said to be equivalent modulo T' (we write
S~ U)if TEVYX(P(X) « ¥(X)). Sometimes, instead of ® ~pp, , gy ¥ we write & ~g ¥
and say that ® is equivalent to ¥ over G.

2.4 Elements of algebraic geometry over groups

Here we introduce some basic notions of algebraic geometry over groups. We refer to [4]
and [19] for details.

Let G be a group generated by a finite set A, F(X) be a free group with basis X =
{z1,22,...2,}, G[X] = G * F(X) be a free product of G and F(X). If S C G[X] then the



expression S = 1 is called a system of equations over G. As an element of the free product,
the left side of every equation in S = 1 can be written as a product of some elements from
X UX ! (which are called variables) and some elements from A (constants). To emphasize
this we sometimes write S(X, A) = 1.

A solution of the system S(X) = 1 over a group G is a tuple of elements ¢g1,...,9, € G
such that after replacement of each x; by g; the left hand side of every equation in S =1
turns into the trivial element of G. Equivalently, a solution of the system S = 1 over G can
be described as a G-homomorphism ¢ : G[X] — G such that ¢(S) = 1. Denote by nci(S)
the normal closure of S in G[X], and by Gg the quotient group G[X]/ncl(S). Then every
solution of S(X) =1 in G gives rise to a G-homomorphism Gg — G, and vice versa. By
Vo (S) we denote the set of all solutions in G of the system S = 1, it is called the algebraic
set defined by S. This algebraic set Vi (S) uniquely corresponds to the normal subgroup

R(S) = {T(z) € G[X] | VA€ G"(S(A) =1 — T(A) = 1)}

of the group G[X]. Notice that if Vg (S) = 0, then R(S) = G[X]. The subgroup R(S5)
contains S, and it is called the radical of S. The quotient group

Gr(sy = GIX]/R(S)

is the coordinate group of the algebraic set V' (S). Again, every solution of S(X) =1in G
can be described as a G-homomorphism Gs) — G.

We recall from [40] that a group G is called a CSA group if every maximal Abelian
subgroup M of G is malnormal, i.e., M9 N M = 1 for any g € G — M. The class of CSA-
groups is quite substantial. It includes all Abelian groups, all torsion-free hyperbolic groups
[40], all groups acting freely on A-trees [3], and many one-relator groups [13].

We define a Zariski topology on G™ by taking algebraic sets in G™ as a sub-basis for
the closed sets of this topology. If G is a non-Abelian CSA group, in particular, a non-
Abelian freely discriminated group, then the union of two algebraic sets is again algebraic
(see Lemma 4). Therefore the closed sets in the Zariski topology over G are precisely the
algebraic sets.

A G-group H is called equationally Noetherian if every system S(X) = 1 with coefficients
from G is equivalent over G to a finite subsystem Sy = 1, where Sy C S, i.e., Vg(5) =
Ve (So). If G is G-equationally Noetherian, then we say that G is equationally Noetherian.
It is known that linear groups (in particular, freely discriminated groups) are equationally
Noetherian (see [16], [7], [4]). If G is equationally Noetherian then the Zariski topology
over G" is Noetherian for every n, i.e., every proper descending chain of closed sets in G™ is
finite. This implies that every algebraic set V' in G™ is a finite union of irreducible subsets
(called irreducible components of V'), and such a decomposition of V' is unique. Recall that
a closed subset V' is irreducible if it is not a union of two proper closed (in the induced
topology) subsets.

Two algebraic sets Vi (S1) and Vp(S2) are rationally equivalent if there exists an isomor-
phism between their coordinate groups which is identical on F.

2.5 Discrimination and big powers

Let H and K be G-groups. We say that a family of G-homomorphisms F C Homg(H, K)
separates [discriminates] H into K if for every non-trivial element h € H [every finite set



of non-trivial elements Hy C H] there exists ¢ € F such that h® # 1 [h® # 1 for every
h € Hy]. In this case we say that H is G-separated (G-discriminated) by K. Sometimes we
do not mention G and simply say that H is separated [discriminated] by K. In the event
when K is a free group we say that H is freely separated [freely discriminated).

Below we describe a method of discrimination which is called a big powers method. We
refer to [40] and [39] for details about BP-groups.

Let G be a group. We say that a tuple u = (uy,...,ux) € G¥ has commutation if
[ui, uigr1] = 1 for some ¢ = 1,...k — 1. Otherwise we call u commutation-free.

Definition 1. A group G satisfies the big powers condition (BP) if for any commutation-
free tuple u = (uy, ..., ux) of elements from G there exists an integer n(u) (called a boundary
of separation for u) such that

w Mgt #1

for any integers aq, ..., ar > n(u). Such groups are called BP-groups.

The following provides a host of examples of BP-groups. Obviously, a subgroup of a
BP-group is a BP-group; a group discriminated by a BP-group is a BP-group ([40]); every
torsion-free hyperbolic group is a BP-group ([41]). From those facts it follows that every
freely discriminated group is a BP-group.

Let G be a non-Abelian CSA group and u € G not be a proper power. The following
HNN-extension

G(u,t) = (G.t| g" = g(g € Cc(w)))

is called a free extension of the centralizer Cg(u) by a letter t. It is not hard to see
that for any integer k the map t — u* can be extended uniquely to a G-homomorphism
&t G(u,t) — G.

The result below is the essence of the big powers method of discrimination.

Theorem([40]) Let G be a non-Abelian CSA BP-group. If G(u,t) is a free extension
of the centralizer of the nonproper power u by t, Then the family of G-homomorphisms
{& | k is an integer} discriminates G(u,v) into G. More precisely, for every w € G(u,t)
there exists an integer N, such that for every k > N, ws # 1.

If G is a non-Abelian CSA BP-group and X is a finite set, then the group G[X] is G-
embeddable into G(u,t) for any nonproper power u € G. It follows from the theorem above
that G[X] is G-discriminated by G.

Unions of chains of extensions of centralizers play an important part in this paper. Let
G be a non-Abelian CSA BP- group and

G=Gy<Gi1<...<G,

be a chain of extensions of centralizers G;11 = G;(u;,t;). Then every n-tuple of integers
p = (p1,...,pn) gives rise to a G-homomorphism ¢, : G,, — G which is composition of
homomorphisms &,, : G; — G;—1 described above. If a centralizer of u; is extended several
times, we can suppose it is extended on the consecutive steps by letters ¢;, . .., ¢;4;. Therefore
Uij41 = ti, sy Uiy = ti+j71-

A set P of n-tuples of integers is called unbounded if for every integer d there exists a
tuple p = (p1,...,pn) € P with p; > d for each i. The following result is a consequence of
the theorem above.



Corollary Let G, be as above. Then for every unbounded set of tuples P the set of
G-homomorphisms Ep = {§, | p € P} G-discriminates Gy, into G.

Similar results hold for infinite chains of extensions of centralizers (see [40]) and [5]).
For example, Lyndon’s free Z[x]-group F# [*] can be realized as union of a countable chain
of extensions of centralizers which starts with the free group F' (see [40]), hence there exists
a family of F-homomorphisms which discriminates FZ [*] into F.

2.6 Freely discriminated groups

Here we formulate several results on freely discriminated groups which are crucial for our
considerations.

It is not hard to see that every freely discriminated group is a torsion-free CSA group
[4].
Notice that every CSA group is commutation transitive [40]. A group G is called com-
mutation transitive if commutation is transitive on the set of all non-trivial elements of
G, ie., if a,b,c € G — {1} and [a,b] = 1,[b,c] = 1, then [a,c] = 1. Clearly, commutation
transitive groups are precisely the groups in which centralizers of non-trivial elements are
commutative. It is easy to see that every commutative transitive group G which satisfies
the condition [a,a’] =1 — [a,b] = 1 for all a,b € G is CSA.

Theorem ([47]). Let F be a free non-abelian group. Then a finitely generated F-group
G is freely F-discriminated by F if and only if G is F-universally equivalent to F (i.e., G
and F satisfy precisely the same universal sentences in the language Ly ).

Theorem ([4], [19]). Let F be a free non-abelian group. Then a finitely generated F-
group G is the coordinate group of a non-empty irreducible algebraic set over F' if and only
if G is freely F-discriminated by F.

Theorem ([20]). Let F' be a non-abelian free group. Then a finitely generated F-group
is the coordinate group Fr(s)y of an irreducible non-empty algebraic set V(S) over F' if and
only if G is F-embeddable into the free Lyndon’s Z[t]-group FZ[1,

This theorem implies that finitely generated freely discriminated groups are finitely pre-
sented, also it allows one to present such groups as fundamental groups of graphs of groups
of a very particular type (see [20] for details).

2.7 Quadratic equations over freely discriminated groups

In this section we collect some known results about quadratic equations over fully residually
free groups, which will be in use throughout this paper.

Let S C G[X]. Denote by var(S) the set of variables that occur in S.

Definition 2. A set S C G[X] is called quadratic if every variable from var(S) occurs
in S not more then twice. The set S is strictly quadratic if every letter from var(S) occurs
in S exactly twice.

A system S = 1 over G is quadratic [strictly quadratic] if the corresponding set S is
quadratic [strictly quadratic].
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Definition 3. A standard quadratic equation over a group G is an equation of the one
of the following forms (below d, c; are nontrivial elements from G ):

n

[Tzvl =1, n>o0; (1)

i=1

H[Ii,yi]Hzi_lcizid:L n,m>0,m+n>1; (2)

?

foz-_lcizid:L n,m>0,n+m > 1. (4)
Equations (1), (2) are called orientable of genus n, equations (3), (4) are called non-
orientable of genus n.

Lemma 1. Let W be a strictly quadratic word over G. Then there is a G- automorphism
f € Autg(G[X]) such that W/ is a standard quadratic word over G.

Proof. See [10].

Definition 4. Strictly quadratic words of the type [x,y], x?, z7lcz, where c € G, are

called atomic quadratic words or simply atoms.

By definition a standard quadratic equation S = 1 over GG has the form
1 7’2...de= 1,

where r; are atoms, d € G. This number k is called the atomic rank of this equation, we
denote it by 7(.S). In Section 2.4 we defined the notion of the coordinate group G'r(g). Every
solution of the system S =1 is a homomorphism ¢ : Gr(s) — G.

Definition 5. Let S = 1 be a standard quadratic equation written in the atomic form
riry...red =1 with k > 2. A solution ¢ : Grs) — G of S =1 is called:

1. degenerate, if 7’? =1 for some i, and non-degenerate otherwise;
2. commutative, if [r?, rj:rl] =1 foralli=1,...,k—1, and non-commutative otherwise;
3. in a general position, if [rfmf’“] #1 forali=1,...,k—1,.

Observe that if a standard quadratic equation S(X) = 1 has a degenerate non-commutative
solution then it has a non-degenerate non-commutative solution see [20]).

Theorem 1 ([20]). Let G be a freely discriminated group and S = 1 a standard quadratic
equation over G which has a solution in G. In the following cases a standard quadratic
equation S = 1 always has a solution in a general position:
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1. 8§ =1 is of the form (1), n > 2;

2. 8 =11is of the form (2),n >0, n+m > 1;

3. S =1 is of the form (3), n > 3;

4. S =1 is of the form (4), n > 2;

5. r(S)>2 and S =1 has a non-commutative solution.

The following theorem describes the radical R(S) of a standard quadratic equation S = 1
which has at least one solution in a freely discriminated group G.

Theorem 2 ([20]). Let G be a freely discriminated group and let S = 1 be a standard
quadratic equation over G which has a solution in G. Then

1. If S = [z,y]ld or S = [z1,y1][T2, y2], then R(S) = ncl(S);
If S = 22d, then R(S) = ncl(xb) where b = d;

If S = c*d, then R(S) = ncl([zb™1, c]) where d~! = ¢;
If S = 2323, then R(S) = ncl([x1, 22]);

If S = 232323, then R(S) = ncl([z1, 2], [v1, 73], [12, 23]);

If r(S) > 2 and S =1 has a non-commutative solution, then R(S) = ncl(S);

NS S e e

If S =1 is of the type (4) and all solutions of S = 1 are commutative, then R(S) is
the normal closure of the following system:

{x1...xp =81...8n, [TR, 2] =1, [a;lzi,xk] =1,[z,C] =1, [a;lzi,C’] =1,

-1

-1 e
la; Zi, @ zil=1 (k,l=1,...,n54,j=1,...,m)},
where T, — Sk, z; — a; is a solution of S =1 and C = Cg(c]', ..., ¢t 81,...,8y,) is

the corresponding centralizer. The group Gp(s) is an extension of the centralizer C.

Definition 6. A standard quadratic equation S = 1 over F' is called regular if either
it is an equation of the type [x,y] = d (d # 1), or the equation [x1,y1][x2,y2] = 1, or
r(S) > 2 and S(X) = 1 has a non-commutative solution and it is not an equation of the
type cf'c3? = cico, 22 = a’c, 2323 = a3d3.

Put

K(S) = [X] +&(9),

where £(S) = 1 if the coefficient d occurs in S, and €(S) = 0 otherwise.
Equivalently, a standard quadratic equation S(X) = 1 is regular if k(S) > 4 and there is
a non-commutative solution of S(X) =1 in G, or it is an equation of the type [z, y]d = 1.
Notice, that if S(X) = 1 has a solution in G, k(S) > 4, and n > 0 in the orientable
case (n > 2 in the non-orientable case), then the equation S = 1 has a non-commutative
solution, hence regular.
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Corollary 1. 1. Every consistent orientable quadratic equation S(X) =1 of positive
genus is regular, unless it is the equation [x,y] = 1;

2. Every consistent non-orientable equation of positive genus is regular, unless it is an

equation of the type x?c* = a’c, 223 = ala3, 2?2323 = 1, or S(X) = 1 can be
transformed to the form [z;, Z;] = [Zi,al =1, 4,5 = 1,...,m by changing variables.

3. Every standard quadratic equation S(X) =1 of genus 0 is regqular unless either it is
an equation of the type ¢i* = d, ci*c5? = c1ca, or S(X) =1 can be transformed to the
form [z, Z;] = [Zi,a] = 1, 4,5 = 1,...,m by changing variables.

2.8 Formulation of the basic Implicit function theorem

In this section we formulate the implicit function theorem over free groups in its basic sim-
plest form. We refer to Sections 7.2, 7.4 for the proofs and to Section 7.6 for generalizations.

Theorem 3. Let S(X) =1 be a regular standard quadratic equation over a non-abelian
free group F and let T(X,Y) =1 be an equation over F, |X| = m, |Y| = n. Suppose that
for any solution U € Vp(S) there exists a tuple of elements W € F™ such that T(U,W) = 1.
Then there exists a tuple of words P = (p1(X),...,pn(X)), with constants from F, such that
T(U,P(U)) =1 for any U € Vr(S). Moreover, one can fund a tuple P as above effectively.

From algebraic geometric view-point the implicit function theorem tells one that (in the
notations above) T(X,Y) = 1 has a solution at a generic point of the equation S(X) = 1.

3 Formulas over freely discriminated groups

In this section we collect some results (old and new) on how to effectively rewrite formulas
over a non-Abelian freely discriminated group G into more simple or more convenient ”nor-
mal” forms. Some of these results hold for many other groups beyond the class of freely
discriminated ones. We do not present the most general formulations here, instead, we limit
our considerations to a class of groups 7 which will just suffice for our purposes.

Let us fix a finite set of constants A and the corresponding group theory language L 4,
let also a,b be two fixed elements in A.

Definition 7. A group G satisfies Vaught’s conjecture if the following universal sentence
holds in G

(V) VavyVz(z?y?22 =1 - [n,y]=1& [2,2] =1 & [y,2] = 1)

Lyndon proved that every free group satisfies the condition (V) (see [26]).

Denote by 7 the class of all groups G such that:

1) G is torsion-free;

2) @ satisfies Vaught’s conjecture;

3) G is CSA;

4) G has two distinguished elements a, b with [a,b] # 1.

It is easy to write down axioms for the class 7 in the language L,3y. Indeed, the
following universal sentences describe the conditions 1)-4) above:
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(TF) 2" =1 —z=1 (n=2,3,...);
(V) VaVyVa(z?y?22 =1 — [2,y] = 1 & [1,2] = 1 & [y, 2] = 1);

(CT) VaVpVe(e A1 & y£1& 2£1& [oy] =1 & [,2] =1 — [y, 2] = 1);
(WCSA)  Vavy(lz,z¥] =1 — [z,y] = 1);

(NA) [a,b] # 1.

Observe that the condition (WCSA) is a weak form of (CSA) but (WCSA) and (CT) together
provide the CSA condition. Let GROUPS be a set of axioms of group theory. Denote by
Ar the union of axioms (TF), (V), (CT), (WCSA), (NA) and GROUPS. Notice that the
axiom (V) is equivalent modulo GROUPS to the following quasi-identity

VavVyVz(2?y?2? =1 — [z,y] = 1).
It follows that all axioms in A7, with exception of (CT) and (NA), are quasi-identities.

Lemma 2. The class T contains all freely discriminated non-abelian groups.

Proof.  'We show here that every freely discriminated group G satisfies (V). Similar
arguments work for the other conditions. If u?v?w? = 1 for some w,v,w € G and, say,
[u,v] # 1, then there exists a homomorphism ¢ : G — F from G onto a free group F such
that [u®,v?] # 1. This shows that the elements u?,v?,w? in F give a counterexample to
Vaught’s conjecture. This contradicts to the Lyndon’s result. Hence (V) holds in G. This
proves the lemma.

Almost all results in this section state that a formula ®(X) in L, is equivalent modulo
At to a formula ¥(X) in Ly. We will use these results in the following particular form.
Namely, if G is a group generated by A and H is a G-group from 7 then for any tuple of
elements U € H" (here n = | X|) the formula ®(U) holds in H if and only if ¥(U) holds in
H.

3.1 Quantifier-free formulas

In this section by letters X,Y, Z we denote finite tuples of variables.
The following result is due to A.Malcev [34]. He proved it for free groups, but his
argument is valid in a more general context.

Lemma 3. Let G € T. Then the equation
r2ar?at = (ybyb~')? (5)
has only the trivial solution x =1 and y =1 in G.

Proof. Let G be as above and let x,y be a solution in G of the equation (5) such that
x # 1. Then
(z%a)®a™ = ((yb)*b~2)*. (6)
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In view of the condition (V), we deduce from (6) that [#%a,a™!] = 1, hence [#%,a7!] = 1.
By transitivity of commutation [z,a] = 1 (here we use inequality =z # 1). Now, we can
rewrite (6) in the form

#a? = ((yb)?h72)",

which implies (according to (V)), that [x2, (yb)?b~2] = 1, and hence (since G is torsion-free)
a? = (yb)*b . (7)

Again, it follows from (V) that [y, b] = 1. Henceforth, #? = y? and, by the argument above,
x = y. We proved that [z,a] = 1 and [x,b] = 1 therefore, by transitivity of commutation,
[a,b] = 1, which contradicts to the choice of a,b. This contradiction shows that = 1. In
this event, the equation (6) transforms into

((0)*b72)* =1,

which implies (yb)?6=2 = 1. Now from (V) we deduce that [yb,b] = 1, and hence [y,b] = 1.
It follows that y2 =1, so y = 1, as desired.

Corollary 2. Let G € T. Then for any finite system of equations S1(X) =1,...,5:(X) =
1 over G one can effectively find a single equation S(X) =1 over G such that

Ve(Sh,. ., Sn) = Va(S).

Proof. By induction it suffices to prove the result for £ = 2. In this case, by the lemma
above, the following equation (after bringing the right side to the left)

S1(X)2aS1(X)%a™! = (So(X)bSa(X)b~1)?
can be chosen as the equation S(X) = 1.

Corollary 3. For any finite system of equations

(A\S(X)=1) ~ar S(XO) =1,

Remark 1. In the proof of Lemma 8 and Corollaries 2 and 8 we did not use the condition
(WCSA) so the results hold for an arbitrary non-abelian torsion-free commutation transitive
group satisfying Vought’s conjecture.

The next lemma shows how to rewrite finite disjunctions of equations into conjunctions
of equations. In the case of free groups this result was known for years (in [33] Makanin
attributes this to Y.Gurevich). We give here a different proof.
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Lemma 4. Let G be a CSA group and let a,b be arbitrary non-commuting elements in
G. Then for any solution z,y € G of the system

[,y =1, [2,¢"] =1, [,y =1, (8)
either x =1 or y = 1. The converse is also true.

Proof. Suppose z,y are non-trivial elements from G, such that
[,y =1, [o,y ] =1, [&,y"] =1

Then by the transitivity of commutation [y®,y**] = 1 and [y%,y®] = 1. The first relation
implies that [y,y?] = 1, and since a maximal Abelian subgroup M of G containing y is
malnormal in G, we have [y,a] = 1. Now from [y%,y*] = 1 it follows that [y,y%] = 1 and,
consequently, [y, b] = 1. This implies [a, b] = 1, a contradiction, which completes the proof.

Combining Lemmas 4 and 3 yields an algorithm to encode an arbitrary finite disjunction
of equations into a single equation.

Corollary 4. Let G € T. Then for any finite set of equations S1(X) =1,...,5:(X) =1
over G one can effectively find a single equation S(X) =1 over G such that

Va(S1)U...UVg(Sk) = Ve(9).
Inspection of the proof above shows that the following corollary holds.

Corollary 5. For any finite set of equations S1(X)=1,...,5k(X) =1 in L4, one can
effectively find a single equation S(X) =1 in Ly such that

(V $i(X) =1) ~ar S(X) =1,

Corollary 6. FEvery positive quantifier-free formula ®(X) in La is equivalent modulo
At to a single equation S(X) = 1.

The next result shows that one can effectively encode finite conjunctions and finite
disjunctions of inequalities into a single inequality modulo A.

Lemma 5. For any finite set of inequalities

in La, one can effectively find an inequality R(X) # 1 and an inequality T(X) # 1 in La

such that i

(N\Si(X)#1) ~a, R(X)#1

=1

and
k

(V/ Si(X) #1) ~ar T(X)#1.

i=1
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Proof. By Corollary 5 there exists an equation R(X) = 1 such that

Hence

k k
(N\SiX)#£1) ~ar =(\/ Si(X)=1) ~a, 2(R(X)=1) ~a, R(X)#1.

=1 i=1

This proves the first part of the result. Similarly, by Corollary 3 there exists an equation

T(X) =1 such that
k

(A\S(X)=1) ~ay T(X) =1,

Hence

This completes the proof.

Corollary 7. For every quantifier-free formula ®(X) in the language L4, one can ef-
fectively find a formula

(X)) =\/(S:i(X)=1 & Ti(X)#1)

=1

in Lo which is equivalent to ®(X) modulo Ar. In particular, if G € T, then every quantifier-
free formula ®(X) in Lg is equivalent over G to a formula U(X) as above.

3.2 Universal formulas over F

In this section we discuss canonical forms of universal formulas in the language L 4 modulo
the theory Az of the class 7 of all torsion-free non-Abelian CSA groups satisfying Vaught’s
conjecture. We show that every universal formula in L4 is equivalent modulo A7 to a
universal formula in canonical radical form. This implies that if G € 7 is generated by A,
then the universal theory of G in the language L4 consists of the the axioms describing the
diagram of G (multiplication table for G with all the equalities and inequalities between
group words in A), the set of axioms A7, and a set of axioms Ag which describes the
radicals of finite systems over G.

Also, we describe an effective quantifier elimination for universal positive formulas in L 4
modulo Th4(G), where G € T and G is a BP-group (in particular, a non-Abelian freely
discriminated group). Notice, that in Section 4.4 in the case when G is a free group, we
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describe an effective quantifier elimination procedure (due to Merzljakov and Makanin) for
arbitrary positive sentences modulo Th4(G).

Let G € T and A be a generating set for G.

We say that a universal formula in L 4 is in canonical radical form (is a radical formula)
if it has the following form

sr(X) = VY (S(X,Y) =1 = T(Y) =1) (9)

for some S € GIX UY], T € GY].

For an arbitrary finite system S(X) = 1 with coefficients from A denote by S(X) = 1 an
equation which is equivalent over G to the system S(X) =1 (such S(X) exists by Corollary
3). Then for the radical R(S) of the system S =1 we have

R(S) ={T € G[X]| G | P51}
It follows that the set of radical sentences

As = {(I)S:p |G E (I)S‘,T}
describes precisely the radical R(S) of the system S =1 over G, hence the name.
Lemma 6. Every universal formula in L 4 is equivalent modulo A7 to a radical formula.

Proof. By Corollary 7 every Boolean combination of atomic formulas in the language
L 4 is equivalent modulo A7 to a formula of the type

n

V(Si=1 & T, #1).

i=1
This implies that every existential formula in L4 is equivalent to a formula in the form
n

W\ (S:i(X,Y) =1 & Ti(X,Y) # 1)).

i=1
This formula is equivalent modulo A7 to the formula
3z 3 W (N2 #£D) & (V(Si(XY)=1 & Ti(X,Y) = 2))).
i=1 i=1

By Corollaries 5 and 3 one can effectively find S € G[X,Y, Z] and T € G[Z] (where Z =
(#21,...,2n)) such that

\7(5}(}(,5/):1 & Ti(X,Y)=2) ~a, S(X,Y,2)=1

i=1

and
n

NGz #1) ~a, T(2)#1.

i=1
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It follows that every existential formula in L 4 is equivalent modulo A7 to a formula of the

type
AZIY(S(X,Y,Z)=1 & T(Z)#1).

Hence every universal formula in L4 is equivalent modulo A7 to a formula in the form
VZVY (S(X,Y,Z) #1 \| T(Z)=1),

which is equivalent to the radical formula
VYZVY (S(X,Y,Z)=1 — T(Z) =1).

This proves the lemma.
Now we consider universal positive formulas.

Lemma 7. Let G be a BP-group from T. Then
GEVXUX)=1) = GX|EUX)=1,
i.e., only the trivial equation has the whole set G™ as its solution set.

Proof. The group G[X] is discriminated by G [4]. Therefore, if the word U(X) is a
non-trivial element of G[X], then there exists a G-homomorphism ¢ : G[X] — G such that
U? # 1. But then U(X?) # 1 in G —— contradiction with conditions of the lemma. So
U(X)=1in G[X].

Remark 2. The proof above holds for every non-Abelian group G for which G[X] is
discriminated by G.

The next result shows how to eliminate quantifiers from positive universal formulas over
non-Abelian freely discriminated groups.

Lemma 8. Let G be a BP-group from T. For a given word U(X,Y) € GIX UY], one
can effectively find a word W(Y') € G[Y] such that

VX(UX,Y)=1) ~g W()=1. (10)

Proof. By Lemma 7, for any tuple of constants C' from G, the following equivalence
holds:
GEVXUX,C)=1) < GX|EUX,C)=1.

Now it suffices to prove that for a given U(X,Y) € G[X UY] one can effectively find a word
W(Y) € G[Y] such that for any tuple of constants C over F the following equivalence holds

GIX|EUX,0) =1+ GEW(C)=1.

We do this by induction on the syllable length of U(X,Y") which comes from the free product
G[X UY] = G[Y]* F(X) (notice that F(X) does not contain constants from G, but G[Y]
does). If U(X,Y) is of the syllable length 1, then either U(X,Y) = U(X) € F(X) or
UX,Y)=U(Y) € GIY]. In the first event F = U(X) = 1 means exactly that the reduced
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form of U(X) is trivial, so we can take W (Y) trivial also. In the event U(X,Y) =U(Y) we
can take W(Y) = U(Y).
Suppose now that U(X,Y) € G[Y] * F(X) and it has the following reduced form:

U(X,Y) = g1(Y)or(X)g2(Y)va(X) ... v (X)gm+1(Y)

where v;’s are reduced nontrivial words in F(X) and g¢;(Y)’s are reduced words in G[Y]
which are all nontrivial except, possibly, g1(Y) and gp41(Y).

If for a tuple of constants C' over G we have G[X] |= U(X,C) = 1 then at least one of
the elements go(C), ..., g, (C) must be trivial in G. This observation leads to the following
construction. For each i = 2,...,m delete the subword ¢;(Y") from U(X,Y") and reduce the
new word to the reduced form in the free product F'(X)*G[Y]. Denote the resulting word by
Ui(X,Y). Notice that the syllable length of U;(X,Y) is less then the length of U(X,Y"). It
follows from the argument above that for any tuple of constants C the following equivalence
holds:

GXIEUX,C)=1<=G[X] \7(9,(0) =1&Ui(X,C)=1).

By induction one can effectively find words Wa(Y),...,W,,(Y) € G[Y] such that for any
tuple of constants C' we have

GIX]EU(X,0) =1+ GEWi(C) =1,
for each ¢ = 2,...,m. Combining the equivalences above we see that
GXIFUX,C)=1+=G \7(91-(6‘) =1& W;(C) =1).
i=2
By Corollaries 3 and 5 from the previous section we can effectively rewrite the disjunction
\m/(gi(Y) =1& W (Y)=1)
i=2

as a single equation W(Y) = 1. That finishes the proof.

3.3 Positive and general formulas

In this section we describe normal forms of general formulas and positive formulas. We
show that every positive formula is equivalent modulo A7 to a formula which consists of an
equation and a string of quantifiers in front of it; and for an arbitrary formula ® either ® or
—® is equivalent modulo A7 to a formula in a general radical form (it is a radical formula
with a string of quantifiers in front of it).

Lemma 9. FEvery positive formula ®(X) in L, is equivalent modulo At to a formula
of the type
Q1 X1 QpXK(S(X, Xq,...,Xk) =1),

where Q; € {3,V} (i =1,...,k).
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Proof. The result follows immediately from Corollaries 3 and 5.

Lemma 10. Let ®(X) be a formula in La of the form
D(X)=@Q1 Xy ... QpXkVYPo(X, X1,..., X, Y),

where Q; € {3,V} and g is a quantifier-free formula. Then one can effectively find a
formula U(X) of the form

U(X) = Q1X1 ... QuXVYVZ(S(X, X1, ..., X, Y, Z) = 1 = T(Z) = 1)
such that ®(X) is equivalent to ¥(X) modulo Ar.

Proof. Let
D(X)=@Q1X1...QrXikVYPo(X, X1,..., Xk, Y),

where Q; € {3,V} and @ is a quantifier- free formula. By Lemma 6 there exists equations
S(X,X41,...,X,Y,Z)=1and T(Z) = 1 such that

VY ®o(X, X1,...,X,Y) ~a, VYVZ(S(X1,... X, Y, Z2)=1 — T(Z)=1).
It follows that
D(X)=Q1 X1 ... QuXp VY ®o(X, X1,..., X0, Y) ~a, QX1 .. . QpXiVYVZ(S(X,..., X,Y,Z) =1 T(Z) =
as desired.

Lemma 11. For any formula ®(X) in the language La, one can effectively find a
formula U(X) in the language L4 in the form

U(X) = 3X,VY .. 3XGYVVZ(S(X, X1, V1, .. X Vi Z) = 1 > T(Z) = 1),

such that ®(X) or its negation =®(X) (and we can check effectively which one of them) is
equivalent to U(X) modulo Ar.

Proof. For any formula ®(X) in the language L4 one can effectively find a disjunctive
normal form ®;(X) of ®(X), as well as a disjunctive normal form ®; of the negation
(X)) of &(X) (see, for example, [9]). We can assume that either in ®1(X) or in ®o(X)
the quantifier prefix ends with a universal quantifier. Moreover, adding (if necessary) an
existential quantifier Jv in front of the formula (where v does not occur in the formula) we
may also assume that the formula begins with an existential quantifier. Now by Lemma 10
one can effectively find a formula ¥ with the required conditions. [J

4 Generalized equations and positive theory of free groups

Makanin [32] introduced the concept of a generalized equation constructed for a finite system
of equations in a free group F' = F'(A). Geometrically a generalized equation consists of three
kinds of objects: bases, boundaries and items. Roughly it is a long interval with marked
division points. The marked division points are the boundaries. Subintervals between
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Xyz=1

Figure 1: From the cancellation tree for the equation xyz = 1 to the generalized equation
(x=XoXy, y=A"0)3, 2=A3 0T

division points are items (we assign a variable to each item). Line segments below certain
subintervals, beginning at some boundary and ending at some other boundary, are bases.
Each base either corresponds to a letter from A or has a double.

This concept becomes crucial to our subsequent work and is difficult to understand. This
is one of the main tools used to describe solution sets of systems of equations. In subsequent
papers we will use it also to obtain effectively different splittings of groups. Before we give
a formal definition we will try to motivate it with a simple example.

Suppose we have the simple equation xyz = 1 in a free group. Suppose that we have
a solution to this equation denoted by z?,y?, 2% where is ¢ is a given homomorphism into
a free group F(A). Since 2?,y?, 2% are reduced words in the generators A there must be
complete cancellation. If we take a concatenation of the geodesic subpaths corresponding
to 2?,y® and z? we obtain a path in the Cayley graph corresponding to this complete
cancellation. This is called a cancellation tree (see Fig. 1). In the simplest situation
T =A 0Ny = /\2_1 oAz and z = )\3_1 o )\1_1. The generalized equation would then be the
following interval.

The boundaries would be the division points, the bases are the \’'s and the items in this
simple case are also the \'s. In a more complicated equation where the variables X,Y, Z
appear more than one time this basic interval would be extended, Since the solution of any
equation in a free group must involve complete cancellation this drawing of the interval is
essentially the way one would solve such an equation. Our picture above depended on one
fixed solution ¢. However for any equation there are only finitely many such cancellation
trees and hence only finitely many generalized equations.
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4.1 Generalized equations

Let A={ai,...,an} be a set of constants and X = {x1,...,z,} be a set of variables. Put

G =F(A) and G[X] = G * F(X).

Definition 8. A combinatorial generalized equation 2 (with constants from A*!) con-
sists of the following objects:

1. A finite set of bases BS = BS(Q2). Every base is either a constant base or a variable
base. Each constant base is associated with exactly one letter from A*'. The set of variable
bases M consists of 2n elements M = {1, ..., uan}t. The set M comes equipped with two
functions: a functione : M — {1,—1} and an involution A : M — M (i.e., A is a bijection
such that A? is an identity on M). Bases p and A(w) (or i) are called dual bases. We
denote variable bases by p, A, . ...

2. A set of boundaries BD = BD(R)). BD is a finite initial segment of the set of
positive integers BD = {1,2,... p+ 1}. We use letters i, ], ... for boundaries.

3. Two functions o : BS — BD and § : BS — BD. We call a(p) and B(u) the
initial and terminal boundaries of the base pu (or endpoints of ). These functions satisfy
the following conditions: a(b) < B(b) for every base b € BS; if b is a constant base then
B(b) = a(b) + 1.

4. A finite set of boundary connections BC = BC(Q2). A boundary connection is
a triple (i,p,j) where i,j5 € BD, p € M such that a(p) < i < B(p) and a(A(u)) < j <
B(A(p)). We will assume for simplicity, that if (i,u,75) € BC then (j, A(u),i) € BC. This
allows one to identify connections (i, pu,7) and (j, A(u), 7).

For a combinatorial generalized equation €2, one can canonically associate a system of
equations in variables hy,. .., h, over F(A) (variables h; are sometimes called items). This
system is called a generalized equation, and (slightly abusing the language) we denote it
by the same symbol 2. The generalized equation €2 consists of the following three types of
equations.

1. Each pair of dual variable bases (A, A(A)) provides an equation

=) Ao,

[hayhay+1 - haon-11"" = [haa) haamy)+1 - haam)

These equations are called basic equations.
2. For each constant base b we write down a coefficient equation

hawy = a,

where a € A*! is the constant associated with b.
3. Every boundary connection (p, A, q) gives rise to a boundary equation

[Payhay+1 - hp—1] = [Paar))haa))+1 - hg—1],
if e(A) =e(A(N\)) and
[ha(yhany+1 - hp—1] = [Bghgir -~ haapy-1) ",
if £(A) = —e(A(V)).
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Remark 3. We assume that every generalized equation comes associated with a combi-
natorial one;

Example. Consider as an example the Malcev equation [z, y|[b,a] = 1, where a,b € A.
Consider the following solution of this equation:

z? = ((b™a)"2b)"2b"a, y® = (D™ a)"?b.

Fig. 2 shows the cancellation tree and the generalized equation for this solution. This

[x.yl[b,a]=1

Figure 2: A cancellation tree and the generalized equation corresponding to this tree for the
equation [z, y][b,a] = 1.

generalized equation has ten variables hi,...,h1p and eleven boundaries. The system of
basic equations for this generalized equation is the following

h1 = h7, hy = hg, hs = hg, hihahghy = hghy, hs = hghohip.
The system of coefficient equations is
hs =b, hay =a, hg =a, hip =0.
Definition 9. Let Q(h) = {L1(h) = R1(h),...,Ls(h) = Rs(h)} be a generalized equa-

tion in variables h = (hi, ..., h,) with constants from A*L A sequence of reduced nonempty
words U = (Uy(A),...,U,(A)) in the alphabet A*' is a solution of Q if:

1) all words L;(U), R;(U) are reduced as written;
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2) Ll(U) ZRl(U), 1= 1,...8.
The notation (€2, U) means that U is a solution of the generalized equation (.

Remark 4. Notice that a solution U of a generalized equation £ can be viewed as
a solution of Q in the free monoid Fon(A*Y) (i.e., the equalities Liy(U) = R;(U) are
graphical) which satisfies an additional condition U € F(A) < Fpon(ATh).

Obviously, each solution U of Q gives rise to a solution of Q in the free group F(A). The
converse does not hold in general, i.e., it might happen that U is a solution of Q in F'(A)
but not in Fy,,, (ATY), ie., all equalities L;(U) = R;(U) hold only after a free reduction
but not graphically. We introduce the following notation which will allow us to distinguish
in which structure (Fy,,n,(A*!) or F(A)) we are looking for solutions for .

If

S = {Ll(h) = Rl(h)a sy Ls(h) = Rs(h)}

is an arbitrary system of equations with constants from A*!, then by S* we denote the
system of equations

S§* = {Ly(h)Ry(h) ™" =1,...,Ly(h)Ry(h)~ ' =1}
over the free group F(A).

Definition 10. A generalized equation € is called formally consistent if it satisfies the
following conditions.

1) If e(p) = —e(A(p)), then the bases p and A(p) do not intersect, i.e. non of the the
items ho (), hg(u—1 1s contained in A(w).

2) If two boundary equations have respective parameters (p, \,q) and (p1, A, q1) with p <
p1, then ¢ < qp in the case whene(N)e(A(N)) =1, and g > q1 in the case e(N)e(A(N)) =
—1, in particular, if p = p1 then ¢ = q1.

3) Let p be a base such that a(p) = a(A(p)) (in this case we say that bases p and A(w)
form a matched pair of dual bases). If (p,u,q) is a boundary connection related to
then p = q.

4) A wariable cannot occur in two distinct coefficient equations, i.e., any two constant
bases with the same left end-point are labelled by the same letter from AT!.

5) If h; is a variable from some coefficient equation, and if (i,p,q1), (i + 1, u,q2) are
boundary connections, then |q1 — qa| = 1.

Lemma 12. 1. If a generalized equation Q has a solution then Q is formally consis-
tent;

2. There is an algorithm which for every generalized equation checks whether it is formally
consistent or not.

The proof is easy and we omit it.
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Remark 5. In the sequel we consider only formally consistent generalized equations.

It is convenient to visualize a generalized equation 2 as follows.

1 2 3 p—1 p

4.2 Reduction to generalized equations

In this section, following Makanin [32], we show how for a given finite system of equations
S(X,A) = 1 over a free group F(A) one can canonically associate a finite collection of
generalized equations GE(S) with constants from A*!, which to some extent describes all
solutions of the system S(X,A) = 1.

Let S(X,A) = 1 be a finite system of equations S; = 1,...,5,, = 1 over a free group
F(A). We write S(X,A) =1 in the form

r11r12... 7’1[1 = 1,
T21722 ...T2, = 1, (11)

m1T™m2 - - - Tmlm = 1,

where 7;; are letters in the alphabet X g A+,
A partition table T of the system above is a set of reduced words

T={Vij(z1,...,2)} (1<i<m,1<j<U)

from a free group F[Z] = F(AU Z), where Z = {z1,...,2,}, which satisfies the following
conditions:

1) The equality V;1Via...Vy, = 1,1 <i < m, holds in F[Z];
2) Vil <l = 1;
3) if rjj = a € A*L, then Vj; = a.

Since |V;;| < 1; — 1 then at most |S| = i~ (I; — 1)I; different letters z; can occur in a
partition table of the equation S(X, A) = 1. Therefore we will always assume that p < |S|.

Each partition table encodes a particular type of cancellation that happens when one
substitutes a particular solution W(A) € F(A) into S(X,A) = 1 and then freely reduces
the words in S(W(A), A) into the empty word.
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Lemma 13. Let S(X,A) =1 be a finite system of equations over F(A). Then

1) the set PT(S) of all partition tables of S(X,A) = 1 is finite, and its cardinality is
bounded by a number which depends only on |S(X, A)|;

2) one can effectively enumerate the set PT(S).

Proof. Since the words V;; have bounded length, one can effectively enumerate the finite
set of all collections of words {V;;} in F[Z] which satisfy the conditions 2), 3) above. Now for
each such collection {V;;}, one can effectively check whether the equalities V;;Via... Vi, =
1,1 < i < m hold in the free group F[Z] or not. This allows one to list effectively all
partition tables for S(X,A) =1. O

To each partition table T = {V;;} one can assign a generalized equation Qp in the
following way (below we use the notation = for graphical equality). Consider the following
word V in M(A*L U Z+!) .

V = V11V12...V111 ...levmg...lem =Y ...yp,

where y; € AT U Z*+! and p = I(V) is the length of V. Then the generalized equation
Qr = Qp(h) has p + 1 boundaries and p variables hq,...,h, which are denoted by h =
(his-.. 5 hy).

Now we define bases of Q07 and the functions «, 3, €.

Let z € Z. For any two distinct occurrences of z in V as

yi =27, y; =29 (g5,65 € {1,-1})

we introduce a pair of dual variable bases p, ;, i1, ; such that A, ;) = p, ; (say, if i < j).
Put

alpzi) =1, Ppss) =1i+1, €(ps;) =¢;.

The basic equation that corresponds to this pair of dual bases is h;* = hSi.
Let z € X. For any two distinct occurrences of = in S(X,A4) =1 as

riJ = inj’ rSat = wgst (Eijvgst € {17 _1})

we introduce a pair of dual bases 5, ; and piz s such that A(uz; ;) = fase (say, if
(4,7) < (s,t) in the left lexicographic order). Now let V;; occurs in the word V' as a subword
Vij =Ye. . Ya-
Then we put
a(poig) = ¢ Bliaiz) =d+1, €(ta,ij) = cij
The basic equation which corresponds to these dual bases can be written in the form

€ij —

(hapais) - - 1B =117 = [Pa(ue o) - - PB(ae) -1

]Est

Let r;j =a € A*!. In this case we introduce a constant base wi; with the label a. If Vj;
occurs in V' as V;; = y., then we put

a(piz) = ¢, B(pij) = c+ 1.
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The corresponding coefficient equation is written as h. = a.
The list of boundary connections here (and hence the boundary equations) is empty.
This defines the generalized equation Q7. Put

GE(S) ={Qr | T is a partition table for S(X,A) = 1}.

Then GE(S) is a finite collection of generalized equations which can be effectively con-
structed for a given S(X, A) = 1.

For a generalized equation ) we can also consider the same system of equations in a free
group. We denote this system by Q*. By Frq) we denote the coordinate group of 2*. Now
we explain relations between the coordinate groups of S(X, A) =1 and Q..

For a letter z in X we choose an arbitrary occurrence of  in S(X,A) =1 as

Tij = .Z‘Eij .

Let pt = 2,45 be the base that corresponds to this occurrence of . Then Vj; occurs in V'
as the subword

Vii = Ya(u) -+ Y()-1-
Define a word P,(h) € F[h] (where h = {hq,...,h,}) as

Py(h,A) =h K

€ij
a(p) =+ g(p)—11
and put

P(h) = (Pyy,-.., Pr,).

The tuple of words P(h) depends on a choice of occurrences of letters from X in V. It
follows from the construction above that the map X — F[h] defined by x — P, (h, A) gives
rise to an F-homomorphism

I FR(S) — FR(QT)'

Observe that the image 7(x) in Fg(q,) does not depend on a particular choice of the
occurrence of = in S(X, A) (the basic equations of r make these images equal). Hence 7
depends only on Q7.

Now we relate solutions of S(X, A) = 1 with solutions of generalized equations from
GE(S). Let W(A) be a solution of S(X,A) =1in F(A). If in the system (11) we make the
substitution o : X — W(A), then

o _ 0,0 o __
(rawriz . ..ri,)” =riry...org, =1

in F'(A) for every i = 1,...,m. Hence every product R; = r{;r%...75 can be reduced to
the empty word by a sequence of free reductions. Let us fix a particular reduction process
for each R;. Denote by Z1,. .., Z, all the (maximal) non-trivial subwords of r{; that cancel
out in some R; (i = 1,...,m) during the chosen reduction process. Since every word 77} in
this process cancels out completely, ithat mplies that

’I’Z-aj = V;j(éh...,ép)

for some reduced words V;;(Z) in variables Z = {z1,...,2,}. Moreover, the equality above
is graphical. Observe also that if r;; = a € A*! then r7; = a and we have V;; = a. Since
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every word r7; in R; has at most one cancellation with any other word 7, and does not
have cancellation with itself, we have [(V;;) <l; — 1. This shows that the set T' = {V};} is
a partition table for S(X, A) = 1. Obviously,

UA) = (1,...,%)

is the solution of the generalized equation Q7, which is induced by W(A). From the con-
struction of the map P(H) we deduce that W(A) = P(U(A)).

The reverse is also true: if U(A) is an arbitrary solution of the generalized equation Qr,
then P(U(A)) is a solution of S(X,A) = 1.

We summarize the discussion above in the following lemma, which is essentially due to
Makanin [32].

Lemma 14. For a given system of equations S(X, A) =1 over a free group F' = F(A),
one can effectively construct a finite set

GE(S) ={Qr | T is a partition table for S(X,A) =1}
of generalized equations such that
1. If the set GE(S) is empty, then S(X, A) =1 has no solutions in F(A);

2. for each Q(H) € GE(S) and for each x € X one can effectively find a word P,(H, A) €
F[H] of length at most |H| such that the map x :— P,(H,A) (x € X) gives rise to an
F-homomorphism mq : Fr(sy — Fre);

3. for any solution W(A) € F(A)™ of the system S(X,A) = 1 there exists Q(H) €
GE(S) and a solution U(A) of Q(H) such that W(A) = P(U(A)), where P(H) =
(Pyyy- -y Pr,), and this equality is graphical;

4. for any F-group F, if a generalized equation Q(H) € GE(S) has a solution UinF,
then P(U) is a solution of S(X,A) =1 in F.

Corollary 8. In the notations of Lemma 14 for any solution W(A) € F(A)"™ of the

system S(X, A) = 1 there exists Q(H) € GE(S) and a solution U(A) of Q(H) such that the

following diagram commutes.

T
Frsy = Freo)

T
w U
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4.3 Generalized equations with parameters

In this section, following [45] and [21], we consider generalized equations with parameters.
This kind of equations appear naturally in Makanin’s type rewriting processes and provide
a convenient tool to organize induction properly.

Let Q be a generalized equation. An item h; belongs to a base u (and, in this event, u
contains h;) if a(p) <i < B(p) — 1. An item h; is constant if it belongs to a constant base,
h; is free if it does not belong to any base. By ~(h;) = ; we denote the number of bases
which contain h;. We call ~; the degree of h;.

A boundary i crosses (or intersects) the base p if a(p) < i < B(p). A boundary i touches
the base p (or 7 is an end-point of p) if ¢ = a(u) or ¢ = B(n). A boundary is said to be
open if it crosses at least one base, otherwise it is called closed. We say that a boundary ¢
is tied (or bound) by a base u (or p-tied) if there exists a boundary connection (p, i, ¢) such
that ¢ = p or i = ¢q. A boundary is free if it does not touch any base and it is not tied by a
boundary connection.

A set of consecutive items [z, j] = {h;,...,hiyj—1} is called a section. A section is said
to be closed if the boundaries ¢ and ¢ + j are closed and all the boundaries between them
are open. A base p is contained in a base A if a(\) < afp) < B(u) < B(N). If p is a base
then by o(u) we denote the section [« (i), 8(u)] and by h(u) we denote the product of items
Pa(y) - - - hp(u)—1- In general for a section [i, j] by h[i, j] we denote the product h;...h; 1.

Definition 11. Let 2 be a generalized equation. If the set ¥ = X of all closed sections
of Q is partitioned into a disjoint union of subsets

Yo =V UPSUCE, (12)

then ) is called a generalized equation with parameters or a parametric generalized equa-
tion. Sections from VX, P, and C'Y are called correspondingly, variable, parametric, and
constant sections. To organize the branching process properly, we usually divide variable
sections into two disjoint parts:

V=AY UNAX (13)

Sections from AY are called active, and sections from NAY are non-active. In the case
when partition (13) is not specified we assume that AXL = VX. Thus, in general, we have a
partition

Yo=AYXUNAXUPYXUCYE (14)

If o € X2, then every base or item from o is called active, non-active, parametric, or constant,
with respect to the type of o.

We will see later that every parametric generalized equation can be written in a particular
standard form.

Definition 12. We say that a parametric generalized equation € s in a standard form
if the following conditions hold:

1) all non-active sections from N AXq are located to the right of all active sections from
AY, all parametric sections from PXq are located to the right of all non-active sections,
and all constant sections from CX are located to the right of all parametric sections;
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namely, there are numbers 1 < pa < pna < pp < pe < p=pq such that [1,p4 + 1],
[pa+1,pva+1], [onva+1,pp+ 1], and [pp + 1, pa + 1] are, correspondingly, unions
of all active, all non-active, all parametric, and all constant sections;

2) for every letter a € A*! there is at most one constant base in Q labelled by a, and all
such bases are located in the CX;

3) every free variable (item) h; of Q is located in C'X.

Now we describe a typical method for constructing generalized equations with parameters
starting with a system of ordinary group equations with constants from A.
Parametric generalized equations corresponding to group equations
Let
S(X,Y1,Ys,....Y, A) =1 (15)

be a finite system of equations with constants from A*! and with the set of variables
partitioned into a disjoint union
XUhu...JuYy, (16)

Denote by GE(S) the set of generalized equations corresponding to S = 1 from Lemma
14. Pt Y =Y U...UY). Let Q € GE(S). Recall that every base p occurs in € either
related to some occurrence of a variable from X UY in the system S(X,Y,A) = 1, or
related to an occurrence of a letter z € Z in the word V' (see Lemma 13), or is a constant
base. If u corresponds to a variable x € X (y € Y;) then we say that p is an X-base
(Yi-base). Sometimes we refer to Y;-bases as to Y bases. For a base p of 2 denote by o,
the section o, = [a(n), B(r)]. Observe that the section o, is closed in 2 for every X-base,
or Y-base. If p is an X-base (Y-base or Y;-base), then the section o, is called an X -section
(Y-section or Y;-section). If v is a constant base and the section o, is closed then we call o,
a constant section. Using the derived transformation D2 we transport all closed Y;-sections
to the right end of the generalized equations behind all the sections of the equation (in
an arbitrary order), then we transport all Ya-sections an put them behind all Y;-sections,
and so on. Eventually, we transport all Y-sections to the very end of the interval and they
appear there with respect to the partition (16). After that we take all the constant sections
and put them behind all the parametric sections. Now, let AY be the set of all X-sections,
NAY = (), PY be the set of all Y-sections, and CX be the set of all constant sections. This
defines a parametric generalized equation 2 = 0y with parameters corresponding to the
set of variables Y. If the partition of variables (16) is fixed we will omit Y in the notation
above and call 2 the parameterized equation obtained from 2. Denote by

GEpar(Q) = {Qy | Q€ GE(Q)}

the set of all parameterized equations of the system (15).

4.4 Positive theory of free groups

In this section we prove first the Merzljakov’s result on elimination of quantifiers for positive
sentences over free group F' = F(A) [36]. This proof is based on the notion of a general-
ized equation. Combining Merzljakov’s theorem with Makanin’s result on decidability of
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equations over free groups we obtain decidability of the positive theory of free groups. This
argument is due to Makanin [33].
Recall that every positive formula ¥(Z) in the language L 4 is equivalent modulo A7 to
a formula of the type
Vai3yr .. Vo Jye(S(X, Y, Z,A) = 1),

where S(X,Y,Z,A) = 1 is an equation with constants from A*! X = (z1,...,73),Y =
(Y1,---59%), Z = (21,-.-,2m). Indeed, one can insert fictitious quantifiers to ensure the
direct alteration of quantifiers in the prefix. In particular, every positive sentence in L, is
equivalent modulo A7 to a formula of the type

Vai3yr .. Vo Jye(S(X, Y, A) = 1).
Now we prove the Merzlyakov’s theorem from [36], though in a slightly different form.
Merzljakov’s Theorem. If
F EVr 3y .. Vo Jy(S(X, Y, A) = 1),
then there exist words (with constants from F) q1(x1),...,qr(x1,...,z) € F[X], such that
F[X] E S(x1,q(x1), .- 2k, g (21, .. oy xp, A)) = 1,

i.e., the equation
S(x17y17"'7xk7yk7‘4) =1

(in variables Y) has a solution in the free group F[X].

Proof. Let GE(u) = {Q1(Z1),...,9:(Z-)} be generalized equations associated with
equation S(X,Y, A) = 1 in Lemma 14. Denote by p; = |Z;| the number of variables in ;.
Let a,b € A,[a,b] # 1, and put

g1 = ba™" ba"™%b...a™ b,

where m1; < miy < ...my,, and max{ps,..., p.}|S(X, A)| < ny1. Then there exists hy such
that

F ': V:Cgﬂyg .. .Vl‘kﬂyk(S(gh hl,l'g,yg, ey l‘k7yk) = 1)
Suppose now that elements g1, hq,...g,-1,h;—1 € F are given. We define

gi = ba™ba™2h. .. a™imib (17)
such that:
1) ma < myg < .. My,
2) max{p1,...,pr }S(X, A)| < ny;

3) no subword of the type ba™iib occur in any of the words g;, h; for | < i.
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We call words 17 Merzljakov’s words. Then there exists an element h; € F such that

FEVei Iy - Yoy (S(91, has - -5 i by Tt Yige1s -+ T, i) = 1).

By induction we have constructed elements g1, hq, ..., g, hx € F such that

S(gl7h17"‘7gk7hk:> =1

and each g; has the form (17) and satisfies the conditions 1), 2), 3).

By Lemma 14 there exists a generalized equation Q(Z) € GE(S), words P;,(Z, A),Q:(Z, A) €
F[Z] (i = 1,...,k) of length not more then p = |Z|, and a solution U = (u1,...,u,) of
Q(Z) in F such that the following words are graphically equal:

gi:Pi(U), hzZQl(U) (i:1,...,/€).

Since n; > p|S(X, A)| (by condition 2)) and P;(U) = y1 ...y, with y; € Ut q < p, the
graphical equalities

gi = ba™tba™2b...a™mib=P,(U) (i=1,...,k) (18)

show that there exists a subword v; = ba™# b of g; such that every occurrence of this subword
in (18) is an occurrence inside some ujd. For each 4 fix such a subword v; = ba™#b in g,.
In view of condition 3) the word v; does not occur in any of the words g; (j # 1), hs (s < 1),
moreover, in g; it occurs precisely once. Denote by j(7) the unique index such that v; occurs
inside ufé) in P;(U) from (18) (and v; occurs in it precisely once).

The argument above shows that the variable zj(;) does not occur in words P;(Z, A)
(t #£1), Qs(Z,A) (s < i). Moreover, in P;(Z) it occurs precisely once. It follows that the
variable z;(;) in the generalized equation (Z) does not occur neither in coefficient equations

nor in basic equations corresponding to the dual bases related to x; (t # i), ys (s < ).

We "mark” (or select) the unique occurrence of v; (as v') in wiy 1= 1,...,k. Now
we are going to mark some other occurrences of v; in words uy,...,u, as follows. Suppose
)

some uq has a marked occurrence of some v;. If 2 contains an equation of the type 25 = 27,
then u& = ul graphically. Hence u, has an occurrence of subword viﬂ which correspond to
the marked occurrence of viﬂ in ug. We mark this occurrence of v!

5 in u,.
Suppose €2 contains an equation of the type

[hal s hﬁlfl]gl = [haz s hﬁ2*1]62
such that z4 occurs in it, say in the left. Then

€1 _ [ }62

[way - - - ug —1] Uqy -+ - UBy—1

graphically. Since viiH is a subword of wug, it occurs also in the right-hand part of the

equality above, say in some u,. We marked this occurrence of v;tH in u,. The marking
process will be over in finitely many steps. Observe that one and the same w, can have
several marked occurrences of some vl-il.

Now in all words u4, ..., u, we replace every marked occurrence of v; = ba™# b with a new

word ba"# ;b from the group F[X]. Denote the resulting words from F[X] by @1, ..., q,. It
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follows from description of the marking process that the tuple U= (@1,...,7,) is a solution
of the generalized equation § in the free group F[X]. Indeed, all the equations in Q are
graphically satisfied by the substitution z; — wu; hence the substitution u; — 1; still makes

them graphically equal. Now by Lemma 14 X = P(U),Y = Q(U) is a solution of the
equation S(X, A) =1 over F[X] as desired. O

Corollary 9. [33] There is an algorithm which for a given positive sentence
Va13yr ... Vo Jye(S(X, Y, A) =1)

in L a determines whether or not this formula holds in F, and if it does, the algorithm finds
words

q1(z1), .-y qi(x1, ..., 28) € F[X]

such that
FIX|Eu(ry,qi(z1), . T qe(zr, ... 2x)) = 1

Proof. The proof follows from Proposition 4 and decidability of equations over free
groups with constraints y; € F[X;], where X; = {x1,...,2;} [32].

Definition 13. Let ¢ be a sentence in the language L o written in the standard form
¢ =Va1Jyr ... Vo Iyrdo(T1, Y1, - - Thy Y ),

where ¢g is a quantifier-free formula in Ly. We say that G freely lifts ¢ if there exist words
(with constants from F) qi1(x1),...,qx(x1,...,2r) € F[X], such that

F[X] ': (/50(1’1’(]1(371), e ,.Tk,Qk;(x]_,- - axk?aA)) =1

Theorem 4. F freely lifts every sentence in L4 that is true in F.

Proof. Suppose a sentence

¢ = Viﬂﬁyl .. -vxkayk(U(xhyla s 7$kayk) =1A V(xlaylw . ~;xk7yk) 7é 1)’ (19)

is true in F. We choose 1 = ¢g1,y1 = hi1,...,2x = gk,Yx = hi precisely like in the
Merzlyakov’s Theorem. Then the formula

U(gl,hl,...7gk,h;€)Zl/\V(gl,hl,...,gk,hk) #1

holds in F. In particular, U(g1,h1,...,9k, hx) = 1 in F. Tt follows from the argument in
Theorem 4 that there are words q1(z1) € Flz1], ..., qx(z1,...,2%) € Flx1,...,2zx] such that

F[X] ': U(Ilaql(xlw "axk)ﬂ'- '7xkaqk(zla"'axk)) =1

Moreover, it follows from the construction that hy = q1(g1),...,hx = qr(91,...,9%). We
claim that

FIX]EV(z1,q1 (21, ., Tk),y - oy Ty (X1, . .-y 1)) # 1
Indeed, if
Ve, qi(z1, .o yxp)y e Tk, qe (21, . xp)) = 1
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in F[X], then its image in F' under any specialization X — F is also trivial, but this is not
the case for specialization 1 — g¢1,...,2r — gr - contradiction. This proves the theorem
for sentences ¢ of the form (19). A similar argument works for formulas of the type

(b = Vl"lﬂyl .. -kaayk \/(Ui(mlvyla' .. 7xkayk) =1A ‘/i(xlaylw .. >$kayk) 7é 1)7
=1

which is, actually, the general case by Corollary 7. This finishes the proof. O

5 Makanin’s process and Cut equations

5.1 Elementary transformations

In this section we describe elementary transformations of generalized equations which were
introduced by Makanin in [32]. Recall that we consider only formally consistent equations.
In general, an elementary transformation E'T associates to a generalized equation €2 a finite
set of generalized equations ET(Q) = {Q1,...,Q,} and a collection of surjective homomor-
phisms 0; : Grq) — GRr(q,) such that for every pair (Q2, U) there exists a unique pair of the
type (€, U;) for which the following diagram commutes.
0,
Fray l > Freo))

Ty,
Ui T,

F(A)

Here my(X) = U. Since the pair (;,U;) is defined uniquely, we have a well-defined map
ET : (Q,U) — (Qian)~

ET1 (Cutting a base). Suppose ) contains a boundary connection < p, A,q >. Then we
replace (cut in p) the base A by two new bases A\; and A2 and also replace (cut in ¢) A(N)
by two new bases A(\1) and A(\g) such that the following conditions hold.

If e(A) = e(A(N)), then

a(A) =a(d), M) =p, a(A)=p, BA2) =B

a(A(A1)) = a(A(N), BAM))=4q, a(A(A)) =q B(AN:))=BAN));
If e(A) = —e(A(N)), then

a(M) =a(N), B(\)=p, a(l)=p, B(l2)=pN);
a(A(A1)) =¢q, BAMA)) =B(AMN),  a(A(X2)) = a(A(N), B(A(N2)) = g;
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Put e(A;) = (), e(A(N\)) =e(AN), i=1,2.

Let (p', \,¢') be a boundary connection in Q.

If p’ < p, then replace (p’, \,¢") by (p’, \1,¢).

If p’ > p, then replace (p', \,q’) by (', A2, ¢).

Notice, since the equation 2 is formally consistent, then the conditions above define
boundary connections in the new generalized equation. The resulting generalized equation
' is formally consistent. Put ET(Q) = {Q'}. Fig. 3 below explains the name of the
transformation ET1.

>

"CUT BASE"

=7

Figure 3: Elementary transformation ET1.

ET2 (Transfer of a base). Let a base 6 of a generalized equation €2 be contained in the
base p, i.e., a(pn) < a(f) < 5(0) < B(p)). Suppose that the boundaries «(f) and 5(0)) are
p-tied, i.e., there are boundary connections of the type < a(6), p,v1 > and < (), p, v2 >.
Suppose also that every #-tied boundary is p-tied. Then we transfer 6 from its location
on the base p to the corresponding location on the base A(u) and adjust all the basic and
boundary equations (see Fig. 4). More formally, we replace § by a new base 6’ such that
a(f') = v1,B(0") = 72 and replace each #-boundary connection (p,,q) with a new one
(p',¢,q) where p and p’ come from the p-boundary connection (p,u,p’). The resulting
equation is denoted by ' = ET2(Q).
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Figure 4: Elementary transformation ET2.

ET3 (Removal of a pair of matched bases (see Fig. 5)). Let p and A(p) be a pair of
matched bases in Q. Since € is formally consistent one has e(u) = e(A(n)), B(p) = B(A(u))
and every p-boundary connection is of the type (p, i, p). Remove the pair of bases p, A(u)
with all boundary connections related to p. Denote the new generalized equation by €.

Remark. Observe, that for i = 1,2,3 ETi(Q) consists of a single equation €, such that
Q and €' have the same set of variables H, and the identity map F[H| — F[H] induces an
F-isomorphism Fr(q) — Fr(qa/). Moreover, U is a solution of {1 if and only if U is a solution
of Q.

ET4 (Removal of a lonely base (see Fig. 6)). Suppose in Q a variable base p does not
intersect any other variable base, i.e., the items hy(,),-..,hg()—1 are contained in only
one variable base p. Suppose also that all boundaries in p are p-tied, i.e., for every i
(a(p) +1 < i < B —1) there exists a boundary b(i) such that (i,u,b(4)) is a boundary
connection in Q. For convenience we define: b(a(un)) = a(A(r)) and b(B(n)) = B(A(w)) if
c(u)e(A() = 1, and b(a(u)) = B(A (1)) and b(B(n)) = a(A(w)) if e()e(A(n)) = —1.

The transformation ET4 carries  into a unique generalized equation 2y which is
obtained from by deleting the pair of bases u and A(u); deleting all the boundaries
a(pw)+1,...,8(n) — 1 ( and renaming the rest 3(u) — a(p) — 1 boundaries) together with
all p-boundary connections; replacing every constant base A which is contained in p by a



37

=l

=l

Figure 5: Elementary transformation ET3.

constant base A" with the same label as A and such that a(\') = b(a(N)), B(N
We define the homomorphism 7 : Frq) — Freqr) as follows: 7(h;) = h; i

J = B(n);

wlhy) = { 1@ -1, ife(n) = e(Ap),
Ry - - hgi—1)—1, ife(pn) = —e(Ap)

for a+1 <7< G(p) — 1. It is not hard to see that 7 is an F-isomorphism.

ET5 (Introduction of a boundary (see Fig. 7)). Suppose a point p in a base u is not p-
tied. The transformation ET5 p-ties it in all possible ways, producing finitely many different
generalized equations. To this end, let ¢ be a boundary on A(u). Then we perform one of
the following two transformations:

1. Introduce the boundary connection < p,u,q > if the resulting equation (2, is for-
mally consistent. In this case the corresponding F-homomorphism 7, : Fr(q) into Frq,)
is induced by the identity isomorphism on F[H]. Observe that m, is not necessary an
isomorphism.

2. Introduce a new boundary ¢’ between ¢ and g + 1 (and rename all the boundaries);
introduce a new boundary connection (p, 1, q’). Denote the resulting equation by Q;. In
this case the corresponding F-homomorphism 7, : Fr(qg) into F] R(2,) is induced by the
map 7w(h) = h, if h # hy, and 7(hq) = hqhg41. Observe that m, is an F-isomorphism.

Let © be a generalized equation and E be an elementary transformation. By E(€Q) we
denote a generalized equation obtained from 2 by elementary transformation E (pehaps
several such equations) if F is applicable to €2, otherwise we put E(Q) = Q. By ¢g :



38

=_—
n i
>
S—
A
S—
by

Figure 6: Elementary transformation ET4.

Fr) — Fr(g()) we denote the canonical homomorphism of the coordinate groups (which
has been described above in the case E(Q) # ), otherwise, the identical isomorphism.

Lemma 15. There exists an algorithm which for every generalized equation £ and
every elementary transformation E determines whether the canonical homomorphism ¢ :
Fria) — Fr(e(q)) s an isomorphism or not.

Proof. The only non-trivial case is when E = E5 and no new boundaries were introduced.
In this case E(Q) is obtained from 2 by adding a new particular equation, say s = 1, which
is effectively determined by Q2 and E(2). In this event, the coordinate group

Fre@) = Frau{s

is a quotient group of Frq). Now ¢ is an isomorphism if and only if R(Q2) = R(QU{s}), or,
equivalently, s € R(Q2). The latter condition holds if and only if s vanishes on all solutions
of the system of (group-theoretic) equations Q2 =1 in F, i.e., if the following formula holds
in F:

Vi .. Ve, (Qzr, ..., x,) =1 = s(z1,...,2,) =1).

This can be checked effectively, since the universal theory of a free group F' is decidable

([33))-
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Figure 7: Elementary transformation ET5.

5.2 Derived transformations and auxiliary transformations

In this section we describe several useful transformations of generalized equations. Some
of them can be realized as finite sequences of elementary transformations, we call them
derived transformations. Other transformations result in equivalent generalized equations
but cannot be realized by finite sequences of elementary moves.

D1 (Closing a section).

Let o be a section of 2. The transformation D1 makes the section o closed. To perform
D1 we introduce boundary connections (transformations ET5) through the end-points of o
until these end-points are tied by every base containing them, and then cut through the
end-points all the bases containing them (transformations ET1)(see Fig. 8)

D2 (Transporting a closed section).

Let o be a closed section of a generalized equation Q2. We cut o out of the interval [1, pq]
together with all the bases and boundary connections on ¢ and put ¢ at the end of the
interval or between any two consecutive closed sections of 2. After that we correspondingly
re-enumerate all the items and boundaries of the latter equation to bring it to the proper
form. Clearly, the original equation 2 and the new one ' have the same solution sets and
their coordinate groups are isomorphic (see Fig. 79)

D3 (Complete cut).

Let Q be a generalized equation. For every boundary connection (p, i, q) in Q we cut
the base p at p applying ET1. The resulting generalized equation Q is obtained from by a
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Figure 9: Derived transformation D2.

consequent application of all possible ET1 transformations. Clearly, Q does not depend on a
particular choice of the sequence of transformations ET1. Since ET1 preserves isomorphism
between the coordinate groups, equations §2 and {2 have isomorphic coordinate groups, and
the isomorphism arises from the identity map F[H] — F[H].

D4 (Kernel of a generalized equation).

Suppose that a generalized equation €2 does not contain boundary connections. An active
base u € A¥q is called eliminable if at least one of the following holds:

a) p contains an item h; with y(h;) = 1;

b) at least one of the boundaries a(u),3(u) is different from 1,p + 1 and it does not
touch any other base (except p).

An elimination process for € consists of consequent removals (eliminations) of eliminable
bases until no eliminable bases left in the equation. The resulting generalized equation is
called a kernel of Q and we denote it by Ker(2). It is easy to see that Ker(2) does not
depend on a particular elimination process. Indeed, if 2 has two different eliminable bases
w1, pe2, and deletion of u; results in an equation €2; then by induction (on the number of
eliminations) Ker();) is uniquely defined for ¢ = 1,2. Obviously, p; is still eliminable in
Qq, as well as ps is eliminable in ;. Now eliminating g7 and po from Q5 and Q1 we get
one and the same equation y. By induction Ker(Q;) = Ker(Qy) = Ker({2) hence the
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result. We say that a variable h; belongs to the kernel (h; € Ker(f)), if either h; belongs
to at least one base in the kernel, or it is parametric, or it is constant.
Also, for an equation by Q we denote the equation which is obtained from 2 by deleting
all free variables. Obviously,
FR(Q) = FR(E) * F(Y)

where Y is the set of free variables in €.

Let us consider what happens on the group level in the elimination process.

We start with the case when just one base is eliminated. Let p be an eliminable base in
Q= Q(h1,...,h,). Denote by €; the equation resulting from € by eliminating pu.

1) Suppose h; € pand y(h;) = 1. Then the variable h; occurs only once in §2 - precisely in
the equation s, = 1 corresponding to the base p. Therefore, in the coordinate group Fr(q)
the relation s, = 1 can be written as h; = w, where w does not contain h;. Using Tietze
transformations we can rewrite the presentation of Fr(qy as Frq), where €' is obtained
from Q by deleting s, and the item h;. It follows immediately that

FR(Ql) ~ FR(Q’) * <h1>

and
FR(Q) ~ FR(Q’) ~ FR(m) * F(Z) (20)

for some free group F(Z). Notice that all the groups and equations which occur above can
be found effectively.

2) Suppose now that u satisfies case b) above with respect to a boundary i. Then in the
equation s, = 1 the variable h;_; either occurs only once or it occurs precisely twice and in
this event the second occurrence of h;_; (in A(p)) is a part of the subword (h;_1h;)*!. In
both cases it is easy to see that the tuple

(h17 ceey hi727 S;L; hi*lh’h hi+17 ey hp)

forms a basis of the ambient free group generated by (h1,...,h,) and constants from A.
Therefore, eliminating the relation s, = 1, we can rewrite the presentation of Fgr) in
generators Y = (hi,...,hi—2,hi—1hi, hiz1,...,h,). Observe also that any other equation
sx =1 (X # p) of Q either does not contain variables h;_1, h; or it contains them as parts
of the subword (h;_1h;)*", i.e., any such a word sy can be expressed as a word wy(Y) in
terms of generators Y and constants from A. This shows that

Fra) = F(Y U A)Rwy(v)r#n) = Fr),

where ' is a generalized equation obtained from Q; by deleting the boundary i. Denote
by " an equation obtained from ' by adding a free variable z to the right end of Q'. It
follows now that
Frea,) =~ Frearn =~ Fra) * (2)
and
Fr) ~ Frp) * F(2) (21)

for some free group F(Z). Notice that all the groups and equations which occur above can
be found effectively.

By induction on the number of steps in elimination process we obtain the following
lemma.
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Lemma 16.
FR(Q) = FR(KE’I’Q) * F(Z)
where F(Z) is a free group on Z. Moreover, all the groups and equations which occur above
can be found effectively.
Proof. Let
D=0y >0 —... > Q= Kerf)

be an elimination process for Q. It is easy to see (by induction on [) that for every j =
0,....0—1

Kerf); = Kerﬁj.

Moreover, if 2,41 is obtained from €; as in the case 2) above, then (in the notations above)

Ker(§2)1 = Ker(Y,.

Now the statement of the lemma follows from the remarks above and equalities (20) and
(21).

D5 (Entire transformation).

We need a few further definitions. A base u of the equation € is called a leading base if
a(pn) = 1. A leading base is said to be mazimal (or a carrier) if 3(A) < B(u), for any other
leading base A. Let u be a carrier base of 2. Any active base A # pu with S(A) < B(u) is
called a transfer base (with respect to ).

Suppose now that € is a generalized equation with v(h;) > 2 for each h; in the active
part of Q. An entire transformation is a sequence of elementary transformations which are
performed as follows. We fix a carrier base p of . For any transfer base A we p-tie (applying
ETS5) all boundaries in A. Using ET2 we transfer all transfer bases from p onto A(u). Now,
there exists some 7 < B(u) such that hq, ..., h; belong to only one base p, while h;11 belongs
to at least two bases. Applying ET1 we cut p along the boundary ¢ + 1. Finally, applying
ET4 we delete the section [1,i + 1].

D6 (Identifying closed constant sections).

Let A and p be two constant bases in §) with labels a®* and a®», where a € A and
ex, €y € {1,—1}. Suppose that the sections o(\) = [¢,i + 1] and o(p) = [4, j + 1] are closed.
Then we introduce a new variable base ¢ with its dual A(J) such that o(d) = [i,4 + 1],
o(A(0)) = [j,7 + 1], €(6) = ex,e(A(0)) = e,. After that we transfer all bases from ¢ onto
A(0) using ET2, remove the bases ¢ and A(J), remove the item h;, and enumerate the items
in a proper order. Obviously, the coordinate group of the resulting equation is isomorphic
to the coordinate group of the original equation.

5.3 Construction of the tree 7'(2)

In this section we describe a branching rewrite process for a generalized equation 2. This
process results in an (infinite) tree T'(€2). At the end of the section we describe infinite paths
in T(Q).

Complexity of a parametric generalized equation.

Denote by p4 the number of variables h; in all active sections of 2, by na = na(Q) the
number of bases in active sections of 2, by ¢/ - the number of open boundaries in the active
sections, by ¢’ - the number of closed boundaries in the active sections.
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The number of closed active sections containing no bases, precisely one base, or more
than one base are denoted by t4q,ta1,ta2 respectively. For a closed section o € ¥ denote
by n(c), p(o) the number of bases and, respectively, variables in o.

pa=pa(@) = Y po)

cEAYQ

na=na(Q) = Z n(o)

cEAYXQ

The complexity of a parametric equation () is the number

T=7(Q) = Z max{0,n(c) — 2}.

oc€AY g

Notice that the entire transformation (D5) as well as the cleaning process (D4) do not
increase complexity of equations.

Let 2 be a parametric generalized equation. We construct a tree T'(€2) (with associated
structures), as a directed tree oriented from a root vy, starting at vy and proceeding by
induction from vertices at distance n from the root to vertices at distance n 4 1 from the
root.

We start with a general description of the tree T'(€2). For each vertex v in T'(€2) there ex-
ists a unique generalized equation €2, associated with v. The initial equation 2 is associated
with the root vg, Q,, = Q. For each edge v — v’ (here v and v’ are the origin and the termi-
nus of the edge) there exists a unique surjective homomorphism 7(v,v’) : Frq,) — Frea)
associated with v — v’

If

VU .. U — U

is a path in T'(2), then by 7 (v, u) we denote composition of corresponding homomorphisms
m(v,u) = w(v,v1)...7(vs, w).

The set of edges of T'(€2) is subdivided into two classes: principal and auziliary. Every
newly constructed edge is principle, if not said otherwise. If v — v’ is a principle edge
then there exists a finite sequence of elementary or derived transformations from €2, to
Q. and the homomorphism 7 (v, v") is composition of the homomorphisms corresponding to
these transformations. We also assume that active [non-active] sections in 2,/ are naturally
inherited from €2, if not said otherwise.

Suppose the tree T(Q) is constructed by induction up to a level n, and suppose v is a
vertex at distance n from the root vg. We describe now how to extend the tree from v. The
construction of the outgoing edges at v depends on which case described below takes place
at the vertex v. We always assume that if we have Case i, then all Cases j, with j <7 —1,
do not take place at v. We will see from the description below that there is an effective
procedure to check whether or not a given case takes place at a given vertex. It will be
obvious for all cases, except Case 1. We treat this case below.

Preprocessing

Case 0. In €, we transport closed sections using D2 in such a way that all active sections
are at the left end of the interval (the active part of the equation), then come all non-active
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sections (the non-active part of the equation), then come parametric sections (the parametric
part of the equation), and behind them all constant sections are located (the constant part
of the equation).

Termination conditions

Case 1. The homomorphism 7(vg,v) is not an isomorphism (or equivalently, the homo-
morphism m(vy,v), where v is the parent of v, is not an isomorphism). The vertex v is
called a leaf or an end vertex. There are no outgoing edges from v.

Lemma 17. There is an algorithm to verify whether the homomorphism w(v,u), asso-
ciated with an edge v — w in T(Q) is an isomorphism or not.

Proof. We will see below (by a straightforward inspection of Cases 1-15 below) that
every homomorphism of the type m(v,u) is a composition of the canonical homomorphisms
corresponding to the elementary (derived) transformations. Moreover, this composition is
effectively given. Now the result follows from Lemma 15.

Case 2. €, does not contain active sections. The vertex v is called a leaf or an end
vertex. There are no outgoing edges from wv.

Moving constants to the right

Case 3. 2, contains a constant base A in an active section such that the section () is
not closed.

Here we close the section o(\) using the derived transformation D1.

Case 4. (), contains a constant base A with a label a € A! such that the section o())
is closed.

Here we transport the section o()) to the location right after all variable and parametric
sections in €2, using the derived transformation D2. Then we identify all closed sections of
the type [i,i 4+ 1], which contain a constant base with the label a*!, with the transported
section o (), using the derived transformation D6. In the resulting generalized equation €2,
the section o(A) becomes a constant section, and the corresponding edge (v, v’) is auxiliary.
See Fig. 10.

Moving free variables to the right

Case 5. 1, contains a free variable h, in an active section.

Here we close the section [q,¢ + 1] using D1, transport it to the very end of the interval
behind all items in 2, using D2. In the resulting generalized equation €2, the transported
section becomes a constant section, and the corresponding edge (v,v’) is auxiliary.

Remark 6. If Cases 0-5 are not possible at v then the parametric generalized equation
Q, is in standard form.

Case 6. (), contains a pair of matched bases in an active section.

Here we perform ET3 and delete it. See Fig. 11.

Eliminating linear variables

Case 7. In €, there is h; in an active section with «; = 1 and such that both boundaries
¢ and ¢ + 1 are closed.

Here we remove the closed section [i,4 + 1] together with the lone base using ET4.

Case 8. In £, there is h; in an active section with 7; = 1 and such that one of the
boundaries 4,7 + 1 is open, say 7 + 1, and the other is closed.

Here we perform ET5 and p-tie ¢ + 1 through the only base p it intersects; using ET1
we cut g in ¢ + 1; and then we delete the closed section [i,i + 1] by ET4. See Fig. 12.
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Case 9. In €2, there is h; in an active section with «; = 1 and such that both boundaries
¢ and 7+ 1 are open. In addition, assume that there is a closed section ¢ containing exactly
two (not matched) bases 1 and po, such that o = o(u1) = o(p2) and in the generalized
equation Qv (see the derived transformation D3) all the bases obtained from p1, ps by ET1
in constructing Q, from Q,, do not belong to the kernel of Q..

Here, using ET5, we u1-tie all the boundaries inside pq; using ET2, we transfer us onto
A(p1); and remove g together with the closed section o using ET4.

Case 10. €, satisfies the first assumption of Case 9 and does not satisfy the second one.

In this event we close the section [i,7 + 1] using D1 and remove it using ET4.

Tying a free boundary

Case 11. Some boundary i in the active part of €2, is free. Since we do not have Case 5
the boundary 7 intersects at least one base, say, u.

Here we p-tie 4 using E'T5.

Quadratic case

Case 12. ), satisfies the condition +; = 2 for each h; in the active part.

We apply the entire transformation D5.

Case 13. (), satisfies the condition -; > 2 for each h; in the active part, and ; > 2 or at
least one such h;. In addition, for some active base p section o(u) = [a(p), B(u)] is closed.

In this case using ET5, we p-tie every boundary inside p; using ET2, we transfer all
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Figure 12: Case 7-10: Linear variables.

bases from p to A(u); using ET4, we remove the lone base p together with the section o(u).

Case 14. (, satisfies the condition y; > 2 for each h; in the active part, and ; > 2 for
at least one such h;. In addition, some boundary j in the active part touches some base A,
intersects some base u, and j is not p-tied.

Here we pu-tie j.

General JSJ-case

Case 15. €, satisfies the condition y; > 2 for each h; in the active part, and ; > 2 for
at least one such h;. We apply, first, the entire transformation D5.

Here for every boundary j in the active part that touches at least one base, we u-tie j
by every base p containing j. This results in finitely many new vertices €2,, with principle
edges (v,v").

If, in addition, ), satisfies the following condition (we called it Case 15.1 in [21]) then
we construct the principle edges as was described above, and also construct a few more
auxiliary edges outgoing from the vertex v:

Case 15.1. The carrier base 1 of the equation €, intersects with its dual A(u).

Here we construct an auxiliary equation €2, (which does not occur in T(€2)) as follows.
Firstly, we add a new constant section [p, + 1, p, + 2] to the right of all sections in €,
(in particular, h,, 41 is a new free variable). Secondly, we introduce a new pair of bases
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(A, A(X)) such that
a(A) =1,8(A) = B(A(w), (AN)) = pu + 1, BAN)) = pu + 2.

Notice that €, can be obtained from €2, by ET4: deleting §(\) together with the closed
section [p, + 1, p, + 2]. Let
T : Frea,) — Fra.

be the isomorphism induced by ET4. Case 15 still holds for Q,, but now X is the carrier
base. Applying to (2, transformations described in Case 15, we obtain a list of new vertices
Q, together with isomorphisms

Mo : Fra,y = Fre,)-

Now for each such v’ we add to T'(2) an auxiliary edge (v, v") equipped with composition
of homomorphisms 7 (v,v") = 1, o 7, and assign Q, to the vertex v'.

If none of the Cases 0-15 is possible, then we stop, and the tree T(2) is constructed. In
any case, the tree T'(2) is constructed by induction. Observe that, in general, T'(2) is an
infinite locally finite tree.

If Case i (0 < i < 15) takes place at a vertex v then we say that v has type ¢ and write

tp(v) = 1.
Lemma 18. (Lemma 3.1, [45]) If u — v is a principal edge of the tree T(S2), then
1. na(Qy) <na(Q), if tp(v1) # 3,10, this inequality is proper if tp(vy) = 6,7,9,13;
2. If tp(vy) = 10, then na() < na(Qy) + 2;
3.V (Q) < V() if tp(vr) < 13 and tp(v1) # 3,11;
4o 7(Q) < T(), if tp(v1) # 3.
Proof. Straightforward verification.

Lemma 19. Let

V) — Vg — ... = Up — ...

be an infinite path in the tree T(QY). Then there exists a natural number N such that all
the edges vy, — vVn41 of this path with n > N are principal edges, and one of the following
situations holds:

1) (linear case) 7 < tp(vy,) < 10 for all n > N,
2) (quadratic case) tp(v,) =12 for alln > N;
3) (general JSJ case) tp(v,) = 15 for alln > N.

Proof. Observe that starting with a generalized equation §2 we can have Case 0 only
once, afterward in all other equations the active part is at the left, then comes the non-active
part, then - the parametric part, and at the end - the constant part. Obviously, Cases 1 and
2 do not occur on an infinite path. Notice also that Cases 3 and 4 can only occur finitely
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many times, namely, not more then 2¢ times where t is the number of constant bases in the
original equation Q. Therefore, there exists a natural number Ny such that tp(v;) > 5 for
all i > Ny.

Now we show that the number of vertices v; (¢ > N) for which ¢p(v;) = 5 is not more
than the minimal number of generators of the group Fg(q), in particular, it cannot be
greater than p + 1 + |A|, where p = p(Q2). Indeed, if a path from the root vy to a vertex
v contains k vertices of type 5, then €0, has at least k free variables in the constant part.
This implies that the coordinate group Fr(q,) has a free group of rank £ as a free factor,
hence it cannot be generated by less than k elements. Since 7(vo,v) : Fria) — Fra,) is
a surjective homomorphism, the group Fr) cannot be generated by less then k elements.
This shows that & < p+ 1+ |A|. Tt follows that there exists a number Ny > Nj such that
tp(v;) > 5 for every i > Na.

Suppose i > Ny. If tp(v;) = 12, then it is easy to see that tp(v;11) = 6 or tp(viy1) = 12.
But if tp(v;+1) = 6, then tp(v;y2) = 5 - contradiction with ¢ > Ns. Therefore, tp(v;11) =
tp(vig2) = ... = tp(viy;) = 12 for every j > 0 and we have situation 2) of the lemma.

Suppose now tp(v;) # 12 for all i@ > Ni. By Lemma 18 7(Q,,,,) < 7(y,) for every
principle edge v; — v;11 where j > Na. If v; — v;41, where j > Ny, is an auxiliary edge
then tp(v;) = 15 and, in fact, Case 15.1 takes place at v;. In the notation of Case 15.1 Q,,,
is obtained from ij by transformations from Case 15. In this event, both bases p and A(u)
will be transferred from the new carrier base A to the constant part, so the complexity will
be decreased at least by two: 7(Q,..,) < T(ij) —2. Observe also that T(Qy].) =7(Qy;) +1.
Hence 7(,,,) < 7(Qy, ).

It follows that there exists a number N3 > N such that 7(€2,,) = T(QUNS) for every
j > Ns, i.e., complexity stabilizes. Since every auxiliary edge gives a decrease of complexity,
this implies that for every j > N3 the edge v; — v;11 is principle.

Suppose now that ¢ > N3. We claim that ¢p(v;) # 6. Indeed, if ¢p(v;) = 6, then the
closed section, containing the matched bases p, A(u), does not contain any other bases
(otherwise the complexity of §2 would decrease). But in this event ¢p(v; 1) = 5 which is
impossible.

So tp(v;) > 7 for every i > N3. Observe that ET3 (deleting match bases) is the only
elementary transformation that can produce new free boundaries. Observe also that ET3
can be applied only in Case 6. Since Case 6 does not occur anymore along the path for
i > N3, one can see that no new free boundaries occur in equations 2, for j > N3. It
follows that there exists a number Ny > N3 such that tp(v;) # 11 for every j > Ny.

Suppose now that for some i > Ny 13 < tp(v;) < 15. It is easy to see from the description
of these cases that in this event tp(v;4+1) € {6,13,14,15}. Since tp(v;4+1) # 6, this implies
that 13 < tp(v;) < 15 for every j > 4. In this case the sequence n4(€2,,) stabilizes by lemma
18. In addition, if tp(v;) = 13, then na(,,,) < na(Q,,). Hence there exists a number
N5 > Ny such that ¢p(v;) # 13 for all j > Ns.

Suppose i > Ns. There cannot be more than 8(n4(€2,,)* vertices of type 14 in a row
starting at a vertex v;; hence there exists j > ¢ such that tp(v;) = 15. The series of
transformations ET5 in Case 15 guarantees the inequality ¢tp(v;y1) # 14; hence tp(v;41) =
15, and we have situation 3) of the lemma.

So we can suppose tp(v;) < 10 for all the vertices of our path. Then we have situation
1) of the lemma. O

Vj+1

Vi1

2
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5.4 Periodized equations

In this section we introduce a notion of a periodic structure which allows one to describe
periodic solutions of generalized equations. Recall that a reduced word P in a free group F
is called a period if it is cyclically reduced and not a proper power. A word w € F' is called
P-periodic if |w| > |P| and it is a subword of P" for some n. Every P-periodic word w can
be presented in the form

w= A"A; (22)

where A is a cyclic permutation of P¥! r > 1, A = A;0A4,, and Ay # 1. This representation
is unique if r > 2. The number r is called the exponent of w. A maximal exponent of P-
periodic subword in a word w is called the exponent of P-periodicity in u. We denote it

ep(u).

Definition 14. Let Q) be a standard generalized equation. A solution H : h; — H; of
1s called periodic with respect to a period P, if for every variable section o of Q) one of the
following conditions hold:

1) H(o) is P-periodic with exponent r > 2;
2) |H(o)| < |P|;
3) H(o) is A-periodic and |A| < |P|;
Moreover, condition 1) holds at least for one such o.

Let H be a P-periodic solution of Q. Then a section o satisfying 1) is called P-periodic
(with respect to H).

5.4.1 Periodic structure

Let 2 be a parametrized generalized equation. It turns out that every periodic solution of
() is a composition of a canonical automorphism of the coordinate group Fr(q) with either
a solution with bounded exponent of periodicity (modulo parameters) or a solution of a
"proper” equation. These canonical automorphisms correspond to Dehn twists of Fr(q)
which are related to the splitting of this group (which comes from the periodic structure)
over an abelian edge group.

We fix till the end of the section a generalized equation €2 in standard form. Recall that
in Q all closed sections o, bases u, and variables h; belong to either the variable part V3,
or the parametric part P, or the constant part C'Y of ).

Definition 15. Let Q2 be a generalized equation in standard form with no boundary
connections. A periodic structure on § is a pair (P, R), where

1) P is a set consisting of some variables h;, some bases p, and some closed sections o
from VX and such that the following conditions are satisfied:

a) if hy € P and h; € p, and A(u) € VX, then p € P;
b) if we P, then A(u) € P;
¢) if u €P and u € o, then o € P;
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d) there exists a function X mapping the set of closed sections from P into {—1,+1}
such that for every p, 01,09 € P, the condition that p € o1 and A(u) € oo implies

e(p) - e(A(p) = X(01) - X(02);

2) R is an equivalence relation on a certain set B (defined below) such that the following
conditions are satisfied:

e) Notice, that for every boundary 1 belonging to a closed section in P either there
exists a unique closed section o(l) in P containing 1, or there exist precisely
two closed section oiefi(l) = [i,1], 0pigne = [I,7] in P containing I. The set of
boundaries of the first type we denote by By, and of the second type - by By. Put

B = By U{licst, lrignt | | € B2}

here licfe, lright are two ”formal copies” of I. We will use the following agreement:
for any base p if a(pn) € By then by o(pn) we mean a(p)rigne and, similarly, if

B(p) € By then by B(p) we mean B(f1)ieft-
f) Now, we define R as follows. If u € P then

a(p) ~r a(A(w)), B(r) ~r B(A(n) if e(p) =e(A(u))
o) ~r B(A()), B(r) ~r a(A(p)) if e(n) = —e(A(p)).

Remark 7. This definition coincides with the definition of a periodic structure given in
[21] in the case of empty set of parameters PY. For a given Q2 one can effectively find all
periodic structures on §2.

Let (P, R) be a periodic structure of 2. Put
NP ={pe BQ|3h; € P such that h; € p and A(u) is parametric or constant}

Now we will show how one can associate with a P-periodic solution H of € a periodic
structure P(H,P) = (P,R). We define P as follows. A closed section o is in P if and
only if ¢ is P-periodic. A variable h; is in P if and only if h; € o for some o € P and
d(H;) > 2d(P). A base p is in P if and only if both y and A(u) are in V¥ and one of them
contains h; from P.

Put X([¢,j]) = +1 depending on whether in (22) the word A is conjugate to P or to
P

Now let [i,j] € P and ¢ <[ < j. Then there exists a subdivision P = P; P, such that if
X([i,7]) = 1, then the word HJi, ] is the end of the word (P*°)P;, where P> is the infinite
word obtained by concatenations of powers of P, and H]Jl,j] is the beginning of the word
Py(P>), and if X([i,j]) = —1, then the word H[i,[] is the end of the word (P~1)>P;*
and HJl, ] is the beginning of P '(P~')*®. Lemma 1.2.9 [1] implies that the subdivision
P = P, P, with the indicated properties is unique; denote it by §(I). Let us define a relation
R in the following way: R(l1,l2) = 0(l1) = d(l2).

Lemma 20. Let H be a periodic solution of Q. Then P(H, P) is a periodic structure
on €.
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Proof. Let P(H, P) = (P, R). Obviously, P satisfies a) and b) from the definition 15.

Let u € P and p € [4, j]. There exists an unknown hy, € P such that hy, € por hy € A(p).
If hy € p, then, obviously, [i,j] € P. If hy € A(u) and A(p) € [i’,j’l, then [i/,j'] € P, and
hence, the word H[a(A(w)), B(A(r))] can be written in the form Q" @1, where @ = Q1Qq;
Q is a cyclic shift of the word P*! and 7’ > 2. Now let (22) be a presentation for the section
[i,7]. Then H[a(p), B(p)] = B*By, where B is a cyclic shift of the word A*!, d(B) < d(P),
B = BBy, and s > 0. From the equality H[a(u), B(p)]*" = Hla(A(p)), B(A(r)))]eAE)
and Lemma 1.2.9 [1] it follows that B is a cyclic shift of the word Q*'. Consequently, A is a
cyclic shift of the word P*!, and r > 2 in (22), since d(H[i, j]) > d(H[ca(p), B(p)]) > 2d(P).
Therefore, [4, j] € P; i.e, part ¢) of the definition 15 holds.

If u € [i1, 1], A(w) € [i2,52], and u € P, then the equality e(u) - e(A(u)) = X ([é1,51]) -
X ([iz, jo]) follows from the fact that given A"A; = B*Bj and r,s > 2, the word A cannot
be a cyclic shift of the word B~!. Hence part d) also holds.

Condition e) of the definition of a periodic structure obviously holds.

Condition f) follows from the graphic equality Ha(u), B(1)]2") = Ha(A(p)), BIA())]5(A W)
and Lemma 1.2.9 [1].

This proves the lemma. i

Now let us fix a nonempty periodic structure (P, R). Item d) allows us to assume (after
replacing the variables h;, ..., h;_1 by hj__ll, ..., h;! on those sections [, j] € P for which
X([i,7]) = —1) that e(u) = 1 for all u € P. For a boundary k, we will denote by (k) the
equivalence class of the relation R to which it belongs.

Let us construct an oriented graph I" whose set of vertices is the set of R—equivalence
classes. For each unknown hj lying on a certain closed section from P, we introduce an
oriented edge e leading from (k) to (k+1) and an inverse edge e~! leading from (k+1) to (k).
This edge e is assigned the label h(e) = hy (respectively, h(e™!) = h,;l.) For every path
r=efl. .. eFf! in the graph I', we denote by h(r) its label h(ef!)... h(e}tl). The periodic
structure (P, R) is called connected, if the graph T is connected. Suppose first that (P, R) is
connected. Suppose that some boundary k (between hi_; and hy) in the variable part of
is not a boundary between two bases. Since hi_1 and hy appear in all the basic equations
together, and there is no boundary equations, one can consider a generalized equation 2y
obtained from € by replacing the product hi_1hy in all basic equations by one variable k.
The group Fg(q) splits as a free product of the cyclic group generated by hy—1 and Fr(q,)-
In this case we can consider 2; instead of ). Therefore we suppose now that each boundary
of ) is a boundary between two bases.

Lemma 21. Let H be a P-periodic solution of a generalized equation 2, (P,R) =
P(H, P); ¢ be a cycle in the graph T' at the vertex (1); 6(1) = Py Py. Then there existsn € Z
such that H(c) = (PaPy)™.

Proof. 1If e is an edge in the graph ' with initial vertex V' and terminal vertex V", and
P = P[P, P = P{'Pj are two subdivisions corresponding to the boundaries from V', V"
respectively, then, obviously, H(e) = PyP™ P}’ (ny € Z). The claim is easily proven by
multiplying together the values H(FE) for all the edges e taking part in the cycle c.

O

Definition 16. A generalized equation € is called periodized with respect to a given
periodic structure (P, R) of Q , if for every two cycles ¢1 and co with the same initial vertex
in the graph I' , there is a relation [h(cy), h(c2)] = 1 in Frq).



54

5.4.2 Case 1. Set NP is empty.

Let T'g be the subgraph of the graph I' having the same set of vertices and consisting of the
edges e whose labels do not belong to P. Choose a maximal subforest Ty in the graph I'g and
extend it to a maximal subforest T of the graph I'. Since (P, R) is connected by assumption,
it follows that T is a tree. Let vy be an arbitrary vertex of the graph I and r(vg,v) the
(unique) path from vy to v all of whose vertices belong to T'. For every edge e : v — v’ not
lying in T, we introduce a cycle ¢, = 7(vg,v)e(r(vg,v’))~%. Then the fundamental group
m1(T',vg) is generated by the cycles c. (see, for example, the proof of Proposition 3.2.1
[31]). This and decidability of the universal theory of a free group imply that the property
of a generalized equation “to be periodized with respect to a given periodic structure” is
algorithmically decidable.
Furthermore, the set of elements

{h(e) le e TYU{n(c) |e ¢ T} (23)

forms a basis of the free group with the set of generators {hy | hy is an unknown lying on a
closed section from P}. If p € P, then (B8(u)) = (B(A(1))), (a(p)) = (a(A(p))) by part f)
from Definition 15 and, consequently, the word hla(p), B(p)]h[a(A(r)), B(A(r))] ™! is the
label of a cycle ¢(4) from (T, (a(s))). Let c() = r(vo, (a (1)) (1)1 (vo, (@(1))) . Then

h(e(n) = uhlo(w), B()]hla(A(w)), BAW)] " u, (24)

where u is a certain word. Since c(u) € m1 (I, vg), it follows that c(p) = b, ({ce | ¢ € T'}),
where b, is a certain word in the indicated generators which can be effectively constructed
(see Proposition 3.2.1 [31]).

Let Bu denote the image of the word b, in the abelianization of 7(T', vy). Denote by 7 the
free abelian group consisting of formal linear combinations ZegT neCe (ne € Z), and by B
its subgroup generated by the elements Bu (1 € P) and the elements ¢. (e € T, h(e) € P).
Let A= Z/B T( ) the torsion subgroups of the group Z and Z; the preimage of T(g) in
Z. The group Z / 71 is free; therefore, there exists a decomposition of the form

2221@22, Eggl, (le§)<00. (25)

Note that it is possible to express effectively a certain basis 5(1), g(z) of the group 7 in

terms of the generators ¢, so that for the subgroups 217 Zg generated by the sets 5(1), Fa
respectively, relation (25) holds. For this it suffices, for instance, to look through the bases
one by one, using the fact that under the condition Z =07 Z2 the relations B C Zl,
(Z, : B) < oo hold if and only if the generators of the groups B and Z; generate the
same linear subspace over Q, and the latter is easily verified algorithmically. Notice, that a
more economical algorithm can be constructed by analyzing the proof of the classification

theorem for finitely generated abelian groups. By Proposition 1.4.4 [31], one can effectively

construct a basis ¢V, &2 of the free (non-abelian) group m1(I', vg) so that s ), Z? are the

natural images of the elements 1), &2 in Z.
Now assume that (P, R) is an arbltrary periodic structure of a periodized generalized
equation €2, not necessarily connected. Let I'y,...,I'; be the connected components of the
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graph I'. The labels of edges of the component I'; form in the equation 2 a union of closed
sections from P; moreover, if a base u € P belongs to such a section, then its dual A(u), by
condition f) of Definition 15, also possesses this property. Therefore, by taking for P; the set
of labels of edges from I'; belonging to P, sections to which these labels belong, and bases
1 € P belonging to these sections, and restricting in the corresponding way the relation R,
we obtain a periodic connected structure (P;, R;) with the graph T';.

The notation (P’, R"Y C (P, R) means that P’ C P, and the relation R’ is a restriction
of the relation R. In particular, (P;, R;) C (P, R) in the situation described in the previous
paragraph. Since 2 is periodized, the periodic structure must be connected.

Let eq, ..., e be all the edges of the graph I" from T\ Tj. Since T is the spanning forest
of the graph Ty, it follows that h(e1),...,h(e,) € P. Let F(2) be a free group generated by
the variables of 2. Consider in the group F(£2) a new basis AU Z consisting of A, variables
not belonging to the closed sections from P (we denote by t the family of these variables),
variables {h(e)|le € T} and words h(¢(V)), h(¢?)). Let v; be the initial vertex of the edge
e;. We introduce new variables ) = {u;le € T, e ¢ P}, 29 = {zi.|le & T,e ¢ P} for
1 <i < m, as follows

wie = h(r(vo,vs) " hce)h(r(ve, v;)), (26)

h(ei)iluieh(ei) = Zie- (27)

Notice, that without loss of generality we can assume that vy corresponds to the begin-
ning of the period P.

Lemma 22. Let Q be a consistent generalized equation periodized with respect to a
periodic structure (P, R) with empty set N(P). Then the following is true.

(1) One can choose the basis ¢1) so that for any solution H of Q0 periodic with respect to
a period P and P(H,P) = (P, R) and any c € ¢V, H(c) = P™, where |n| < 2p.

(2) In a fully residually free quotient of Friqy discriminated by solutions from (1) the
image of (h(¢M)) is either trivial or a cyclic subgroup.

(8) Let K be the subgroup of Fr(qy generated by t, h(e),e € Ty, h(eM), 4 and 29 ,i =
1,...,m. If |6(2)| = s > 1, then the group Frq) splits as a fundamental group of a
graph of groups with two vertices, where one vertex group is K and the other is a
free abelian group gemerated by h(E(Q)) and h(é(l)). The corresponding edge group is
generated by h(¢\V)). The other edges are loops at the vertex with vertex group K, have
stable letters h(e;), i =1,...,m, and associated subgroups (@), (z*). If ¢? = ), then
there is no vertex with abelian vertex group.

(4) Let AUZT be the generators of the group Frq) constructed above. If e; € PNT, then
the mapping defined as h(e;) — uf h(e;) (k is any integer) on the generator h(e;) and
fizing all the other generators can be extended to an automorphism of Fr(q).

(5) If c € &) and ¢ is a cycle with initial vertex vy, then the mapping defined by h(c) —
h(c)*h(c) and fizing all the other generators can be extended to an automorphism of
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Proof. To prove assertion (1) we have to show that each simple cycle in the graph I'y has
length less than 2p. This is obvious, because the total number of edges in I'g is not more
than p and corresponding variables do not belong to P.

(2) The image of the group (h(¢!)))) in F is cyclic, therefore one of the finite number
of equalities h(c;)™ = h(ca)™, where c1,co € ¢V, n,m < 2p must hold for any solution.
Therefore in a fully residually free quotient the group generated by the image of ( h(¢(})))
is a cyclic subgroup.

To prove (3) we are to study in more detail how the unknowns h(e;) (1 < i < m) can
participate in the equations from Q* rewritten in the set of variables Z U A.

If hy does not lie on a closed section from P, or hy € P, but e € T' (where h(e) = hy),
then hy belongs to the basis Z U A and is distinct from each of h(e1),...,h(ey). Now let
h(e) = hi, hi € P and e € T. Then e = ric.ra, where 11,79 are paths in 7. Since e € Ty,
h(c.) belongs to (V) modulo commutation of cycles. The vertices (k) and (k + 1) lie in
the same connected component of the graph I'g, and hence they are connected by a path s
in the forest Ty. Furthermore, 1 and sry 1 are paths in the tree T' connecting the vertices
(k) and wp; consequently, 7; = sry *. Thus, e = sr5 "cera and hy, = h(s)h(ra) " h(ce)h(rs).
The unknown h(e;) (1 < i <m) can occur in the right-hand side of the expression obtained
(written in the basis Z U A) only in h(ry) and at most once. Moreover, the sign of this
occurrence (if it exists) depends only on the orientation of the edge e; with respect to the
root vy of the tree T'. If o = réef%éﬂ then all the occurrences of the unknown h(e;) in the
words hy written in the basis TU A, with hy ¢ P, are contained in the occurrences of words
of the form h(e;)FLh((ry) ~Leerh)h(e;) T, i.e., in occurrences of the form h(e;)T1h(c)h(e;)*?,
where ¢ is a certain cycle of the graph I' starting at the initial vertex of the edge eiﬂ.

Therefore all the occurrences of h(e;), ¢ = 1,...,m in the equations corresponding
to p & P are of the form h(e;')h(c)h(e;). Also, h(e;) does not occur in the equations
corresponding to p € P in the basis A U Z. The system Q* is equivalent to the following
system in the variables z, 2", 4", A,i = 1,...,m : equations (26), (27),

[ui€17ui€2] = 17 (28)
[h(c1), h(c2)] = 1, c1,e0 € ¢V, P, (29)

and a system ¥ (h(e),e € T\ P, h(cM),f, 29 4D A) = 1, such that either h(e;) or &2 do
not occur in ¢. Let K = Fg(p)- Then to obtain Fgq) we fist take an HNN extension of
the group K with abelian associated subgroups generated by @ and z(¥) and stable letters
h(e;), and then extend the centralizer of the image of (1)) by the free abelian subgroup
generated by the images of &2).

Statements (4) and (5) follow from (3).

|

We now introduce the notion of a canonical group of automorphisms corresponding to a
connected periodic structure.

Definition 17. In the case when the family of bases NP is empty automorphisms de-
scribed in Lemma 22 for ey, ...,em € T\ Ty and all ¢, for e € P\T generate the canonical
group of automorphisms Py corresponding to a connected periodic structure.

Lemma 23. Let Q be a nondegenerate generalized equation with no boundary connec-
tions, periodized with respect to the periodic structure (P, R). Suppose that the set NP is
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empty. Let H be a solution of Q periodic with respect to a period P and P(H,P) =< P, R >.
Combining canonical automorphisms of Frqy one can get a solution HT of Q with the prop-
erty that for any hy € P such that H, = PoP™ Py (Py and Py are an end and a beginning
of P), Hz‘ = PQP”Z'—Pl, where nk,n: > 0 and the numbers n: ’s are bounded by a certain
computable function fo(Q2, P, R). For all hy, ¢ P Hy, = H;f.

Proof. Let 6((k)) = Pl(k)PQ(k). Denote by ¢(u, hy) the number of occurrences of the edge
with label hj in the cycle ¢, calculated taking into account the orientation. Let

Hy = P pro p{EtH) (30)

(h lies on a closed section from P), where the equality in (30) is graphic whenever hy, € P.
Direct calculations show that

H(bﬂ) — Pk twhi)(ne+1) (31)

This equation implies that the vector {ny} is a solution to the following system of Diophan-
tine equations in variables {zy|hy € P}:

>tz + Yt hi)ng =0, (32)

hiL€P hr &P

1 € P. Note that the number of unknowns is bounded, and coefficients of this system are
bounded from above (|ng| < 2 for hy € P) by a certain computable function of 2, P, and R.
Obviously, (PQ(k))*lH,j'HIC_lPQ(k) = Pmi—"e commutes with H(c), where ¢ is a cycle such
that H(c) = P™, ng < 2p.

If system (32) has only one solution, then it is bounded. Suppose it has infinitely many
solutions. Then (z1,...,2k,...) is a composition of a bounded solution of (32) and a linear
combination of independent solutions of the corresponding homogeneous system. Applying
canonical automorphisms from Lemma 22 we can decrease the coefficients of this linear
combination to obtain a bounded solution HT. Hence for hy = h(e;), e; € P, the value Hy,
can be obtained by a composition of a canonical automorphism (Lemma 22) and a suitable
bounded solution H* of Q. O

5.4.3 Case 2. Set NP is non-empty.

We construct an oriented graph BI" with the same set of vertices as I'. For each item hy ¢ P
such that hy lie on a certain closed section from P introduce an edge e leading from (k) to
(k+1) and e~ ! leading from (k+1) to (k). For each pair of bases u, A(x) € P introduce an
edge e leading from (a(p)) = (a(A(n))) to (B(n)) = (B(d(x))) and e~ " leading from (B(n))
to (a(p)). For each base p € NP introduce an edge e leading from (a(u) to (8(u)) and e~!
leading from (5(p)) to (a(p)). denote by BTy the subgraph with the same set of vertices
and edges corresponding to items not from P and bases from p € NP. Choose a maximal
subforest BTy in the graph BI'y and extend it to a maximal subforest BT of the graph BT.
Since P is connected, BT is a tree. The proof of the following lemma is similar to the proof
of Lemma 21.
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Lemma 24. Let H be a solution of a generalized equation ) periodic with respect to a
period P, (P,R) = P(H,P); c be a cycle in the graph BT at the vertex (I); §(I) = P Ps.
Then there exists n € Z such that H(c) = (P2Py)™.

As we did in the graph T', we choose a vertex vg. Let 7(vg,v) be the unique path in
BT from vy to v. For every edge e = e(u) : v — v/ not lying in BT, introduce a cycle
¢, = 1(vo,v)e(u)r(vo,v") 1. For every edge e = e(hy) : V. — V' not lying in BT, introduce
a cycle ¢p, = r(vo,v)e(hy)r(ve,v') L.

It suffices to restrict ourselves to the case of a connected periodic structure. If e = e(hy),
we denote h(e) = hg; if e = e(u), then h(e) = p. Let eq,..., e, be all the edges of the
graph BT from BT \ BTy. Since BTy is the spanning forest of the graph BT, it follows
that h(ey1),...,h(em) € P. Consider in the free group F(2) a new basis AU Z consisting
of A, items hy, such that hj does not belong to closed sections from P (denote this set by
t), variables {h(e)|e € T} and words from h(C'M), h(C®?)), where the set C(1), C?) form a
basis of the free group w (BT, vg), CM correspond to the cycles that represent the identity in
Fp(q) (if v and v" are initial and terminal vertices of some closed section in P and 7 and rq
are different paths from v to v’, then r(vg,v)rr '7(vo,v) " represents the identity), cycles
Cu, b € NP and ¢y, , hi, & P; and C® contains the rest of the basis of 7(BI',vg).

We study in more detail how the unknowns h(e;) (1 < ¢ < m) can participate in the
equations from Q* rewritten in this basis.

If hy, does not lie on a closed section from P, or hy = h(e), h(u) = h(e) € P, but e € T,
then h(u) or hy belongs to the basis ZU A and is distinct from each of h(ey), ..., h(ey). Now
let h(e) = h(u), h(p) € P and e € T. Then e = rycera, where r1, 7o are path in BT from
(a(p)) to v and from (B(u)) to vg. Since e € BTy, the vertices (a(p)) and (6(p)) lie in the
same connected component of the graph BI'y, and hence are connected by a path s in the
forest BTy. Furthermore, r; and sr;, ! are paths in the tree BT connecting the vertices (o(u))
and wp; consequently, 71 = sry *. Thus, e = sry 'cory and h(u) = h(s)h(r2) " h(ce)h(rs).
The unknown h(e;) (1 < i <m) can occur in the right-hand side of the expression obtained
(written in the basis Z U A) only in h(re) and at most once. Moreover, the sign of this
occurrence (if it exists) depends only on the orientation of the edge e; with respect to the root
vp of the tree T'. If ro = réeiﬂr’z’ , then all the occurrences of the unknown h(e;) in the words
h(w) written in the basis U A, with h(u) € P, are contained in the occurrences of words of
the form h(e;)T1h((rh) " teerh)h(e;)®L, ie., in occurrences of the form h(e;) T h(c)h(e;)™,
where c¢ is a certain cycle of the graph BI' starting at the initial vertex of the edge e;ﬂ.
Similarly, all the occurences of the unknown h(e;) in the words hy written in the basis Z, A,
with hy € P, are contained in occurrences of words of the form h(e;)FLh(c)h(e;)*!.

Therefore all the occurences of h(e;), ¢ = 1,...,m in the equations corresponding to
p & P are of the form h(e; *)h(c)h(e;). Also, cycles from C!) that represent the identity
and not in BT’y are basis elements themselves. This implies

Lemma 25. (1) Let K be the subgroup of Fr(q) generated by t, h(e),e € BTy, h(C'M)
and @D, 20 i = 1,... m, where elements 29 are defined similarly to the case of
empty N'P.

If |C(2)| = s > 1, then the group Fr(q) splits as a fundamental group of a graph of
groups with two vertices, where one vertex group is K and the other is a free abelian
group generated by h(C®) and h(C). The edge group is generated by h(C™M).
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The other edges are loops at the verter with vertex group K and have stable letters
h(e),e € BT\ BTy. If C® = (), then there is no vertex with abelian vertex group.

(2) Let H be a solution of Q periodic with respect to a period P and (P,R) = P(H, P). Let
Py Py be a partition of P corresponding to the initial vertex of e;. A transformation
H(e;) — PoPiH(e;), i € {1,...,m}, which is identical on all the other elements from
A,H(Z), can be extended to another solution of Q*. If ¢ is a cycle beginning at the
ingtial vertex of e;, then the transformation h(e;) — h(c)h(e;) which is identical on all
other elements from AU, is an automorphism of Fr(q).

(3) If c(e) € CP), then the transformation H(c(e)) — PH(c(e)) which is identical on all
other elements from A, H(Z) , can be extended to another solution of Q*. A transfor-
mation h(c(e)) — h(c)h(c(e)) which is identical on all other elements from AU Z, is
an automorphism of Fr(q).

Definition 18. If Q is a nondegenerate generalized equation periodic with respect to a
connected periodic structure (P, R) and the set NP is non-empty, we consider the group
A(Q) of transformations of solutions of 0*, where A(SY) is generated by the transformations
defined in Lemma 25. If these transformations are automorphisms, the group will be denoted

A(9).

Definition 19. In the case when for a connected periodic structure (P, R), the set C'(?)
has more than one element or C® has one element, and CV) contains a cycle formed by
edges e such that variables hy, = h(e) are not from P, the periodic structure will be called
singular.

This definition coincides with the definition of singular periodic structure given in [21])
in the case of empty set A.
Lemma 25 implies the following

Lemma 26. Let Q be a nondegenerate generalized equation with no boundary connec-
tions, periodized with respect to a singular periodic structure (P, R). Let H be a solution of
Q periodic with respect to a period P and (P, R) = P(H, P). Combining canonical automor-
phisms from A(Q2) one can get a solution HT of Q* with the following properties:

1) For any hy, € P such that H, = PoP™ Py (Py and Py are an end and a beginning of
P) H = P2P"k+P1, where nk,ng € ZL;

2) For any hy, ¢ P, H, = H,';

3) For any base p ¢ P, H(p) = H (u);

4) There exists a cycle ¢ such that h(c) # 1 in Frqy but H (c) = 1.

Notice, that in the case described in the lemma, solution H™T satisfies a proper equation.
Solution H7 is not necessarily a solution of the generalized equation 2, but we will modify
2 into a generalized equation (P, BT'). This modification will be called the first minimal
replacement . Equation Q(P, BT) will have the following properties:

(1) Q(P, BT) contains all the same parameter sections and closed sections which are not
in P, as Q;

(2) HT is a solution of Q(P, BT);

(3) group Freaep,Br)) is generated by the same set of variables h1, ..., hs;
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(4) Q(P, BT) has the same set of bases as © and possibly some new bases, but each new
base is a product of bases from (2;

(5) the mapping h; — h; is a proper homomorphism from Frqy onto Friap,B1))-

To obtain (P, BT) we have to modify the closed sections from P.

The label of each cycle in BT is a product of some bases p ... jux. Write a generalized
equation Q for the equations that say that u; ... ur = 1 for each cycle from C(M) representing
the trivial element and for each cycle from 0(2 Each uz is a product p; = hyp - .. hit. Due to
the first statement of Lemma 26, in each product H H ij+1 either there is no cancellations

between H;; +and H; "i+1, or one of them is completely cancelled in the other. Therefore the

same can be said about each pair HT (u;)H " (1i11), and we can make a cancellation table
without cutting items or bases of 2.

Let Q be a generalized equation obtained from 2 by deleting bases from P U NP and
items from P from the closed sections from P. Take a union of Q and © on the disjoint
set of variables, and add basic equations identifying in Q and Q the same bases that don’t
belong to P. This gives us Q(P, BT).

Suppose that C® for the equation € is either empty or contains one cycle. Suppose also
that for each closed section from P in 2 there exists a base p such that the initial boundary
of this section is a(p) and the terminal boundary is B(A(u)).

Lemma 27. Suppose that the generalized equation ) is periodized with respect to a
non-singular periodic structure P. Then for any periodic solution H of €2 we can choose
a tree BT, some set of variables S = {hj,,...,h;.} and a solution H' of Q equivalent to
H with respect to the group of canonical transformations A(Q) in such a way that each of
the bases \; € BT \ BTy can be represented as \; = Nj1hi, Az, where hy, € S and for
any hj € S, | H;‘ |< fs | P |, where f3 is some constructible function depending on €.
This representation gives a new generalized equation Q' periodic with respect to a periodic
structure P’ with the same period P and all h; € S considered as variables not from P’.
The graph BT for the periodic structure P’ has the same set of vertices as BT, has empty
set C®) and BT' = BT}).

Let ¢ be a cycle from CY) of minimal length, then H(c) = P™, where |n.| < 2p . Using
canonical automorphisms from A() one can transform any solution H of Q into a solution
H* such that for any h; € S, | Hj+ |< fsd | emid. Let P’ be a periodic structure, in

which all h; € S are considered as variables not from P’, then BT has empty set C® and
BT’ = BTj.

Proof. Suppose first that C®) is empty. We prove the statement of the lemma by
induction on the number of edges in BT \ BTj. It is true, when this set is empty. Consider
temporarily all the edges in BT \ BT, except one edge e()) as edges corresponding to bases
from NP. Then the difference between BTy and BT is one edge.

Changing H(e())) by a transformation from A(Q) we can change only H(¢') for ¢/ € BT’
that could be included into BT \ BTy instead of e. For each base p € NP, H(u) =
Py (p) P Py (1), for each base pu € P, H(u) = Po(u)P*™ Py (11). For each cycle ¢ in C(V)
such that h(c) represents the identity element we have a linear equation in variables x(u)
with coefficients depending on n(u). We also know that this system has a solution for
arbitrary xz(\) (where A € BT \ BTp) and the other z(v) are uniquely determined by the
value of z(A).
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If we write for each variable hy € P, Hy = Poy PY* Pj, then the positive unknowns y;’s
satisfy the system of equations saying that H(u) = H(A(u)) for bases u € P and equations
saying that p is a constant for bases p € NP. Fixing 2(\) we automatically fix all the yy’s.
Therefore at least one of the y; belonging to A can be taken arbitrary. So there exist some
elements y; which can be taken as free variables for the second system of linear equations.
Using elementary transformations over Z we can write the system of equations for y;’s in
the form:

niyr 0 =myyx + C1

n2Y2 e = mayk + Ca
(33)

Ng—1Yk—1 = Mg—1Yk + Cr_1,

where C1, ... C} are constants depending on parameters, we can suppose that they are suf-
ficiently large positive or negative (small constants we can treat as constants not depending
on parameters). Notice that integers ny,ms,...,ng_1,Mk—1 in this system do not depend
on parameters. We can always suppose that all ny,...,ng_; are positive. Notice that m;

and C; cannot be simultaneously negative, because in this case it would not be a positive
solution of the system. Changing the order of the equations we can write first all equation
with m;, C; positive, then equations with negative m; and positive C; and, finally, equations
with negative C; and positive m;. The system will have the form:

nmyr 0 - = |mafyr +[C1,
nmye o = —|melyr + |G, (34)
NsYs = ‘ms|yk - |Cs|

If the last block (with negative C;) is non-empty, we can take a minimal ys of bounded
value. Indeed, instead of y, we can always take a remainder of the division of ys; by the
product
Ny ...Mg—1|my ... mg_1|, which is less than this product (or by the product ny ...ng_1|my ... mg_1|n.
if we wish to decrease ys by a multiple of n.). We respectively decrease y; and adjust y;’s in
the blocks with positive C;’s. If the third block is not present, we decrease y; taking a re-
mainder of the division of yi by ny...ng_1 (or by ny...ng_1n.) and adjust y;’s. Therefore
for some h; belonging to a base which can be included into BT\ BTy, | HY(h;) |< f3 | P | .
Suppose this base is A, represent A = A1h; Ao, Suppose e(A) : v — vy in BT'. Let vg, v3 be the
vertices in BI" corresponding to the initial and terminal boundary of h;. They would be the
vertices in I", and " and BT have the same set of vertices. To obtain the graph BI" from BT’
we have to replace e(A) by three edges e(\1) : v — va, e(hy) : v2 — v3 and e(Aa) : v3 — v1.
There is no path in BTy from vy to v3, because if there were such a path p, then we would
have the equality hy = h(ci)h(p)h(cz), in Fg(q), where ¢; and ¢y are cycles in BI' beginning
in vertices vy and vz respectively. Changing Hy we do not change H(c1), H(c2) and H(p),
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because all the cycles are generated by cycles in C(1). Therefore there are paths r: v — vy
and 7 : v3 — v in BTy, and edges e(A1), e(A2) cannot be included in BT” \ BT} in BI".
Therefore BT = BT|. Now we can recall that all the edges except one in BT \ BT, were
temporarily considered as edges in NP. We managed to decrease the number of such edges
by one. Induction finishes the proof.

If the set C(®) contains one cycle, we can temporarily consider all the bases from BT as
parameters, and consider the same system of linear equations for y;’s. Similarly, as above,
at least one y; can be bounded. We will bound as many y;’s as we can. For the new periodic
structure either BT contains less elements or the set C'®) is empty.

The second part of the lemma follows from the remark that for g € T left multiplication
of h(p) by h(rer=1t), where r is the path in T from vy to the initial vertex of p, is an
automorphism from A(£2). O

We call a solution HT constructed in Lemma 27 a solution equivalent to H with mazimal
number of short variables.

Consider now variables from S as variables not from P’, so that for the equation
the sets C® and BT’ \ BT}, are both empty. In this case we make the second minimal
replacement, which we will describe in the lemma below.

Definition 20. A pair of bases p, A(p) is called an overlapping pair if e(un) = 1 and
B(u) > a(A(p) > a(p) or e(p) = =1 and B(p) < B(A(k)) < alu). If a closed section
begins with a(u) and ends with B(A(w)) for an overlapping pair of bases we call such a pair
of bases a principal overlapping pair and say that a section is in overlapping form.

Notice, that if A € NP, then H()\) is the same for any solution H, and we just write A
instead of H(\).

Lemma 28. Suppose that for the generalized equation Q' obtained in Lemma 27 the
sets C®) and BT\ BT}, are empty, P’ is a non-empty periodic structure, and each closed
section from P’ has a principal overlapping pair. Then for each base pu € P’ there is a fized
presentation for h(u) = [[(parameters) as a product of elements h(A),\ € NP, hy & P’
corresponding to a path in BI{. The mazimal number of terms in this presentation is
bounded by a computable function of Q).

Proof. Let e be the edge in the graph BI’ corresponding to a base p and suppose
e:v — v'. There is a path s in BT’ joining v and v’ , and a cycle ¢ which is a product of
cycles from CM) such that h(p) = h(¢)h(s). For each cycle ¢ from C(!) either h(c) = 1 or
¢ can be written using only edges with labels not from P’; therefore, ¢ contains only edges
with labels not from P’. Therefore

h(p) = H(parameters) = h(Ay)q .. (A, )T, (35)

where the doubles of all A; are parameters, and Iy, . .., II; are products of variables hy, & P’.
d
In the equality B )
H(M) = H()‘Zd)Hl o H(As )Hs, (36>

i

where Iy, ..., Il are products of Hy, for variables hy, ¢ P’, the cancellations between two
terms in the right side are complete because the equality corresponds to a path in BIY,.
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Therefore the cancellation tree for the equality (36) can be situated on a horizontal axis
with intervals corresponding to \;’s directed either to the right or to the left. This tree can
be drawn on a P-scaled axis. We call this one-dimensional tree a u-tree. Denote by I())
the interval corresponding to A in the p-tree. If I(u) C Uy, cyp I(Ai), then we say that p
is covered by parameters. In this case a generalized equation corresponding to (36) can be
situated on the intervals corresponding to bases from NP.

We can shift the whole u-tree to the left or to the right so that in the new situation the
uncovered part becomes covered by the bases from NP. Certainly, we have to make sure
that the shift is through the interval corresponding to a cycle in C(Y). Equivalently, we can
shift any base belonging to the u-tree through such an interval.

If ¢ is a cycle from C'") with shortest H(c), then there is a corresponding c-tree. Shifting
this c-tree to the right or to the left through the intervals corresponding to H(c) bounded
number of times we can cover every H;, where h; € S by a product H(\;,)I; ... H(\;, )11,
where II4,...,II; are products of values of variables not from P and Ajis---Aj, are bases
from NP. Combining this covering together with the covering of H (u) by the product (36),
we obtain that H([a(u), 3(A(p))]) is almost covered by parameters, except for the short
products II. Let h(x) be covered by

h(ADTL . .. h(ATI,, (37)

where h(A1),...,h(As) are parts completely covered by parameters, and IIy,...,II; are
products of variables not in P. We also remove those bases from NP from each A; which
do not overlap with h(u). Denote by fy the maximal number of bases in NP and h; ¢ P in
the covering (37).

If As;,..., A, are parametric bases, then for any solution H and any pair A;,\; €
{Xirs -, A, b we have either | H(N\;) |<| H(A;) | or | H(N;) |=| H();) | or | H(N\;) |>]
H(\j) |. We call a relationship between lengths of parametric bases a collection that consists
of one such inequality or equality for each pair of bases. There is only a finite number of
possible relationships between lengths of parametric bases. Therefore we can talk about a
parametric base A of maximal length meaning that we consider the family of solutions for
which H(A) has maximal length.

Lemma 29. Let A\, € NP be a base of maz length in the covering (37) for p € P. If for a
solution H of 2, and for each closed section [a(p), B(A(w)] in P, min | H{a(v), a(A(V))] |<]
H(\,) |, where the minimum is taken for all pairs of overlapping bases for this section, then
one can transform € into one of the finite number (depending on Q1) of generalized equations
Q(P) which do not contain closed sections from P but contain the same other closed sections
except for parametric sections. The content of closed sections from P is transferred using
bases from NP to the parametric part. This transformation is called the second minimal
replacement.

Proof. Suppose for a closed section [a(u), B(A(x))] that there exists a base A in (37)
such that | H(A) |> min (H(a(v),a(A(v))), where the minimum is taken for all pairs of
overlapping bases for this section. We can shift the cover H(A;)Iy,. .., H(A,)II, through
the distance dy =| H[a(p), a(A(n))] | . Consider first the case when d; <| H(X) | for
the largest base in (37). Suppose the part of H(u) corresponding to II; is not covered
by parameters. Take the first base A; in (37) to the right or to the left of II; such that
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| H(X;) |> di. Suppose A; is situated to the left from II;. Shifting A; to the right through
a bounded by f4 multiple of d; we will cover II;.
Consider now the case when d; >| H()) |, but there exists an overlapping pair v, A(v)
such that
dy =| Hla(v), a(Aw))] [<| HA) |-

If the part of H(p) corresponding to II; is not covered by parameters, we take the first
base \; in (37) to the right or to the left of II; such that | H()\;) |[> d>. Without loss of
generality we can suppose that ); is situated to the left of II;. Shifting A; to the right
through a bounded by f; multiple of dy we will cover II;.

Therefore, if the first alternative in the lemma does not take place, we can cover the
whole section [a(u), B(A(w))] by the bases from NP, and transform €2 into one of the finite
number of generalized equations which do not contain the closed section [a(u), B(A(1))]
and have all the other non-parametric sections the same. All the cancellations between two
neighboring terms of any equality that we have gotten are complete, therefore the coordinate
groups of new equations are quotients of FR(Q). O

5.5 Minimal solutions and tree Ty({2)

5.5.1 Minimal solutions

Let FF = F(AU B) be a free group with basis AU B, Q be a generalized equation with
constants from (A U B)*!, and parameters A. Let A(Q2) be an arbitrary group of (AU A)-
automorphisms of Fr(q). For solutions H (M and H® of the equation © in the group F we
write H®) <a(Q) H®) if there exists an endomorphism 7 of the group F which is an

(A, A)-homomorphism, and an automorphism o € A(2) such that the following conditions
hold: (1) Ty = omrgymm, (2) For all active variables d(H,gl)) < d(H,gz)) foral 1 <k <p
and d(H,il)) < d(H,gQ)) at least for one such k.

We also define a relation <.4(q) by the same way as <4(q) but with extra property:
(3) for any k, j, if (H,g))e(H]@))‘s in non-cancellable, then (H,gl))'g(Hj(-l))(S in non-cancellable
(e,0 = £1). Obviously, both relations are transitive.

A solution H of € is called A(Q)-minimal if there is no any solution H’ of the equation
Q such that H' < 4(q) H. Since the total length >¢_, I(H;) of a solution H is a non-negative
integer, every strictly decreasing chain of solutions H > H' > ... > H* >A() --- 1s finite.

It follows that for every solution H of Q there exists a minimal solution H® such that
HO <A(Q) H.

5.5.2 Automorphisms

Assign to some vertices v of the tree 7'(Q2) the groups of automorphisms of groups Fg(q,)-
For each vertex v such that tp(v) = 12 the canonical group of automorphisms A(f2,) assigned
to it is the group of automorphisms of Fr(q,) identical on A. For each vertex v such that
7 < tp(v) < 10 we assign the group of automorphisms invariant with respect to the kernel.

For each vertex v such that tp(v) = 2, assign the group A, generated by the groups of
automorphisms constructed in Lemma 25 that applied to €2, and all possible non-singular
periodic structures of this equation.
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Let tp(v) = 15. Apply transformation D3 and consider Q = .. Notice that the function
v; is constant when h; belongs to some closed section of Q.. Applying Dy, we can suppose
that the section [1,j + 1] is covered exactly twice. We say now that this is a quadratic
section. Assign to the vertex v the group of automorphisms of Frq) acting identically on
the non-quadratic part.

5.5.3 The finite subtree Tp(2): cutting off long branches

For a generalized equation 2 with parameters we construct a finite tree Ty(£2). Then we
show that the subtree of T'(2) obtained by tracing those path in T'(€2) which actually can
happen for “short” solutions is a subtree of To(€2).

According to Lemma 19, along an infinite path in T'(£2) one can either have 7 < tp(vy) <
10 for all k or tp(vi) = 12 for all k, or tp(vy) = 15 for all k.

Lemma 30. [Lemma 15 from [21]] Let v1 — vo — ... — v — ... be an infinite path in
the tree T(Y), and 7 < tp(vg) < 10 for all k. Then among {Qx} some generalized equation
occurs infinitely many times. If Q,, = y,, then (v, v;) is an isomorphism invariant with
respect to the kernel.

Lemma 31. Let tp(v) = 12. If a solution H of §, is minimal with respect to the
canonical group of automorphisms, then there is a recursive function fo such that in the
sequence

(Q, H) = (Q,, HY) — ... = (Q,,, HY), ..., (38)

corresponding to the path in T(Q,) and for the solution H, case 12 cannot be repeated more
than fy times.

Proof. If ;n and Ap both belong to the quadratic section, then p is called a quadratic
base. Consider the following set of generators for Fr(q,): variables from A and quadratic
bases from the active part. Relations in this set of generators consist of the following three
families.

1. Relations between variables in A.

2. If u is an active base and A(u) is a parametric base, and A(u) = h; ... iy, then
there is a relation p = h; ... hity.

3. Since ;=2 for each h; in the active part the product of h;...h;, where [i,j + 1] is
a closed active section, can be written in two different ways w; and ws as a product of
active bases. We write the relations wjws 1'— 1. These relations give a quadratic system of
equations with coefficients in the subgroup generated by A.

When we apply the entire transformation in Case 12, the number of variables is not
increasing and the complexity of the generalized equation is not increasing. Suppose the
same generalized equation is repeated twice in the sequence (38). for example, Q; = Q4.
Then 7(vj,vj1x) is an automorphism of Frq,) induced by the automorphism of the free
product (A)* B, where B is a free group generated by quadratic bases, identical on (A) and
fixing all words wjwy ! Therefore, H’ > H/** which contradicts to the minimality of H.
Therefore there is only a finite number (bounded by fj) of possible generalized equations
that can appear in the sequence (38).00

Let H be a solution of the equation Q with quadratic part [1,j + 1].If 4 belongs and
Ap does not belong to the quadratic section, then p is called a quadratic-coefficient base.
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Define the following numbers:

where p is a quadratic-coeflicient base.

Lemma 32. Let tp(v) =15 For any solution H of Q, there is a minimal solution HY,
which is an automorphic image of H with respect to the group of automorphisms defined in
the beginning of this section, such that

di(H") < f1(Q0) maz {d2(H"), 1},
where f1(Q) is some recursive function.

Proof. Consider instead of §2, equation 2 = (Qv) which does not have any boundary
connections, Fr(q,) is isomorphic to Frq). Consider a presentation of Fr(q,) in the set of
generators consisting of variables in the non-quadratic part and active bases. Relations in
this generating set consist of the following three families.

1. Relations between variables in the non-quadratic part.

2. If p is a quadratic-coefficient base and A(u) = h; - - - hjyy in the non-quadratic part,
then there is a relation g = h; - - - hiqy.

3. Since ;=2 for each h; in the active part the product h;---h;, where [, + 1] is
a closed active section, can be written in two different ways w; and wsy as a product of
quadratic and quadratic-coefficient bases. We write the relations wjws, t—1.

Let H be a solution of €2, minimal with respect to the canonical group of automorphisms
of the free product By * B, where B is a free group generated by quadratic bases, and B
is a subgroup of F'r(q,) generated by variables in the non-quadratic part, identical on (A)
and fixing all words wyw; *.

Consider the sequence

(H) — (o, HY) — ... — (Q,, H), ... (41)

Apply now the entire transformations to the quadratic section of €. As in the proof
of the previous lemma, each time we apply the entire transformation, we do not increase
complexity and do not increase the total number of items in the whole interval. Since H

is a solution of €2, if the same generalized equation appear in this sequence 2412 + 1 times
then for some j,j + k we have HJ >, H/T* therefore the same equation can only appear
a bounded number of times. Every quadratic base (except those that become matching
bases of length 1) in the quadratic part can be transferred to the non-quadratic part with
the use of some quadratic-coefficient base as a carrier base. This means that the length of
the transferred base is equal to the length of the part of the quadratic-coefficient carrier
base, which will then be deleted. The double of the transferred base becomes a quadratic-
coefficient base. Because there are not more than n4 bases in the active part, this would
give
dl(Hl) § nAdg(H/)7
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for some solution H* of the equation Q,. But H is obtained from the minimal solution
H in a bounded number of steps. O

We call a path v1 — vg — ... = v — ... in T(Q) for which 7 < tp(vg) < 10 for
all k or type 12 prohibited if some generalized equation with p variables occurs among
{Q, | 1< <0} atleast 2477 + 1 times. We will define below also prohibited paths in
T(Q), for which tp(vi) = 15 for all k. We will need some auxiliary definitions.

Introduce a new parameter

Ty =To+ P~ Py,

where p is the number of variables of the initial equation © and p] the number of free
variables belonging to the non-active sections of the equation 2,. We have p! < p (see the
proof of Lemma 19), hence 7, > 0. In addition if v — v9 is an auxiliary edge, then 75 < 7{.

Define by the joint induction on 7; a finite subtree Ty(2,) and a natural number s(£2,).
The tree Tp(2,) will have v as a root and consist of some vertices and edges of T'(Q2) that lie
higher than v. Let 7] =0; then in T'(Q?) there can not be auxiliary edges and vertices of type
15 higher than v. Hence a subtree Tp(€2,) consisting of vertices vy of T'(Q2) that are higher
than v, and for which the path from v to v; does not contain prohibited subpaths, is finite.

Let now

5() ngxgg%{pwfg(ﬂw,P,R), f4(QIw7PaR)}’ (42)

where w runs through all the vertices of Ty(v) for which tp(w) = 2, Q,, contains non-trivial
non-parametric sections, (P, R) is the set of non-singular periodic structures of the equation
Quw, f2 is a function appearing in Lemma 23 (f2 is present only if a periodic structure has
empty set NP) and 2] is constructed as in Lemma 27, where f4 is a function appearing in
covering 37.

Suppose now that 7, > 0 and that for all v; with 7 < 7, the tree Ty(€2,,) and the
number s(§2,,) are already defined. We begin with the consideration of the paths

r=0] — Uy — ... — Up, (43)

where tp(v;) = 15 (1 <i < m). We have 7, = 7,.

Denote by p; the carrier base of the equation €2,,. The path (43) will be called p-reducing
if u3 = p and either there are no auxiliary edges from the vertex v, and p occurs in the
sequence (i1, ..., n—1 at least twice, or there are auxiliary edges vo — w1,v2 — wa ..., V3 —
wy, from ve and g occurs in the sequence i1, . .., fim—1 at least mazi<;<xs(Qy,) times.

The path (43) will be called prohibited, if it can be represented in the form
r=1r181...787, (44)
such that for some sequence of bases 71, ...,n; the following three properties hold:

1) every base occurring at least once in the sequence ji1, . . . , i, —1 occurs at least 40n2 f1 (Q,,)+
20n + 1 times in the sequence 71, ...,7;, where n is the number of pairs of bases in
equations §2,,,

2) the path r; is n;-reducing;

3) every transfer base of some equation of path r is a transfer base of some equation of
path 7’
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The property of path (43) of being prohibited is algorithmically decidable. Every infinite
path (43) contains a prohibited subpath. Indeed, let w be the set of all bases occurring in the
sequence fi1, ..., fm,- .. infinitely many times, and @ the set of all bases, that are transfer
bases of infinitely many equations 2,,. If one cuts out some finite part in the beginning of
this infinite path, one can suppose that all the bases in the sequence p1, ..., fim, - .. belong
to w and each base that is a transfer base of at least one equation, belongs to @. Such
an infinite path for any p € w contains infinitely many non-intersecting p-reducing finite
subpaths. Hence it is possible to construct a subpath (44) of this path satisfying the first
two conditions in the definition of a prohibited subpath. Making r’ longer, one obtains a
prohibited subpath.

Let T'(Q,) be a subtree of T(£2,) consisting of the vertices v; for which the path from
v to vy in T'(Q2) contains neither prohibited subpaths nor vertices vy with 7, < 7/, except
perhaps v;. So the terminal vertices of T"(€2,) are either vertices v; such that 7, < 7/,
or terminal vertices of T'(£2,). A subtree T"(€),) can be effectively constructed. Tp(€,) is
obtained by attaching of To(€2,, ) (already constructed by the induction hypothesis) to those
terminal vertices v1 of T"(§,) for which 7, < 7). The function s(Q,) is defined by (42). Let
now Ty(92) = To(€,,). This tree is finite by construction.

5.5.4 Paths corresponding to minimal solutions of 2 are in T;(Q)

Notice, that if tp(v) > 6 and v — wy, ..., v — wy, is the list of principal outgoing edges from
v, then the generalized equations €, , ..., €, are obtained from €2, by the application of
several elementary transformations. Denote by e a function that assigns a pair (€,,, H (1)
to the pair (€2, H). For tp(v) = 4,5 this function is identical.

If tp(v) = 15 and there are auxiliary edges from the vertex v, then the carrier base u of
the equation (2, intersects A(u). For any solution H of the equation €, one can construct
a solution H' of the equation Q. by H), ., = H[1, B(A(u))]. Let €/ (Qy, H) = e(Qy, H).

In the beginning of this section we assigned to vertices v of type 12, 15, 2 and such that
7 < tp(v) < 10 of T(Q) the groups of automorphisms A(€,).Denote by Aut(Q)) the group
of automorphisms of Fr(q) , generated by all groups
7(vo, V) A(Qy)m (v, v) "1, v € Ty(R). (Here m(vg,v) is an isomorphism, because tp(v) # 1.)
We are to formulate the main technical result of this section. The following proposition
states that every minimal solution of a generalized equation {2 with respect to the group
A(Q) either factors through one of the finite family of proper quotients of the group Fr(q)
or (in the case of a non-empty parametric part) can be transferred to the parametric part.

Proposition 1. For any solution H of a generalized equation () there exists a terminal
vertez w of the tree To(QY) having type 1 or 2, and a solution H™) of a generalized equation
Q. such that

1) mg = on(vg,w)T g™ where 7 is an endomorphism of a free group F, o € Aut(Q);

2) if tp(w) = 2 and the equation Q, contains nontrivial non-parametric sections, then
there exists a primitive cyclically reduced word P such that H™) is periodic with respect
to P and one of the following conditions holds:

(a) the equation $dy, is singular with respect to a periodic structure
P(H(“’), P) and the first minimal replacement can be applied,
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(b) it is possible to apply the second minimal replacement and make the family of
closed sections in P empty.

Construct a directed tree with paths from the initial vertex
(Q,H) = (Qvo,ﬁ(o)) — (Qvl,ff(l)) — ... (Qvu,ff(")) — ... (45)

in which the v; are the vertices of the tree T'(Q) in the following way. Let v; = vy and let H(1)
be some solution of the equation 2, minimal with respect to the group of automorphisms
A(Qug) with the property H > H®.

Let i > 1 and suppose the term (Q,,, H®) of the sequence (45) has been already con-
structed. If 7 < tp(v;) < 10 or tp(v;) = 12 and there exists a minimal solution H* of €,
such that HT < H® | then we set v = v;, HtD = A+,

If tp(v;) = 15, v; # v;—1 and there are auxiliary edges from vertex v;: v; — wq,...,v; —
wy, (the carrier base u intersects with its double A(p)), then there exists a primitive word
P such that

HO[1,8(A(n))] = P'P,r > 2, P= PPy, (46)

where = denotes a graphical equality. In this case the path (45) can be continued along
several possible edges of T'(2).

For each group of automorphisms assigned to vertices of type 2 in the trees Tp(Qy, ),
i =1,...,k and non-singular periodic structure including the closed section [1, 3(A(u)] of
the equation €, and corresponding to solution H*) we replace H®) by a solution H®+
with maximal number of short variables (see the definition after Lemma 27). This collection
of short variables can be different for different periodic structures. Either all the variables
in H®* are short or there exists a parametric base Anqp of maximal length in the covering
(37). Suppose there is a p-reducing path (43) beginning at v; and corresponding to H .
Let i1, ..., um be the leading bases of this path. Let H* = H®+ .. HJ be solutions of
the generalized equations corresponding to the vertices of this path. If for some u; there is
an inequality d(H7 [o(ps), a(A(1))]) < d(Amaz), we set (Qu,, s HY) = ¢/(Q,,, HD) and
call the section [1, 8(A(u))] which becomes non-active, potentially transferable.

If there is a singular periodic structure in a vertex of type 2 of some tree Ty(Qy,), €
{1,...,k}, including the closed section [1, 5(A(u)] of the equation 2, and corresponding
to the solution H®, we also include the possibility
(Qw-u ) H(i+1)) = e/(qu‘, ) H(i))'

In all of the other cases we set (2, ,, HV) = e(Q,,, HOT), where H"7 is a solution
with maximal number of short variables and minimal solution of §2,, with respect to the
canonical group of automorphisms P,, (if it exists). The path (45) ends if tp(v;) < 2.

We will show that in the path (45) v; € Tp(2). We use induction on 7’. Suppose
v; & To(), and let ig be the first of such numbers. It follows from the construction of Tj(12)
that there exists i; < i¢p such that the path from v;, into v;, contains a subpath prohibited
in the construction of T(f2,, ). From the minimality of iy it follows that this subpath goes
from v;, (i3 < i2 < ig) to v;,. It cannot be that 7 < tp(v;) < 10 or tp(v;) = 12 for all
iy < i < i1, because there will be two indices p < g between iy and 4o such that H® = H(@),
and this gives a contradiction, because in this case it must be by construction v,+1 = vp.
So tp(vi) =15 (iz < i <'io).
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Suppose we have a subpath (43) corresponding to the fragment

(Qy,, HV) = (Qy,, H?) — ... = (Q,,,, H™) — . .. (47)
of the sequence (45). Here v1,va, ..., V-1 are vertices of the tree Tp(§2), and for all vertices
v; the edge v; — v;41 is principal.

As before, let u; denote the carrier base of §2,,, and w = {u1,..., tm-1}, and @ denote

the set of such bases which are transfer bases for at least one equation in (47). By w; denote
the set of such bases u for which either p or A(u) belongs to w U@; by wy denote the set of
all the other bases. Let
a(w) = min(min a(p), 5),
pews?
where j is the boundary between active and non-active sections. Let X, = H[a(p), B(p)].
If (92, H) is a member of sequence (47), then denote

a(w)—1

do(H) = Z d(H;), (48)

bo(H) =Y d(X,) - 2d,(H). (49)

Every item h; of the section [1, a(w)] belongs to at least two bases, and both bases are
in w, hence v, (H) > 0.

Consider the quadratic part of ﬁyl which is situated to the left of a(w). The solution
H® is minimal with respect to the canonical group of automorphisms corresponding to this

vertex. By Lemma 32 we have
di(HY) < f1(0,)d2(HD). (50)

Using this inequality we estimate the length of the interval participating in the process
d,(H™) from above by a product of 1/, and some function depending on f;. This will be
inequality 55. Then we will show that for a prohibited subpath the length of the participating
interval must be reduced by more than this figure (equalities 65, 66). This will imply that
there is no prohibited subpath in the path 47.

Denote by 7;(w) the number of bases u € wy containing h;. Then

P
S dx D) =S d(HD yi(w), (51)
pEWL =1
where p = p(Qy, ). Let I = {i|]1 <i < a(w)—1&vy; =2} and J = {i|]l <i < a(w)—1&y; > 2}.
By (48)
do(HW) =Y d(HD) + Y d(H) = dy(HO) + 3 d(H). (52)
el ieJ e

Let (A, A(N)) be a pair of quadratic-coefficient bases of the equation Qvl, where A belongs
to the nonquadratic part. This pair can appear only from the bases p € wi. There are two
types of quadratic-coefficient bases.
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Type 1. X is situated to the left of the boundary a(w). Then A is formed by items
{hili € J} and hence d(Xy) <>, d(Hi(l)). Thus the sum of the lengths d(Xx) +d(Xa(y))
for quadratic-coefficient bases of this type is not more than 2n) ", d(Hl-(l)).

Type 2. X is situated to the right of the boundary «(w). The sum of length of the

quadratic-coefficient bases of the second type is not more than 257 d(Hi(l))yi (w).

‘We have ) e
do(AM) <20y d(HD)+2 > d(HD)3i(w). (53)
ieJ i=a(w)
Now (49) and (51) imply
P
Vo) 2 T dHN) + Y d(H piw). (54)
icJ i=a(w)
Inequalities (50), (52),(53),(54) imply
Ao (HD) < maz{pu(HD)@nf(0,) +1), fi(Q)}. (55)

From the definition of Case 15 it follows that all the words H[1, p; 4+ 1] are the ends
of the word HMW[1, p; + 1], that is

HOM, py +1] = U HD[L, p; + 1). (56)

On the other hand bases u € wy participate in these transformations neither as carrier bases
nor as transfer bases; hence H"[a(w), p1 + 1] is the end of the word HW[1, p; + 1], that is

H9, pi +1] = V;HY [a(w), p1 + 1]. (57)
So we have
du(AD) = dy(HD) = d(Vi) = d(Vig) = d(Uss1) — d(U5) = d(X)) — d(XGHD). (58)
In particular (49),(58) imply that ¢, (HM) = ¢, (H®) = ... 4, (H™) = ¢,,. Denote the
number (58) by §;.

Let the path (43) be p-reducing, that is either p; = p and ve does not have auxiliary
edges and p occurs in the sequence pq, ..., ,—1 at least twice, or v does have auxiliary
edges v9 — wq,...v3 — wy and the base p occurs in the sequence pq, ..., tm—1 at least
maz1<i<kS(Qw,) times. Estimate d(U,,) = Z:i_ll d; from below. First notice that if p;, =
i, = (i1 < i2) and p; # p for iy < i < ig, then

ia—1

D6 = d(H L a(A (s 41))])- (59)

i=i1
Indeed, if iy = 4; + 1, then §;, = d(H[1,a(A(n))] = d(HOTV[1, a(Aw))]. If iy >
i1 + 1, then p;,4+1 # p and p is a transfer base in the equation Hence 6;,+1 +
d(HOH[1, a(p)]) = d(HOHD[1, i, +1)]). Now (59) follows from

Vig41°

i2—1

Y 62 dHOTL a(p).

i=11+2
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So if vg does not have outgoing auxiliary edges, that is the bases s and A(us2) do not
intersect in the equation 2,,; then (59) implies that

Z L a(Au)]) = d(X3)) > d(XP) = d(X)) b,
which implies that

). (60)

M\H

b

Suppose now there are outgoing auxiliary edges from the vertex vy: vo — wy,...,v3 —
wy,. The equation Q,, has some solution. Let H®[1, a(A(us2))] = Q, and P a word (in the

final A’s) such that @Q = P9, then X,(fz) and X,(f) are beginnings of the word H®[1, B(A(u2))],
which is a beginning of P*°. Denote M = mawxi<;j<ps(Quw,)-
By the construction of (45)we either have

X = PP, P=PPr<M. (61)

or for each base p;, i > 2, there is an inequality d(H® (a(u;), a(A(p;)))) > d()\) and
therefore

d(XP) < Md(HD[a(pss), o Apsa))]). (62)
Let pi, = pi, = pyi1 <o pg # p for iy <i <ig. If
41
d(X11D) > 2d(P) (63)

and H®+[1, p; 11 + 1] begins with a cyclic permutation of P3, then
d(HOAD[1 a(A(piy11))]) > d(X(2 )/M. Together with (59) this gives 222 L5 > d(X ﬁg))/M.
The base i occurs in the sequence piq, ..., fn—1 at least M times, so elther (63) fails for
some iy <m —1or "6 (M —3)d (X,(L2 )/M.
If (63) fails, then the inequality d(X (™) < d(X,(flﬂ ), and the definition (58) imply

that A

i1

D 6> d(X) —d(XP D) > (M = 2)d(XP))/M;

Hiqg+1

so everything is reduced to the second case.
Let

mz 3)d(X M)/ M.

Notlce that (59) implies for i; = 1 776 > d(Q) > d(P); so Y7 6 > max{1, M —
3}d(X, u )/M Together with (61) this implies Z:’;l §; > %d(X,(f)) %(d(X,Sl)) — &1).
Finally,
m—1 1
> (e, (64

i=1
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Comparing (60) and (64) we can see that for the u-reducing path (43) inequality (64) always
holds.
Suppose now that the path (43) is prohibited; hence it can be represented in the form

(44). From definition (49) we have >_ . d(

the inequality d(X,Sm)) > 54, holds. Because Xftm) = (X(Aﬁ(i))il7 we can suppose that

1 € wUw. Let my be the length of the path rys1...78 in (44). If p € @ then by the third
part of the definition of a prohibited path there exists m; < i < m such that u is a transfer

base of €,,. Hence, d(X\™)) > d(X{)) > d(X") > d(X™) > Laj,. If p € w, then take

= 2n

u instead of p;. We proved the existence of a base u € w such that

Xl(;”)) > 1,; so at least for one base u € wy

1
d(X ™)) > —qp,.
(X)) 2 50 (65)
By the definition of a prohibited path, the inequality d(X,(f)) > d(X,(Lml))(l <i<m), (64),
and (65) we obtain

mi—1

1
> ai> maz{ 5o, 1}(40n% f; +20n +1). (66)
=1

By (58) the sum in the left part of the inequality (66) equals d,(H®) — d,,(H(™));
hence

_ 1
du(HWV) > max{ﬁ%, 1}(40n2 f1 + 20n + 1),

which contradicts (55).

This contradiction was obtained from the supposition that there are prohibited paths
(47) in the path (45). Hence (45) does not contain prohibited paths. This implies that
v; € Tp(2) for all v; in (45). For all ¢ v; — v;41 is an edge of a finite tree. Hence the path
(45) is finite. Let (Q,, H*) be the final term of this sequence. We show that (£, H")
satisfies all the properties formulated in the lemma.

The first property is obvious.

Let tp(w) = 2 and let Q,, have non-trivial non-parametric part. It follows from the
construction of (45) that if [4, k] is a non-active section for €, then H®[j, k] = HO+D[j k] =
... HW[j k]. Hence (46) and the definition of s(£2,) imply that the word h; ...h,, can be
subdivided into subwords hli1,ia], ..., h[ix_1, 4], such that for any a either H(*) has length
1, or hlig,iq41] does not participate in basic and coefficient equations, or H“)[i,,iq1] can
be written as

H " [iq,iq41) = PTP); P, =P.P';r > max p, gy Max{py fo(Qw, P, R), f4(2,)},  (67)
where P, is a primitive word, and (P, R) runs through all the periodic structures of Quw
such that either one of them is singular or for a solution with maximal number of short
variables with respect to the group of extended automorphisms all the closed sections are
potentially transferable. The proof of Proposition 1 will be completed after we prove the
following statement.

Lemma 33. If tp(w) = 2 and every closed section belonging to a periodic structure P
is potentially transferable (the definition is given in the construction of Ty in case 15), one
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can apply the second minimal replacement and get a finite number (depending on periodic
structures containing this section in the vertices of type 2 in the trees To(w;),i = 1,...,m
) of possible generalized equations containing the same closed sections not from P and not
containing closed sections from P.

Proof. From the definition of potentially transferable section it follows that after finite
number of transformations depending on f4(£2,,P), where u runs through the vertices of
type 2 in the trees To(w;),i = 1,...,m, we obtain a cycle that is shorter than or equal to
d(Amaz). This cycle is exactly hla(u;), a(A(u;)] for the base p; in the p-reducing subpath.
The rest of the proof of Lemma 33 is a repetition of the proof of Lemma 29. [J

5.5.5 The decomposition tree T,..()

We can define now a decomposition tree Tye.(2). To obtain Tye.(2) we add some edges
to the terminal vertices of type 2 of Tp(£2). Let v be a vertex of type 2 in Tp(£2). If
there is no periodic structures in €, then this is a terminal vertex of Ty..(2). Suppose
there exists a finite number of combinations of different periodic structures Pq,...,Ps in
2,. If some P; is singular, we consider a generalized equation €2,(p, . p,) obtained from
Qy(P1,...,Ps) by the first minimal replacement corresponding to P;. We also draw the
edge v — u = u(P1,...,Ps). This vertex u is a terminal vertex of Tye.(2). If all Py,...,P;s
in €, are not singular, we can suppose that for each periodic structure P; with period P;
some values of variables in P; are shorter than 2|P;| and values of some other variables
are shorter than f5(2,)|P;|, where f3 is the function from Lemma 27. Then we apply the

second minimal replacement. The resulting generalized equations €, ..., ¢, will have
empty non-parametric part. We draw the edges v — u1,...,v — uz in Tye(2). Vertices
Uy, ..., us are terminal vertices of Tyeo(2).

5.6 The solution tree T, (2, A)

Let Q = Q(H) be a generalized equation in variables H with the set of bases Bq = B U A.
Let Tye(2) be the tree constructed in Subsection 5.5.5 for a generalized equation € with
parameters A.

Recall that in a leaf-vertex v of Tgc.(£2) we have the coordinate group Fr(q,) which is
a proper homomorphic image of Fr(q). We define a new transformation R, (we call it leaf-
extension) of the tree Tye.(€2) at the leaf vertex v. We take the union of two trees Tye.(€2)
and Tye.(€,) and identify the vertices v in both trees (i.e., we extend the tree Tye.(2) by
gluing the tree Ty..(£2,) to the vertex v). Observe that if the equation 2, has non-parametric
non-constant sections (in this event we call v a terminal vertex), then Tye.(€2,) consists of
a single vertex, namely v.

Now we construct a solution tree Ts,;(€2) by induction starting at Tye.(£2). Let v be a leaf
non-terminal vertex of T(9) = T..(Q). Then we apply the transformation R, and obtain a
new tree TW = Ry (Tgec(R2)). If there exists a leaf non-terminal vertex vy of TM | then we
apply the transformation R,,, and so on. By induction we construct a strictly increasing
sequence of trees

TO cT® c...cTWC.... (68)
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This sequence is finite. Indeed, suppose to the contrary that the sequence is infinite and
hence the union 7(°°) of this sequence is an infinite tree in which every vertex has a finite
degree. By Konig’s lemma there is an infinite branch B in T(>). Observe that along any
infinite branch in 7(°) one has to encounter infinitely many proper epimorphisms. This
contradicts the fact that F' is equationally Noetherian.

Denote the union of the sequence of the trees (68) by Tsoi (€2, A). We call T (2, A) the
solution tree of 0 with parameters A. Recall that with every edge e in Tye.(Q2) (as well as in
Ts01(Q, A)) with the initial vertex v and the terminal vertex w we associate an epimorphism

Te FR(QU) — FR(QU)-

It follows that every connected (directed) path p in the graph gives rise to a composition of
homomorphisms which we denote by m,. Since T50(€2, A) is a tree the path p is completely
defined by its initial and terminal vertices u, v; in this case we sometimes write 7, , instead
of m,. Let m, be the homomorphism corresponding to the path from the initial vertex v to
a given vertex v, we call it the canonical epimorphism from Fgq) onto Fr(q,).

Also, with some vertices v in the tree Ty..(Q2), as well as in the tree Ty, (2, A), we
associate groups of canonical automorphisms A(f2,) or extended automorphisms A(¢,) of
the coordinate group Fgq,) which, in particular, fix all variables in the non-active part
of Q,. We can suppose that the group A(£,) is associated to every vertex, but for some
vertices it is trivial. Observe also, that canonical epimorphisms map parametric parts into
parametric parts (i.e., subgroups generated by variables in parametric parts).

Recall that writing (2, U) means that U is a solution of Q. If (Q,U) and u € Bgq, then
by py we denote the element

Hu = [ua(“) . .ug(“)_l]a(“). (69)

Let By = {pv | p € B} and Ay = {pv | n € A}. We refer to these sets as the set of values
of bases from B and the set of values of parameters from A with respect to the solution U.
Notice, that the value py is given in (69) as a value of one fixed word mapping

Pu(H) = [hagu) - - by 17"
In vector notation we can write that
By = Pp(U), Ay = Pr(U),

where Pg(H) and Py(H) are corresponding word mappings.
The following result explains the name of the tree T, (€2, A).

Theorem 5. Let Q = Q(H, A) be a generalized equation in variables H with parameters
A. Let Tso1 (2, A) be the solution tree for Q with parameters. Then the following conditions
hold.

1. For any solution U of the generalized equation ) there exists a path
Vo, U1,y - -+, U = v 10 Tsor(Q, A) from the root vertex vy to a terminal vertex v, a sequence of
canonical automorphisms o = (0g,...,0n),0; € A(,), and a solution U, of the generalized
equation §, such that the solution U (viewed as a homomorphism Fr)y — F) is equal to
the following composition of homomorphisms

U=®u, = 00Mu5,0,01 - To,_1,0000Us. (70)
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2. For any path vg,v1,...,vp = v in Tse(Q, A) from the root vertex vg to a terminal
verter v, a sequence of canonical automorphisms o = (0g,...,04),0; € A(Q,), and a
solution U, of the generalized equation (,, ®,y, gives a solution of the group equation
Q* = 1; moreover, every solution of Q* =1 can be obtained this way.

3. For each terminal vertex v in Tso(Q, A) there exists a word mapping Q,(H,) such
that for any solution U, of , and any solution U = @, y, from (70) the values of the
parameters A with respect to U can be written as Ay = Q,(U,) (i.e., these values do not
depend on o) and the word Q,(U,) is reduced as written.

Proof. Statements 1 and 2 follow from the construction of the tree Ty (22, A). To ver-
ify 3 we need to invoke the argument above this theorem which claims that the canonical
automorphisms associated with generalized equations in Ty, (£2, A) fix all variables in the
parametric part and, also, that the canonical epimorphisms map variables from the para-
metric part into themselves.

The set of homomorphisms having form (70) is called a fundamental sequence.

Theorem 6. For any finite system S(X) = 1 over a free group F, one can find effectively
a finite family of mondegenerate triangular quasi-quadratic systems Uy, ...,Ux and word
mappings p; : Ve(U;) — Ve(S) (i = 1,...,k) such that for every b € Vg(S) there exists i
and ¢ € Vp(U;) for which b = p;(c), i.e.

Vi(S) =p1(Vr(Ur)) U...Upe(Ve(Uk))

and all sets p;(Vp(U;)) are irreducible; moreover, every irreducible component of Vi (S) can
be obtained as a closure of some p;(Vi(U;)) in the Zariski topology.

Proof. Each solution of the system S(X) = 1 can be obtained as X = p;(Y;), where
Y; are variables of Q = ; for a finite number of generalized equations. We have to show
that all solutions of Q* are solutions of some NTQ system. We can use Theorem 5 without
parameters. In this case €2, is an empty equation with non-empty set of variables. In other
words Friq,) = F'*F(hi,...,h,). To each of the branches of T}, we assign an NTQ system
from the formulation of the theorem. Let {2, be a leaf vertex in Tye.. Then Fr(q,) is a
proper quotient of Fr(qy. Consider the path wvp,vy,...,v, = w in Tge.(Q2) from the root
vertex vy to a terminal vertex w. All the groups F R(%2,,) are isomorphic. There are the
following four possibilities.

1. tp(vp—1) = 2. In this case there is a singular periodic structure on €, _,. By
Lemma 22, F R(Qu, ) is a fundamental group of a graph of groups with one vertex group
K, some free abelian vertex groups, and some edges defining HNN extensions of K. Recall
that making the first minimal replacement we first replaced F) R(Q, ) by a finite number
of proper quotients in which the edge groups corresponding to abelian vertex groups and
HNN extensions are maximal cyclic in K. Extend the centralizers of the edge groups of
Q,, , corresponding to HNN extensions by stable letters ¢1,...,¢;. This new group that
we denote by N is the coordinate group of a quadratic equation over Fr(q,) which has a
solution in Frq,)-

In all the other cases tp(v,—1) # 2.

2. There were no auxiliary edges from vertices vg, v1, ..., v, = w, and if one of the Cases
7-10 appeared at one of these vertices, then it only appeared a bounded (the boundary
depends on €2,,,) number of times in the sequence. In this case we replace Frq) by Fr(a.,,)
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3. Fr(q,) is a term in a free decomposition of FR(Q%A) ( Qy is a kernel of a generalized
equation €, ). In this case we also consider Fr(q, instead of Fr(q).

4. For some i tp(v;) = 12 and the path v;, ..., v, = w does not contain vertices of type
7—10,12 or 15. In this case Fr(q) is the coordinate group of a quadratic equation.

5. The path vg, v1,...,v, = w contains vertices of type 15. Suppose v;,,..., Vi, 1k, J =
1,...,lareall blocks of consecutive vertices of type 15 This means that tp(v;, 1x,41) # 15 and

ij +k;j +1 <ijy1. Suppose also that none of the previous cases takes place. To each v;; we

assigned a quadratic equation and a group of canonical automorphisms corresponding to this

equation. Going alon the path v;,,...,v;, 4k, we take minimal solutions corresponding to

some non-singular periodic structures. Each such structure corresponds to a representation

of FR(QW_) as an HNN extension. As in the case of a singular periodic structure, we can
J

suppose that the edge groups corresponding to HNN extensions are maximal cyclic and

not conjugated in K. Extend the centralizers of the edge groups corresponding to HNN

extensions by stable letters ¢1,...,tx. Let N be the new group. Then N is the coordinate

group of a quadratic system of equations over F R(Qu, o 11)" Repeating this construction

for each j = 1,...,[, we construct NTQ system over F’R(gjzw).
Since Fr(q,,) is a proper quotient of Fr(q), the theorem can now be proved by induction.
|

Theorem 7. For any finitely generated group G and a free group F the set Hom(G, F)
[Homp (G, F)] can be effectively described by a finite rooted tree oriented from the root, all
vertices except for the root vertex are labelled by coordinate groups of generalized equations.
Edges from the root vertex correspond to a finite number of homomorphisms from G into
coordinate groups of generalized equations. Leaf vertices are labelled by free groups. To each
vertex group we assign the group of canonical automorphisms. Fach edge (except for the
edges from the root) in this tree is labelled by a quotient map, and all quotients are proper.
Every homomorphism from G to F can be written as a composition of the homomorphisms
corresponding to edges, canonical automorphisms of the groups assigned to vertices, and
some homomorphism [retract] from a free group in a leaf vertex into F.

5.7 Cut Equations

In the proof of the implicit function theorems it will be convenient to use a modification
of the notion of a generalized equation. The following definition provides a framework for
such a modification.

Definition 21. A cut equation I1 = (£, M, X, far, fx) consists of a set of intervals £,
a set of variables M, a set of parameters X, and two labeling functions

fx: €= F[X], fum:&— F[M].

For an interval o € € the image fur(0) = far(o)(M) is a reduced word in variables M*!
and constants from F', we call it a partition of fx (o).

Sometimes we write I = (&, far, fx) omitting M and X.

Definition 22. A solution of a cut equation II = (&, far, fx) with respect to an F-
homomorphism 3 : F[X]| — F is an F-homomorphism « : F[M] — F such that: 1) for
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every u € M a(p) is a reduced non-empty word; 2) for every reduced word far(o)(M) (o € E)
the replacement m — a(m) (m € M) results in a word fp(o)(a(M)) which is a reduced
word as written and such that fa(o)(a(M)) is graphically equal to the reduced form of
B(fx(0)); in particular, the following diagram is commutative.

<
/ \M
F(X) / F(M)

If « : FIM] — F is a solution of a cut equation II = (&, far, fx) with respect to an
F-homomorphism ( : F[X] — F, then we write (II, 3, a) and refer to «a as a solution of
IT modulo 8. In this event, for a given o € £ we say that fy(o)(«a(M)) is a partition
of B(fx(c)). Sometimes we also consider homomorphisms « : F[M] — F, for which the
diagram above is still commutative, but cancellation may occur in the words fy;(o)(a(M)).
In this event we refer to « as a group solution of II with respect to (.

F

Lemma 34. For a generalized equation Q(H) one can effectively construct a cut equation
o = (&, fx, famr) such that the following conditions hold:

(1) X is a partition of the whole interval [1, pq] into disjoint closed subintervals;
(2) M contains the set of variables H;

(3) for any solution U = (u1,...,u,) of  the cut equation Ilg has a solution o modulo
the canonical homomorphism By : F(X) — F (Bu(z) = witit1 ... u; where i,j are,
correspondingly, the left and the right end-points of the interval x);

(4) for any solution (B, ) of the cut equation Il the restriction of a« on H gives a solution
of the generalized equation ).

Proof. We begin with defining the sets X and M. Recall that a closed interval of € is a
union of closed sections of 2. Let X be an arbitrary partition of the whole interval [1, pq]
into closed subintervals (i.e., any two intervals in X are disjoint and the union of X is the
whole interval [1, pg]).

Let B be a set of representatives of dual bases of €2, i.e., for every base u of €2 either u
or A(u) belongs to B, but not both. Put M = H U B.

Now let 0 € X. We denote by B, the set of all bases over ¢ and by H, the set of all
items in 0. Put S, = B, U H,. For e € S, let s(e) be the interval [i, j], where ¢ < j are the
endpoints of e. A sequence P = (eq,...,e) of elements from S, is called a partition of o if
s(er)U---Us(ex) = o and s(e;) Ns(ej) =0 for i # j. Let Part, be the set of all partitions
of o. Now put

& ={P| P e Part,,0 € X}.
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Then for every P € £ there exists one and only one ¢ € X such that P € Part,. Denote
this o by fx(P). The map fx : P — fx(P) is a well-defined function from £ into F(X).

Each partition P = (eq,...,e;) € Part, gives rise to a word wp(M) = wy ... w as
follows. If e; € H, then w; = e;. If e; = 1 € B, then w; = p™. If ¢; = p and A(p) € By
then w; = A(p)*™. The map fy(P) = wp(M) is a well-defined function from &£ into
F(M).

Now set IIg = (€, fx, fam)- It is not hard to see from the construction that the cut
equation Il satisfies all the required properties. Indeed, (1) and (2) follow directly from
the construction.

To verify (3), let’s consider a solution U = (u1,...,u,,) of Q. To define corresponding
functions By and «, observe that the function s(e) (see above) is defined for every e €
X UM. Now for 0 € X put fy(o) = u;...u;, where s(o) = [i,4], and for m € M put
a(m) = u; ...u;, where s(m) = [i, j]. Clearly, v is a solution of IIp modulo 5.

To verify (4) observe that if « is a solution of IIg modulo 3, then the restriction of «
onto the subset H C M gives a solution of the generalized equation 2. This follows from the
construction of the words w,, and the fact that the words w,(a(M)) are reduced as written
(see definition of a solution of a cut equation). Indeed, if a base p occurs in a partition
P € &, then there is a partition P’ € £ which is obtained from P by replacing p by the
sequence h; ...h;. Since there is no cancellation in words wp(a(M)) and wp(a(M)), this
implies that a(u)*") = a(h; ...h;). This shows that oz is a solution of Q. O

Theorem 8. Let S(X,Y,A)) =1 be a system of equations over F = F(A). Then one
can effectively construct a finite set of cut equations

CE(S)={1L; | 1L, = (&, fx;, fm,),i=1...,k}
and a finite set of tuples of words {Q;(M;) |i=1,...,k} such that:
1. for every equation I; = (&, fx,, far,) € CE(S), one has X; = X and fx, (&) C X*;

2. for any solution (U, V) of S(X,Y,A) =1 in F(A), there exists a number i and a tuple
of words P;y such that the cut equation II; € CE(S) has a solution o : M; — F
with respect to the F-homomorphism By : F[X] — F which is induced by the map
X — U. Moreover, U = Q;(a(M;)), the word Q;(a(M;)) is reduced as written, and
V =P v(a(M));

3. for anyII; € CE(S) there exists a tuple of words P,y such that for any solution (group
solution) (B, a) of I1; the pair (U, V), where U = Q;(a(M;)) and V = P,y (a(M;)), is
a solution of S(X,Y)=1in F.

Proof. Let S(X,Y) = 1 be a system of equations over a free group F. In Subsection
4.3 we have constructed a set of initial parameterized generalized equations GE,q(S) =
{,...,Q,} for S(X,Y) = 1 with respect to the set of parameters X. For each 2 €
GEpqor(S) in Section 5.6 we constructed the finite tree Ts0;(€2) with respect to parameters
X. Observe that parametric part [f,,, pv,] in the root equation Q = €, of the tree Tsq;(£2)
is partitioned into a disjoint union of closed sections corresponding to X-bases and constant
bases (this follows from the construction of the initial equations in the set GE 4, (S)). We
label every closed section o corresponding to a variable z € X*! by z, and every constant
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section corresponding to a constant a by a. Due to our construction of the tree Tsq;(£2)
moving along a branch B from the initial vertex vy to a terminal vertex v, we transfer all
the bases from the active and non-active parts into parametric parts until, eventually, in
Q, the whole interval consists of the parametric part. Observe also that, moving along B
in the parametric part, we neither introduce new closed sections nor delete any. All we do
is we split (sometimes) an item in a closed parametric section into two new ones. In any
event we keep the same label of the section.

Now for a terminal vertex v in T, (§2) we construct a cut equation II) = (&,, fx,, far,)
as in Lemma 34 taking the set of all closed sections of €2, as the partition X,. The set of
cut equations

CE'(S) ={IL, | Q € GEpar(S),v € VTerm(Tsoi(2))}

satisfies all the requirements of the theorem except X, might not be equal to X. To satisfy
this condition we adjust slightly the equations IT,.

To do this, we denote by [ : X, — X*1 U A*! the labelling function on the set of closed
sections of Q,. Put IT, = (&,, fx, far,) where fx is the composition of fx, and . The set
of cut equations

CE(S) = {IL, | © € GEpur(S),v € VTerm(Too ()}

satisfies all the conditions of the theorem. This follows from Theorem 5 and from Lemma
34. Indeed, to satisfy 3) one can take the words P; y that correspond to a minimal solution
of II;, i.e., the words P; v can be obtained from a given particular way to transfer all bases
from Y-part onto X-part.
O

The next result shows that for every cut equation II one can effectively and canonically
associate a generalized equation Q.

For every cut equation Il = (€, X, M, fx, far) one can canonically associate a generalized
equation Q(M, X) as follows. Consider the following word

V= fx(o1)fm(o1) ... fx(ok) fa (o).

Now we are going to mimic the construction of the generalized equation in Lemma 13. The
set of boundaries BD of Qy consists of positive integers 1,...,|V|+ 1. The set of bases BS
is union of the following sets:

a) every letter p in the word V. Letters X! U M*! are variable bases, for every two
different occurrences ut, u%2 of a letter p € X*!' U M*! in V we say that these bases are
dual and they have the same orientation if €169 = 1, and different orientation otherwise.
Each occurrence of a letter a € A*! provides a constant base with the label a. Endpoints
of these bases correspond to their positions in the word V' (see Lemma 14).

b) every pair of subwords fx(0;), far(0;) provides a pair of dual bases A;, A();), the base
A; is located above the subword fx(o;), and A()\;) is located above fyr(o;) (this defines the
endpoints of the bases).

Informally, one can visualize the generalized equation Qpy as follows. Let £ = {o1,...,01}
and let & = {o’ | o € £} be another disjoint copy of the set £. Locate intervals from £ U &’
on a segment I of a straight line from left to the right in the following order 01,01, ..., 0k, 0f;

then put bases over I according to the word V. The next result summarizes the discussion
above.
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Lemma 35. For every cut equation Il = (£, X, M, f., far), one can canonically associate
a generalized equation Qi (M, X) such that if ag : F[M] — F is a solution of the cut equation
I1, then the maps o : FIM| — F and B : F[X]| — F give rise to a solution of the group
equation (not generalized!) Qf; = 1 in such a way that for every o € £ far(o)(a(M)) is a
reduced word which is graphically equal to B(fx(o)(X)), and vice versa.

6 Definitions and elementary properties of liftings

In this section we give necessary definitions for the further discussion of liftings of equations
and inequaliies into coordinate groups.

Let G be a group and let S(X) = 1 be a system of equations over G. Recall that by
Gg we denote the quotient group G[X]/ncl(S), where ncl(S) is the normal closure of S in
G[X]. In particular, Gr(sy = G[X]/R(S) is the coordinate group defined by S(X) = 1.
The radical R(S) can be described as follows. Consider a set of G-homomorphisms

Pg.5 = {9 € Homg(G[S],G) | ¢(5) =1}

Then 0
_ ) Ngeagskerg if &g g #
R(S) = { G[X] otherwise

Now we put these definitions in a more general framework. Let H and K be G-groups
and M C H. Put
Prm ={¢ € Homg(H,K) | p(M) = 1}.

Then the following subgroup is termed the G-radical of M with respect to K :

_ m¢€'1>K,M ker d)v if (I)K,M 7& (Z),
Radi (M) = { G[X] otherwise.

Sometimes, to emphasize that M is a subset of H, we write Radk (M, H). Clearly, if K = G,
then R(S) = Radg(S, G[X]).
Let
Hj, = H/Radk(1).

Then H7, is either a G-group or trivial. If Hj # 1, then it is G-separated by K. In the
case K = G we omit K in the notation above and simply write H*. Notice that

(H/ncl(M))j ~ H/Radx (M),
in particular, (Gs)* = Gr(g)-

Lemma 36. Let a: Hy — Hy be a G-homomorphism and suppose ® = {¢ : Hy — K}
be a separating family of G- homomorphisms. Then

kera = m{ker(a og) | ¢€d}

Proof. Suppose h € Hy and h & ker(«). Then a(h) # 1 in Ho. Hence there exists ¢ € ®
such that ¢(a(h)) # 1. This shows that ker a D ({ker(ao¢) | ¢ € ®}. The other inclusion
is obvious. [J
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Lemma 37. Let Hy, Ho, and K be G-groups.

1. Let a : Hy — Hs be a G-homomorphism and let Hy be G-separated by K. If M C
ker ar, then Rady (M) C ker av.

2. EBvery G-homomorphism ¢ : Hi — Hs gives rise to a unique homomorphism
¢": (Hi)k — (H2)k
such that na o ¢ = ¢* omy, where n; : H; — H; is the canonical epimorphism.

Proof. 1. We have
Radyx (M, Hy) = ﬂ{ker(z) |¢: Hi —¢ KNP(M) =1} C ﬂ{ker(ozoﬁ) | B: Hy —¢ K} =kera.
2. Let o : Hy — (H3)j; be the composition of the following homomorphisms
H % Hy, ™ (H,)%.

Then by assertion 1 Radg (1, Hy) C ker «, therefore o induces the canonical G-homomorphism
9" (Hi)x — (Ha)k O

Lemma 38. 1. The canonical map X\ : G — Gg is an embedding <= S(X) =1 has
a solution in some G-group H.

2. The canonical map p: G — Gpg) is an embedding <= S(X) =1 has a solution in
some G-group H which is G-separated by G.

Proof. 1. If S(x1,...,2m) = 1 has a solution (hq,...,h,) in some G-group H, then
the G-homomorphism x; — h;, (i = 1,...,m) from G[zy,...,z,,] into H induces a ho-
momorphism ¢ : Gg — H. Since H is a G-group all non-trivial elements from G are also
non-trivial in the factor-group Gg, therefore A : G — Gg is an embedding. The converse is
obvious.

2. Let S(x1,...,%m) = 1 have a solution (hq,...,hy,) in some G-group H which is
G-separated by G. Then there exists the canonical G-homomorphism « : Gg — H defined
as in the proof of the first assertion. Hence R(S) C ker @ by Lemma 37, and « induces a
homomorphism from Gg(g) into H, which is monic on G. Therefore G' embeds into Gr(g)-
The converse is obvious. [J

Now we apply Lemma 37 to coordinate groups of nonempty algebraic sets.

Lemma 39. Let subsets S and T from G[X] define non-empty algebraic sets in a group
G. Then every G-homomorphism ¢ : Gg — Gr gives rise to a G-homomorphism ¢* :
GR(S) — GR(T)'

Proof. The result follows from Lemma 37 and Lemma 38.
Now we are in a position to give the following

Definition 23. Let S(X) = 1 be a system of equations over a group G which has a
solution in G. We say that a system of equations T(X,Y) =1 is compatible with S(X) =1
over G if for every solution U of S(X) =1 in G the equation T(U,Y) = 1 also has a solution
in G, i.e., the algebraic set Vg (S) is a projection of the algebraic set Vg (S UT).
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The next proposition describes compatibility of two equations in terms of their coordinate
groups.

Proposition 2. Let S(X) = 1 be a system of equations over a group G which has a
solution in G. Then T'(X,Y) =1 is compatible with S(X) =1 over G if and only if G g(s)
is canonically embedded into G g(sury, and every G-homomorphism « : Grs) — G extends
to a G-homomorphisms o : Gr(sury — G.

Proof. Suppose first that T(X,Y) = 1 is compatible with S(X) = 1 over G and suppose
that Vg (S) # (0. The identity map X — X gives rise to a G-homomorphism

A:Gs — Gsur

(notice that both Gg and Ggur are G-groups by Lemma 38), which by Lemma 39 induces
a G-homomorphism
A Gres)y — GRrsur)-

We claim that \* is an embedding. To show this we need to prove first the statement about
the extensions of homomorphisms. Let a : Gg(sy — G be an arbitrary G-homomorphism.
It follows that «(X) is a solution of S(X) =1 in G. Since T(X,Y) =1 is compatible with
S(X) =1 over G, there exists a solution, say 3(Y), of T(«(X),Y) =1 in G. The map

X —aX),Y — ﬁ(Y)

gives rise to a G-homomorphism G[X,Y] — G, which induces a G-homomorphism ¢ :
Gsur — G. By Lemma 39 ¢ induces a G-homomorphism

" GR(SUT) — G.
Clearly, ¢* makes the following diagram to commute.

)\*
GR(S) > GR(SUT)

Y

G

Now to prove that A* is an embedding, observe that G r(s) is G-separated by G. Therefore
for every non-trivial h € Gg(g) there exists a G-homomorphism « : Gr(s) — G such that
a(h) # 1. But then ¢*(A\*(h)) # 1 and consequently h ¢ ker A*. The converse statement is
obvious. [J

Let S(X) = 1 be a system of equations over G and suppose Vg (S) # 0. The canonical
embedding X — G[X] induces the canonical map

J2n X — GR(S)-

We are ready to formulate the main definition.
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Definition 24. Let S(X) = 1 be a system of equations over G with Vg(S) # 0 and
let p: X — Gpgs) be the canonical map. Let a system T(X,Y) = 1 be compatible with
S(X) =1 over G. We say that T(X,Y) = 1 admits a lift to a generic point of S =1 over
G (or, shortly, S-lift over G) if T(X*,Y) = 1 has a solution in G sy (here Y are variables
and X" are constants from Gr(s)).

Lemma 40. Let T(X,Y) = 1 be compatible with S(X) =1 over G. If T(X,Y) =1
admits an S-lift, then the identity map Y — Y gives rise to a canonical G g(s)-epimorphism
from Gr(sury onto the coordinate group of T(XH,Y) =1 over Gr(s):

V" Gresury — Gres)[Y]/Radg s, (T(X",Y)).

Moreover, every solution U of T(X*,Y') = 1 in Gr(g) gives rise to a G g(g)-homomorphism
dvu : Gresur) — Grs), where py(Y) =U.

Proof. Observe that the following chain of isomorphisms hold:

Gr(sur) ¢ GIX][Y]/Rada(SUT) ~¢ G[X][Y]/Rade(Radc(S,GIX]) UT)
~¢g (GIX][Y]/ncl(Radg (S, GIX])UT))" ~g (Grs)[Y]/ncl(T(X",Y)))".

Denote by G'p(g) the canonical image of Gg(s) in (Gpr(g)[Y]/ncl(T(X*,Y)))*.

Since Radg, s, (T(X*,Y)) is a normal subgroup in G'r(s)[Y] containing T'(X*,Y") there
exists a canonical G-epimorphism

bt G [Y)/mel(T(XP, Y)) = G Y]/ Rad o) (T(XH, V).
By Lemma 37 the homomorphism v gives rise to a canonical G-homomorphism
" (Grs) [Y]/ne(T(XH,Y)))" = (Grs)[Y]/Radg s, (T(X",Y)))"

Notice that the group G r(s)[Y]/Radgy, s, (T(X*,Y)) is the coordinate group of the system
T(X",Y) =1 over Gp(s) and this system has a solution in G (s). Therefore this group is a
GRr(s)-group and it is G g(g)-separated by G'r(s). Now since G g(g) is the coordinate group
of S(X) = 1 over G and this system has a solution in G, we see that G p(g) is G-separated by
G. It follows that the group Gr(s)[Y]/Radgy, s, (T(X*,Y)) is G-separated by G. Therefore

GR(S) [Y]/RadGn(S) (T(Xlta Y)) = (GR(S) [Y]/RadGn(S) (T(X“, Y)))*

Now we can see that

V" Grsur) — Gres)lY]/Radg 5, (T(X",Y))
is a G-homomorphism which maps the subgroup Ggr(s) from Gr(sur) onto the subgroup
GR(S) in GR(S) [Y]/RadGR(S) (T(X”, Y))

This shows that Gr(s) ~c GRr(s) and ¥* is a Gr(s)-homomorphism. If U is a solution

of T(X*,Y) = 1in GRs), then there exists a G'g(g)-homomorphism

ou - GR(S) [Y]/RadGR(s) (T(X")Y)) — GR(S)-

such that ¢y (Y) = U. Obviously, composition of ¢y and ¥* gives a G r(s)-homomorphism
from Gr(sur) into Gr(s), as desired. [J.

The next result characterizes lifts in terms of the coordinate groups of the corresponding
equations.
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Proposition 3. Let S(X) =1 be an equation over G which has a solution in G. Then
for an arbitrary equation T(X,Y) =1 over G the following conditions are equivalent:

1) T(X,Y) =1 is compatible with S(X) =1 and T(X,Y) =1 admits S-lift over G;

2) Ggs) is a retract of Grs,r), i.e., Gr(s) is a subgroup of Gr(s,) and there evists a
GR(s)-homomorphism Gr(s 1) — GRr(s)-

Proof. 1) = 2). By Proposition 2 Grgs) is a subgroup of Gr(s ). Moreover,
T(X*,Y) = 1 has a solution in G g(s), so by Lemma 40 there exists a G g(s)- homomorphism
Grs,t) = GRres), i-e., Gr(s) is a retract of Gr(s ).

2) = 1). If ¢ : Gr(s,r) — GRys) is a retract then every G-homomorphism a : Gr(s) —
G extends to a G-homomorphism a o ¢ : Gr(s,ry — G. It follows from Proposition 2 that
T(X,Y) = 1is compatible with S(X) = 1 and ¢ gives a solution of T(X*,Y) = 1 in Gp(g),
as desired. (|

One can ask whether it is possible to lift a system of equations and inequalities into a
generic point of some equation S = 1?7 This is the question that we are going to address
below. We start with very general definitions.

Definition 25. Let S(X) = 1 be an equation over a group G which has a solution in
G. We say that a formula ®(X,Y) in the language La is compatible with S(X) = 1 over
G, if for every solution @ of S(X) = 1 in G there exists a tuple b over G such that the
formula ®(a,b) is true in G, i.c., the algebraic set Vg(S) is a projection of the truth set of
the formula ®(X,Y) A (S(X)=1).

Definition 26. Let a formula ®(X,Y) be compatible with S(X) = 1 over G. We say
that ®(X,Y) admits a lift to a generic point of S =1 over G (or shortly S-lift over G), if
Y (XH,Y) is true in Grs) (here Y are variables and X* are constants from Gg(s)).

Definition 27. Let S(X) =1 be an equation over G which has a solution in G, and let
T(X,Y) =1 be compatible with S(X) = 1. We say that an equation T(X,Y) = 1 admits
a complete S-lift if every formula T(X,Y) =1 & W(X,Y) # 1, which is compatible with
S(X) =1 over G, admits an S-lift.

7 Implicit function theorem: lifting solutions into generic
points

Now we are ready to formulate and prove the main results of this paper, Theorems 9, 11,
and 12. Let F(A) be a free non-abelian group.

Theorem 9. Let S(X,A) = 1 be a regular standard quadratic equation over F(A).
Every equation T(X,Y, A) =1 compatible with S(X, A) =1 admits a complete S-lift.

We divide the proof of this theorem into two parts: for orientable S(X, A) = 1, and for
a non-orientable one.
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7.1 Basic Automorphisms of Orientable Quadratic Equations

In this section, for a finitely generated fully residually free group G we introduce some
particular G-automorphisms of a free G-group G[X] which fix a given standard orientable
quadratic word with coefficients in G. Then we describe some cancellation properties of
these automorphisms.

Let G be a group and let S(X) = 1 be a regular standard orientable quadratic equation

over G :
m n

Hz;lcizi H[mi,yi]d_l =1, (71)

i=1 i=1
where ¢;, d are non-trivial constants from G, and

X:{xhy’iazj \i:l,...,n,j:l,...,m}

is the set of variables. Observe that if n = 0, then m > 3 by definition of a regular quadratic
equation (Definition 6). Sometimes we omit X and write simply S = 1. Denote by

Cs={c1,...,cm,d}

the set of constants which occur in the equation S = 1.
Below we define a basic sequence

I'= (715727 s 77K(m,n))
of G-automorphisms of the free G-group G[X], each of which fixes the element
So = Hzflcﬂi H[%,%] € G[X].
i=1 i=1

We assume that each v € T' acts identically on all the generators from X that are not
mentioned in the description of ~.

Let m > 3,n = 0. In this case K(m,0) =m — 1. Put

. Zi LFit1 2 Fit1l s

i oz =z, oz — zipa(ciel), fori=1,...,m—1.
Let m = 0,n > 1. In this case K(0,n) = 4n — 1. Put

V4i-3 ¢ Yi = TilYi, for i = ]-7"'7”;

Vai—2 1 T — Yz, fori=1,...,m;

Vai-1t Yi = wiyi,  fori=1,....m

-1 —1
. —1\-1 YiTiqq YiTip —13\-1

Yai i Ty (yixi+1) Tiy Yi =Y T, Tyl — Tiq o, Yirl — (yixi+1) Yit1,

fore=1,...,n—1.

Let m > 1,n > 1. In this case K(m,n) =m +4n — 1. Put

. Zi Ri+1 Zi Rit1 s .
i oz =z, zipr — zipa(ciel), fori=1,...,m—1;
Zm n—1

. : —1 zy —1\—-1,, .
Ym 1 Zm o= Zm(CErar), m—a™ ot oy — (Eray ) Ty
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Ymtdi—3 t Yi — Ty, fori=1,... n;
Vmdi—2 1 Ti — YTy, fori=1,...,m;
Ymtdi—1: Yi = TiYi, fori=1,...,m;
1 .
. —1\—1 Yil; i1 YiTitq —1\—1
TYm+44i T (yz‘-’fi+1) Tiy, Yi —Y; y L+l 7 Ty Yirl (%‘%H) Yi+1,
fori=1,...,n—1.

It is easy to check that each v € T fixes the word Sy as well as the word S. This shows
that v induces a G-automorphism on the group Gs = G[X]/ncl(S). We denote the induced
automorphism again by v, so I' C Autg(Gs). Since S = 1 is regular, Gs = Gp(g). It
follows that composition of any product of automorphisms from I' and a particular solution
[ of S =1 1is again a solution of § = 1.

Observe, that in the case m # 0,n # 0 the basic sequence of automorphisms I' contains
the basic automorphisms from the other two cases. This allows us, without loss of generality,
to formulate some of the results below only for the case K(m,n) = m + 4n — 1. Obvious
adjustments provide the proper argument in the other cases. From now on we order elements
of the set X in the following way

271 < ... <zZzm<t1 <Yy <...<xp < Yn-

For a word w € F(X) we denote by v(w) the leading variable (the highest variable with
respect to the order introduced above) that occurs in w. For v = v(w) denote by j(v) the
following number

m + 44, ifv=x;orv=y; and i <mn,
. m+4i—1, ifv=uz;orv=y; and 1 =n,
i) = i, if v =2 and n # 0,

m—1, if v = 2, n= 0.

The following lemma describes the action of powers of basic automorphisms from I" on
X. The proof is obvious, and we omit it.

Lemma 41. Let T'= (y1,. .., Ym+dn—1) be the basic sequence of automorphisms and p
be a positive integer. Then the following hold:

p . . (A Fi Fit1\Dp ) ) 2 Zit1\p
i vz = () 2 =zl el )
for i=1,...,m—1;
-1
. z -1 (eZma )P . i )
(L D T L S TR T e
p ) P . )
Vmiaioz  Yi—TYi, fori=1,....m;
D . D . .
Vmidi—z  Ti—Y;ri, for i=1,....n;
p . D . .
Ymadio1l ¢ Yi = XY, for i=1,...m
—1.p
p : . P Ry . (yiwz‘+1)
Ym4+4i T (ysz_l) Tiy Yi —Y; ,
(y‘ixi_-{-lﬂp 1 N—
; g ) ) Py
Tit+1 = Tiqq , o Yit1 — (ylziJrl) Yitls

fori=1,....,n—1.
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The p-powers of elements that occur in Lemma 41 play an important part in what follows,
so we describe them in a separate definition.

Definition 28. Let T' = (71,. .., Vmtan—1) be the basic sequence of automorphism for
S =1. For every v € T we define the leading term A(vy) as follows:

A(vi)=cieiyt, fori=1,...,m—1;

A('Ym) = cfﬁanIQ

A(Ymaai—z) = x5, fori=1,...,n;

A(Ymtai—2) =yi, fori=1,...,n;

A(Ymyai-1) = x4,  fori=1,...,n;

A(VYmyai) = yix;rll, fori=1,....,n—1.

Now we introduce vector notations for automorphisms of particular type.

Let N be the set of all positive integers and N* the set of all k-tuples of elements from
N. For s € N and p € N we say that the tuple p is s-large if every coordinate of p is greater
then s. Similarly, a subset P C N* is s-large if every tuple in P is s-large. We say that the
set P is unbounded if for any s € N there exists an s-large tuple in P.

Let 6 = (61,...,0;) be a sequence of G-automorphisms of the group G[X], and p =
(p1,...,pr) € N¥. Then by 6P we denote the following automorphism of G[X]:

§P = 60 6Px

Notation 42. Let T' = (y1,...,7vk) be the basic sequence of automorphisms for S = 1.
Denote by ' the infinite periodic sequence with period T', i.e., I'og = {7; }i>1 with viyx =
vi. For j € N denote by I'; the initial segment of I'ss of length j. Then for a given j and
p € NI put
—P . L
b =T, =P
Sometimes we omit p from ¢;, and write simply ¢;.

Agreement. From now on we fix an arbitrary positive multiple L of the number K =
K(m,n), a 2-large tuple p € N¥, and the automorphism ¢ = ¢, (as well as all the
automorphism ¢;, j < L).

Definition 29. The leading term A; = A(¢;) of the automorphism ¢; is defined to be
the cyclically reduced form of the word

A(Wj)¢j717 ijSK,_]#m-l-Zl’L—l fOT’ any i=1,....,m;
y, PA) Iy ifj=mdi— 1 for some i=1,....m;
Afsx ifj=r+sK, r<K,seN.

Lemma 43. For every j < L the element A(¢;) is not a proper power in G[X].

Proof. Tt is easy to check that A(ys) from Definition 28 is not a proper power for
s=1,...,K. Since A(¢;) is the image of some A(7,) under an automorphism of G[X] it is
not a proper power in G[X]. O
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For words w,u,v € G[X], the notation | w | means that w = u o w’ o v for some
u v

w’ € G[X], where the length of elements and reduced form defined as in the free product
G * (X). Similarly, notations Fu and mean that w = vow’ and w = w’ ov. Sometimes

v
we write| w | or| w | when the corresponding words are irrelevant.

u * * v
If n is a positive integer and w € G[X], then by Sub,(w) we denote the set of all
n-subwords of w, i.e.,

Subp(w) ={u | |Ju| =n and w=w; ouows for some wy,ws € G[X]}.

Similarly, by SubC),(w) we denote all n-subwords of the cyclic word w. More generally, if
W C G[X], then

Sub,(W) = | J Subn(w), SubCr(W) = | SubCp(w).

weWw weWw

Obviously, the set Sub;(w) (SubC;(w)) can be effectively reconstructed from Sub, (w) (SubC), (w))
for ¢ < n.

In the following series of lemmas we write down explicit expressions for images of elements
of X under the automorphism

b =W, K =K(m,n).

These lemmas are very easy and straightforward, though tiresome in terms of notations.
They provide basic data needed to prove the implicit function theorem. All elements that
occur in the lemmas below can be viewed as elements (words) from the free group F(XUC5s).

In particular, the notations o, }L{ , and Sub, (W) correspond to the standard length
u v

function on F(X U Cg). Furthermore, until the end of this section we assume that the
elements cq, ..., c, are pairwise different.

Lemma 44. Let m #0, K = K(m,n), p= (p1,...,px) be a 3-large tuple, and

b=

The following statements hold.

(1) All automorphisms from T, except for v;_1,7; (if defined), fix z;, i = 1,...,m. It
follows that
2 =20 (i=1,...,m—1).

? ?

(2) Let z; = zfi’l (i=2,...,m), 21 = z1. Then

2Z; © (C?T ocft)Pi-1 ‘ (1=2,...,m).

— 2
—1
zizi_l CiZ4

z =
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(8) The reduced forms of the leading terms of the corresponding automorphisms are listed
below:

Ay =] i ocd? (m >2),

zl_lcl Ccozo
Ay = (o) = ATV P AV ey (n# 0,m = 2),
Ay = AP AV ¢ (n#0,m > 2),

-1 -1 -1 —1 —1 -1 9.
SubCs3(Ar) = {z] 121, c12125 5 2125 Co, 2y CaZa, CaZaZ{ , Z2%] C1};

_ —Pi—-1 Zi Pi—1 Zi41
A; = ‘ A7 c; A Gt ,
= =T —1 =
‘Zi, Ci ci,lzi,l‘ ‘Zi—lci—l CiZ4 Z'L+1 Ci+1Zi+1

(i=3,....m—1),

_ +1 -1 —1 —1 —1
Sung,(Az) = SubC’3(A1_1) U{ci_lzi_lzi y Ri—1%; Ciy, Z; CiZi, CiZiZ;_q,

—1 —1 —1 —1 -1 -1 -1
2i2; 1G5 CiZiZipns Zi%ip1Cidls Zip1Cit1Zit1, CitlZi41%; 5 Zi41%; € 1

A = (cgpay)om—r = A e | AR et (n#0,m>3),
‘Z;’l C:n,l Cm—12Zm—1 ‘ ‘z;}ilc:ﬂil CmZm ‘

SubCs(Ap) = SubCs(Am—1)E U{cm_12m-123" Zm_127 Cm,

-1 -1 -1 -1,-1 _—1,-1—1
2 1CmZms CmZmZm—1> CmZmT1 2 ZmT] Zm s T Zm Crm

(4) The reduced forms of z'~", 20" are listed below:

A =at =a_zmep | AT | (m>2),

‘zlzgl czzzlzflcl CQZQ‘

PR -1 -1 -1 -1 -1 _1 )
SubCs(27%) = { c1z125 , 2125 Co, Z5 CoZa, CaZaZ{ , Z27] €1, 2] C171};

Zi+1‘ pi—1 ‘
i+1 _Ai

—1
2 G Cz’+12i+1‘

Subg(zf’K) = SubCy(A;i_1) U SubCs(A;) U {ciziz Y, ziz e,

-1 -1 -1 -1 P
CiZiZi1 1y Zi%;41Ci+l, 2 41Ci+1%i+1, Cit+l1Ri+1%; 5 Ri+1%; G } 5

20K =t = Zm APt |, (n=0),
—T —1

\zm_lcm_l CmZm
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SUbi’)(Zg;zK)(when n=0) — SUbC?)(Am—l) U {Zmz;Ll_lcy_nl_l} 5

2K =2 =z AP oyt ARRTL | (£ 0,m > 2),
1€t szm‘ ‘Z;Llcr_nl Zm Ty ‘

Subs(285) = Subs (285 ) (when n=0)ISUBCs(Am ) emzmay ', zmay ' 2nt, o7z et}

(5) The elements zf’K have the following properties:

zf’K =ciziz (i=1,...,m—1), where 3; is a word in the alphabet {c;*,... c; i}

1 Cit1
which begins with c;, ", if i # 1, and with ¢3?, if i = 1;

20K = 2,2, (n=0), where 2, is a word in the alphabet {c}',..., cZm};
20K = ConZmim  (n #0), where 2, is a word in the alphabet {c}*, ..., cZm x1};

oK

i

Moreover, if m > 3 the word (cZ)*L occurs in z
the subword (T, ¢Z')*!.

i=1"1

(i=m—1,m) only as a part of

Proof. (1) is obvious. We prove (2) by induction. For i > 2
Pi—1

~ i— Vil bi-2
Zi:Zj)l 1:Zi1 1 Pi

Therefore, by induction,

5=z )Pt = 2o (] o )P

Now we prove (3) and (4) simultaneously. Let m > 2. By the straightforward verification
one has:

Ay =t oc3?;
zy Zo

p1
20 =2 = () =|c1 02 0¢2 0 AV

C1 z22 ‘

Denote by cycred (w) the cyclically reduced form of w.

A; = cycred ((cficfrll)d)i_l) =l o | (i <m—1).
=T
z; Zit1

Observe that in the notation above

1 ‘

This shows that we can rewrite A(¢;) as follows:
A= AT ol o AT ol
beginning with z;l and ending with z;41 (i=2,...,m—1);

— Z -1\ _ Z...—1 _ —Pm-—1 z Pm—1 —1
Ay, = cycred (¢iray ) =ciray = A ockm o AV P oxy (m > 2).

beginning with 2! and ending with ;' (n # 0).



92

bi-1 __ Zi—1 ,zi\pi_1\Pi-2 _ Zio1 Zi\pi_1 _ Pi—1
= (Zi(ci—l ;') ) = zi(¢; 7' ¢}") =zio A9,
beginning with z; and ending with z;;

2 = (sl e )" = Bl R = o 5o el o (efeliy el =

i . Pi—1 Zit1 pi—1
ciozio ALy ocyy o AV,
beginning with ¢; and ending with z;11 (1 =2,...,m —1);

b = (emlezpar )™

Cn 0 zZm o A 0wy o A=t (n £ 0),

= ém(czgnxfl)pm — Cmémx;1<ci;n$;1)pm_1 _

beginning with ¢,, and ending with xfl. This proves the lemma.
(5) Direct verification using formulas in (3) and (4). O
In the following two lemmas we describe the reduced expressions of the elements 7%
dK
and y7 .

Lemma 45. Let m =0, K =4n—1, p = (p1,...,pk) be a 3-large tuple, and
K =T N

(1) All automorphisms from T, except for v2,74, fix x1, and all automorphisms from T,
except for 1,73, %4, fix y1. It follows that

P =aft P =yt (n22).

(2) Below we list the reduced forms of the leading terms of the corresponding automor-
phisms (the words on the right are reduced as written)

Ay =xq;
_ b1 _ p1 .
Ay =ty = Al oy 5

As = Agrl fﬁflﬂyl; SubC3(Az) = SubC3(Az) = {l"i’a x%yh 1711/1501731@%} ;

2
Ty T1Y1

b3
A4 = A§2 I A2 .’Ez_l (Tl Z 2),
7 w1
1’% Y11

SubCs(Ay) = SubC3(Az) U {xlylxgl, ylxz_lxl, xglscf} (n>2).
(8) Below we list reduced forms of x(fj,yfj forj=1,... 4:
x‘fl = x5

yit = a2y
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b2 __ P2 .
x1?=| A Ty
95? T1Y1

yl? = 2y

o3 _ .92 _ P2 _ DK .
1" =T" = A2 1 —(when n=1) Ty,

7 mn
SUb?)(fo)(when n=1) = SUng(AQ),

"E‘Il)lyl ~(when n=1) y(fK;

b3 __ P2
yi® =[(__A3 z1)P?
7 Ty

P
‘951 mlyl‘

Subs (Y7 ) when ne1) = SubCs(Az);

P4 _ DK _‘ —(pa—1) ‘ -1 -1 —p2 p3—1
T =r = A41 2552‘ 1A12 2(951 1A21 2)3 (n=>2),
B B P Yty @y
-1 _—1_—1 =2
Ty Y1 Ty Ty

Subg(2%) = SubCs(As) ™1 U SubCs(As) ™1 U{aT 220, a7 woyrt, zoyy tay?, 27?,
ry eyt (n 2 2);
=AY | AT | (n22),

— =T 2 —1
T2Yy T1 T3 Y1Ty

Subg(yf”() = SubCs(A4)*t U {xl_zxg, xl_lmgacl, rox?} (n>2).

Proof. (1) follows directly from definitions.
To show (2) observe that

Ay = A(n) = a1;
ot = a;

yi' =o'y = AP oy

Then
Ay = cycred(A(y2)%) = cycred(y?t) = 28" o yy = AP o yy;
= @ = @) = @) = A o
yPr = @) =g =y = A,
Now
Ay = cycred(y; * A(ys)*y}) = cyered((« y1) " al? (a7 y1)) = cyered (@ y1) (@ y1)P e (aF 1))

= (@Py) 2Py

-1 1
= AR TloA oy,
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It follows that
P
o = @]y = a
a p3 o
= ()7 (@) ? = (a7?)P" (A5 0 wn)Ps o Ao,
Hence

Ay = cycred(A(v4)??) = cycred((yiz51)?) = cycred(y{*z, ?*) = (A5 0 21)P2 0 Ay o a5 L.

Finally:
x({h = (= ) = ((y1$2_1)7p43f1)¢53 = ((y1x2—1)¢3))—m I(fs = AP AR? o 1y
= A" Vomo Ay o (o 0 A7)
zo )P4
gt o= )t = (e
= (g 1)) "yt (g ")%)™
— A P4 ¢3A;D4 A4—(P4—1)A21yf>3Ai4 —
A;(pzrl) 0y 0 Ai“.
This proves the lemma. O

Lemma 46. Let m #0,n 20, K =m+4n—1, p = (p1,...,pr) be a 3-large tuple,
and

dK ZV%K"'Wfl-
1) All automorphisms from I' except for Ym,Yma2,Ym+a fit x1; and all automorphisms
+

from T except for Ym, Ym—+1, Ym+3, Ym+a fix y1. It follows that

a = ar gt =yt (n > 2).

(2) Below we list the reduced forms of the leading terms of the corresponding automor-
phisms (the words on the right are reduced as written)
A1 = 11,

Dm+1 — DPm41
Ao =y = Ampm 1"y,

—T
T2, Cm Zm

SubCs(Amta) = SubCs(Am) ' U{cmzm®1, zmzi, 23, 3y1, ziyiz1, niziz,' )

_ Pm+42—1 —p Pm41+1
Amys —‘ Aty AP |y Y1,
iz, iy |T1z,, CmZm

S’LLbC3 (Am+3) = SubC'g (Am+2);

Pm+3
_ —Dm DPm+1 Pm42—1 m DPm+1 -1
y — AP o ( Y1 ‘ AmJr2 AP x1> "y

r12,, CmZm

‘mlz T1Y1 Qflzml Canm‘
(n>2),
SubCs(Apmta) = SubCs(Apy2) U {xlylxgl, yla:Q_l:cl, x;lxlz;bl} (n>2).
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(8) Below we list reduced forms of :ij,yfj forj=m,...,m+4 and their expressions via
the leading terms:

.T(lbm — A;L;Dm oxq o0 A%m’

dm . A— dmt1 _ b
ylm — Ampm oY1, zlm — xlmy
¢m,+1 7A7pm Pm+1
Y1 = A" or ° Y1,
Pmy2 _ K _ APm2 A-—Pm Apm
Ty =(when n=1) L1 = m+2 m ‘ xq ‘ Lisg ‘ ,
[212,,"  @iyi|r1z, Cm Zm | [zmient  zmzi |

Subg(mf’{)(when net) = SubCs(Apy2) U SubCs(An) U{zmaiz,t, ziz, et

bmi2 _ , Pmt1  Pm43 _  Pmi2
Y1 =Y » L1 =T )
bm+3 __ oK _ —Pm
Y1 —(when n=1) Y1 - Amp

r12,, CmZm

Pm+3
Dm+1 Pmi2—1 —Pm Pm+1
(fﬁ yl‘ Ay Apy) P 961) 1" Y.

—1 —1
‘zlzm T1Y1[T12,, CmZm‘

SUb3(y?K) = (when n=1) S'Ube(y(ferg') = S’UJbC13(Am+2);

—Pm+1

Gmta K —Pm4at1 -1
x] A oy, Tq o

=T (when n>2) — m+4
T2y, Zm T,

Pm+3—1
-1 D —Pm+2 ‘ —1, ., —Pm+1 D
(xl | ; fl‘lnl” - Aqwz Y1 T ; "1477;,’L _ (n=2),
B TR Zl Ol EmTy

Subg(x‘f’() = SubC3(Apmie) U {zmxflx% xflmzyfl, mgyflel} (n > 2);

¢7n+4 _ DK _ ‘ _(p1n+4_1) ‘ Pm+4
Y = Y1 (when n>2) = Am-lf—4 |2 | A 1‘ (n>2),
T2y; Zm Ty ‘ ‘wlz;l Y1y ‘

Subg(y‘fK) = SubCs(Apys)*t U {zmxflxg, acl_lxgxl,xgxlz;ll} (n>2).

Proof. Statement (1) follows immediately from definitions of automorphisms of T'.

We prove formulas in the second and third statements simultaneously using Lemma 44:

z —1 Dm—1
bm _ (e )P — pA@m)P" _ A—pm Pm
xym = (xl m =1 = A, Pmoxy0Ay)Pm,
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beginning with r; and ending with a:l_l.
y(fm = ((cf,;”ml_l)’pmyl)%"*l = A(¢m) P™ oyi, beginning with z; and ending with y;.
Now A1 = cycred (A(ymy1)®™ = 2fm™ = A7 Pm o1y 0 AP,

Am+1 =T1.

¢m,+1 _ ¢m
Ty =

)

Pm+1

bm
m ’Yvn m m m - m
it = ()7 = e = sy = A oaln o,

beginning with x; and ending with y;, moreover, the element that cancels in reducing

APt APy s equal to AP

Ao = cycred (A(ymr2)?m ) = cyered (y{™*") = AZPm o 2™ oy,

beginning with z; and ending with ;.
¢m,+1
Pm+2
x<1ﬁm+2 _ (x'lYm+2 ) _ (yfm+1)pm+2xfm+1

= AP o AnPm o 0 Ay =

_ ,, -1 —
"47711)m o ((L‘f "o Y10 Afr;n-:; ° Ampm o .%'1) © Agr)nm»

beginning with z; and ending with 1:1_1;

ypr =y

_¢7n+1 xf?rL+2

—1 — 1
Am+3 = cycred (yl y<125m+1) — APmt2—1l g Ampm o $1171n+1+ oy

m+2 9

beginning with x; and ending with y;;

¢7n+3 _ ¢'m+2
Ty =T

Ui = o syt =

Pm+3
_ —1 _
A Pm oo (xzfm“ oy 0 Afn"j:; o A Pm o xl) o x’l’m“ o,

beginning with z; and ending with y;. Finally, for n > 2,

Ama =cyered (A(ynsa)®m+2) = eyered ((yray1)?m+0) =y Pyt = 7"+ 02y
beginning with x; and ending with acgl;
_ Pm+4
:L,clﬁm+4 _ ((y11'271)7p’"+4x1)¢m+3 _ ((x2y1 d>m+3) xfer:s _
_ Pm+4 _ . _
(Gayy P @fmeey 7omees )7 et = (g o) o gy 0y 0y P

Tlo APm o ATPmE2 o g g P P o APm
‘Tl m m—+2 yl 1’1 m
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beginning with zs and ending with xl_l, moreover, the element that is cancelled out is
2{™ 2. Similarly,

YTt = (wyy Pt ey (g s =

- _ _ - -1 . .
(x2y, Pm+3 yPmta=Llo g9 0 ((y‘f’””“’az2 Hpmta = A (Pr+a—1) x9 0 AL beginning with o

m—+4 m-+4
and ending with x5 1 moreover, the element that is cancelled out is yfm”.
This proves the lemma. U
In the following lemmas we describe the reduced expressions of the elements :z:f” and yf5 I

for ¢ > 2.
Lemma 47. Letn > 2, K = K(m,n), p= (p1,...,pr) be a 3-large tuple, and
ox =V M
Then for any i,n > i > 2, the following holds:

(1) All automorphisms from T, except for Vpmiai—1), Vm+ai—2, Ym+ai fir i, and all au-
tomorphisms from T', except for Yma(i—1)s Ym+4i—3, Ym+4i—1, Ym+4i [it Yi. 1t follows

that
.’IJ?K _ ‘er—l - = x;beru’
y;ﬁk _ yj?K—l - = y?m,+4i'

(2) Lety; = y?m“i’l. Then 1j; =

where (for i = 1) we assume that yo = 7 *

form =0, and yo = 2z, for m #£0;

(8) Below we list the reduced forms of the leading terms of the corresponding automor-
phisms. Pul qj = ppmiai—1)45 for j =0,...,4. In the formulas below we assume that
Yo ::Ufl form =0, and yg = 2z, for m #0.
Apmyai—a =| Yi—1 EETR
‘xi—ly;712 xi71y¢71\

SubCs (A yai—a) = Subs(Ji—1) U{zi—1yi—1z; ", yiciw; 'wimy, o ey S )

Am+4i73 = Tyq;

_ q1
Am+4i—2 = T Yis

L . -1
TilY; 1 Yi—2T; 4

SubCs (A sai—2) = SubCs(Apiai-a)V{yi—ox; i, o7 22, 22yi, ziviws, vimvey; 'y, 23 )

i—

. _ q2—1 —qo a+1,
Apyai—1 —‘ Am+4i—2 Am+4i—4 ‘ Lo Yi

—T =T =T
TiY;_1  TiYi|TiY;_4 %—2%,1‘

SubCs (Am+4i— 1) = SubC3 (Am+4i—2 ) 3




(4) Below we list the reduced forms of elements x;

¢m+4(171)+] ¢7n+4(1 +j

Again, in the formulas below we assume that Yo = T
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,y forj=0,...,4.
Y form =0, and yo = 2, for

m # 0.
Pmiai—a _ g—
2 m+4z 40%i 0 Am+41,
Pmtdi—a _
Yi = Am+47,—4 °Yi,
bPmtdi—3 _ _DPmtdi—a
x; =z, ,
Pmtai—3z __ A*QO o q1 o Us
Yi = Ap44i—4° T OYi,
pomraicz =| A% | A9 ‘x A ‘
i - m+44i—2 m+4z— ? m+4z— ’
[ziy; s miyi|miyi s viem \xlflyL s Y1z |
¢7n+4i72 _ ¢7n+4z 3
yi yz )
Omtdi—1 _ | DPmtdi—2 __ K
T =Z; (when i=n) Lj
K\ _ +1
Subs (7)) =(when i=n) SUbC3(Amyai—2) U SubC3(Amiai—a)

-1 -1 —17.
{%-2%_1%7 Ty 1Xi%5—1, xixi—lyi—2}7

i =(when i=n) yj)K =

q2—
Yi ‘ Am+41—

g3

. qai,,.
| Am+4z— ‘xz T, Yi,

e

TiYi

=T
TiY; o, Yi—2T;

U

- ~1 -1 -1 .2
Subz(7;) = SubC3(Aptai—2) U SubCs(Apiai—a)” U{yi—ox; yxs, x;° 27,
3 —1 2
Tiy TiYiZiy YililY;_q, xiyi}
Omtai _ qa+1 -1,.—q
& = (hen ign) T = | Ay tai | wis1 0y; oy o
‘ Tit1Y; Yi-1%,; ‘
q3—1
-1 g2+1 ‘ —1_—q q0
ol ‘ ATIYL+41 1| 1A71n+41— . Yi T ‘ AT+4i—4 \7
‘Icifly,,,z Yi-1T; |y; T, yt—ICE;‘ ‘337:712!;,2 yiflx;‘
] _ -1 -1
Subg(l' K) = Sub03(Am+4i) @] Sung(Am+4i,2) @] Sung(Am+4i,4)
1 1 -1 1.1 . -1.-2 -3 -2
U{yi—lxi Tit1, Ty Ti41Y; 5 Tip1lY; T; 5 Y, Ty o, Ty o, Ty Ti-1,
—1 —1 -1, -1 1, —1_.—14.
T, Ti—1Y;_o, Yi—12; Y; , T; Y, Xy }7
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bmtai __ oK __ —qa+1 ~ -1 qa—1
Yi =(when i#n) Y *‘ A ‘$i+l\ _Yi | i ‘ Arnyai ‘a
‘leyfl Yi1z; | ‘x’iyi—l ;clyl‘ ‘Myiil wa;rll

Subg(y?K) = SubC’3(Am+4i)i1 U Subg(ﬂz) U {yi_ll'i_ll’i+17

—1 —1 —1 —1 —1 —1
Ly Lit1Tiy Lit1TilY; 15 Lilili 1, Yili 1Ly xi+1$iyi—1}'

(5) Aj=
Aryy)%i-1, ifj#m+4i—1, m+4i—3 for any i=1,...,n;,
AP Ay P A I i j=m 440 =3 for some i=1,...,n (m+4i—4+#0);
y{qu_lA('yj)‘bf*lyfj_l, ifj=m+4i—1 for somei=1,... n.

Proof. Statement (1) is obvious. We prove statement (2) by induction on ¢ > 2. Notice
that by Lemmas 45 and 46 y; = y‘f”‘” begins with x12! and ends with z;y;. Now let
i > 2. Then denoting exponents by ¢; as in (3), we have

G = y?-m,+4i—1 _ (x;l13yi)¢m+4i—2 — ((ngIi)q3yi)¢m+4i—3 _
¢'rn i—
(((xlihyi)qui)% x;”yi) i
Before we continue, and to avoid huge formulas, we compute separately mf’”*“"‘ and

Pmtai—a,

Y;

. -1 ¢m+4(i—1)—1 ~ —1yqq
Pmtai—a __ (Yi—1z; )0 _ (Gicazxy )0 ~—1 \qo ~ —1\qo
Ly =T ‘ =Ty ‘ = ‘<xly1171) ox;o (yiflxi ) 1‘ s
TiY; Yi—1T; ‘

by induction (by Lemmas 45 and 46 in the case i = 2).

y?m s = (g )0y, DT — () "0y, = (240 ;)% o i, beginning
with z;y,_ 11 and ending with xz__llyz It follows that

(e ya)omtimt = (g ) 0af (Gimaay )™ (@ig; ) @y = (2ig;_y)® oaf' oy,
beginning with xiyi_fl and ending with x;y;. Now looking at the formula

gi = (& yi) =) * ﬂ”;»h?Jz')gbmHF4

it is obvious that g; begins with z;y,_ 11 and ends with x;y;, as required.
Now we prove statements (3) and (4) simultaneously.

Apyai—g =cycred ((yi,1$;1)¢'"+4<i*1>*1) =g;_10 x;l, beginning with z;_; and ending
with z;'. As we have observed in proving (2)

z?m+4i—4 _ (wigi—_ll)% ox;o (ﬂi—1$;1)q0 =
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AR g0mio AR iy
beginning with x; and ending with x;l
yj)’”“i“ = (zi0g; )P oy, = A% i 4 0 yi, beginning with z; and ending with y;. Now

Apyai—3 = cycred (xf”‘*“"‘) = x;, beginning with x; and ending with ;.

bGmtai—3 _ _ Pmidi—a
€ =T )

Pmtai—3 _ i 4 — q1 A90 — _
Y; = (z{'y; )omtdia Am+42—4$i Am+4i—4A(¢m+4i*4) Py, =
Am+42 40 x!' oy;, beginning with z; and ending with y;.

Now

Dmtai— 3
Am+4z—2 =Y,

bPmtdi—2 __ [ q2 Omaai—z . A9 —qo 90
T; = (yPw;)Pmreis = Ariaico 0 ALy 400 ALy g,

beginning with z; and ending with x;!. Tt is also convenient to rewrite :c(z)’"“l 2 (by
rewriting the subword A,,14;—2) to show its cyclically reduced form:

bPmtai-2 _ q1 q2—1 —qo

Ty Am+4174 ofai oyio APy g0 ALy gowi)o Am+4zf
Gmtdi—2 _  Gmyai-3

Yi =Y :

Now we can write down the next set of formulas:
—Pm+4i—3 _ Pmtdi—2, Pmtdi—3\ __
Aptai—1 =cycred (y; x; Y; )=
- q2 —qo . A90 R —
cycred (Am+4ze2 mmtdi—2Am i ai—aTiAn a4 Amiaio2) =

A%IM_ ) A;‘$4i_4 o xflﬂ o y;, beginning with z; and ending with y;,

Pmtdi—1 _ _ Pmtdi—2  Pmydi—1 __ ~ __ /g3 o (. Dmtai-2 Pmtai—2
z; = ) Yi = gi = (xPys) P2 = (a] )y; =

substituting the cyclic decomposition of mf’"*“” from above one has
_ a3
= A Yyiq0 ( ' oyio Am+4z oA yi—a0 zz) oz oy;.
beginning with x; and ending with ;.
Finally
Appya; =cycred ((yia:;rll)¢m+4i—1) =7;0 x;ll, beginning with x; and ending with x;ll

mtdi —1\— Pmtdi— U i
‘T? = (i) )T = (i) q“z? =

qa+1 -1 <¢>m+41 1
Am+4z xH’lyz 2 -

qa+1 Gmtai—2\qs—1, OPmyai—2 )
Am+4z OTit+1© ((‘rz )q3 Y;
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observe that computations similar to that for yj) ™41 show that

—1
Gmtai—2 1, Pmtai—2 -
(('T )q3 yz -
q0 q1 2—1 -1 Q1 -
ALy 4o(xi oyloAerM 20Am+4z 4ox¢) ozt oy,

Therefore

¢m+47. qa+1
2 - Am+4z O Ti+10
—1

q3—1
q0 q1 ) a .
(Am+4z 4° ( T ©Yi© Am+4z 20 Am+4¢ 4° xz) oxr; © yt) )

beginning with z;;; and ending with x;l

_ Pmtdi—1
s _ [ ik V)0 (G,
yPmH = (yl " ) = (zin; )" Gi(Jizih)™ =

~ — —1 . . . . . —
Amcfﬁzu 0 Xiy10%; 0 $i+11 o AT i, beginning with x;,; and ending with $i+11-

2P 299 .
(5) If j # m +4i — 1,m +4i — 3, Aj is either (¢ ¢;77') or yfj (j =m-+4i—3) or
(yix;_ﬁl)d’i (j =m+4i—1). In all these cases A; = A(7;)%~1. The formulas for the other
two cases can be found in the proof of Statement (2). This finishes the proof of the lemma.

0

Lemma 48. Let m > 1, K = K(m,n), p = (p1,...,pKk) be a 3-large tuple, ¢px =
ARE AP and XEK = (29K |z € Xil} Then the following holds:
¢izj, 25 ¢ (1<j<m), !
ZjZj1 (I1<j<m-1),
(1) SUbQ(Xi(bK) = mel_lv Zm 1 (Zf m#0,n 7é O)
T3, Ty, Vit (I<i< ”)7
Tipy; s x wig, mipax; (1<i<n—1)

moreover, the word z;lcj, as well as cjzj, occurs only as a part of the subword
+1 +1y.
(z; Yoz in a%% (z € XFY);
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(2) Subs(X+0K) =

zj_lcjzj, (1<j<m), =
CijZf_i_l17 ijji—i-llcj+17 (]_ <] S m — ]_)7
2j%j+1€4+15 2<j<m—1),
Y112, (m=0,n=1),
zy e}, wox?, (m=0,n>2)
et zma, (m=1,n+#0)
Cmzm®y 5 Zmay 2t 2ty zmaltyrt, (mo#£0,n #0),
CmZmT1, (m>2,n#0),
zmxflxg, zmxflxgl, (m #0,n > 2),
etz (m >2),

o}, 2y, wiyi, (1 <i<n),

v i, v m vyie, (1<i<n—-1),
z @l vy, (2<i<n),
Yimox; T yisw (3<i<n).

(3) for any 2-letter word uv € Sube(X*?%) one has

Suby (u? v?%) C Suby(XEP%) U {c?}, Subs(u®v?%) C Subs(XEP%) U {c2z}.

Proof. (1) and (2) follow by straightforward inspection of the reduced forms of elements
%% in Lemmas 44, 45, 46, and 47.

To prove (3) it suffices for every word uv € Suby(X*?%) to write down the product
u®xyp?x (using formulas from the lemmas mentioned above), then make all possible cancel-
lations and check whether 3-subwords of the resulting word all lie in Subz(X*?%). Now we
do the checking one by one for all possible 2-words from Suby(XT?x).

1) For uv € {c;z;, zj_lcj} the checking is obvious and we omit it.

2) Let uv = Zj2'j_+11. Then there are three cases to consider:

2.a)

2.b)

Let j <m — 2, then
@ —¢

g | 1zj+11K
¥ Cj417j41]740C 02 K|
u?xv?x . All 3-subwords of u®% and v?% are obviously in Subz(X*?x). So
one needs only to check the new 3-subwords which arise ”in between” u®% and
v?% (below we will check only subwords of this type). These subwords are
cj+1zj+1zj_+12 and Zj+1Z;j2C;Ji2 which both lie in Subg(X*¢x).
Let j =m — 1 and n # 0. Then

(zjz]-jrll)‘” = ‘ , in this case there is no cancellation in

(Zm_12,0)9% = ‘ zf{i L | 2% |, again, there is no cancellation in this case
[*  cmzm |12, x|

and the words ”in between” are ¢, 2,1 and z,,x1 z;Ll, which are in S’U,b3(X:t¢K ).
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2.c) Let j = m —1 and n = 0. Then ( below we put - at the place where the
corresponding initial segment of u®% and the corresponding terminal segment of
v?% meet)

Pm— 4 Apm—l A pm—l —1 —

_ Pk
(Zm,12 )¢K Zm—1"*m —PK = Cm—12m— lAm 4 C m Zm

(cancelling AP m’l_ and substituting for A:n_l its expression via the leading

terms)
— —z
= Com1Zm— 1An,;n4402m'( zmApm4 mlApm4)m1:
Zm—1 Af,:z_zf ,;Ll.
E
Here Z?;LK_ ; is completely cancelled.

3.a) Let n = 1. Then (2,27 ')?% =

Pm—l 71 Pm—1 . —p —1 D Pm+2 __
Cmzm Ay xy AT AP ADm AL TS =

Cnzm AP e APt e Em AP g 1APMA£;T22 =

Pm— —1 Pm+2
‘ m Ay Ty Ape Ao

m—1 ‘

3.b) Let n > 1. Then

, and 22X is completely cancelled.

‘zmz

(Zmay )% = cpzm AV P AR Y

_ _ 1 — -1
Ampm(x 1ApmA Pm+2+ i 1, Pm+1) —Pm+3+1 pm+1y 5 —1 APmta—l

m—+2 m-+4
ez At AL g A ALy e ) T ey g A =
Cmem AR o AP e AT (o A Ay Py et
Pm+1y .’132 lAfyerf— ZmApmi ,

—1

=T
ZmZm_1Cm 1

and 2% is completely cancelled.

4.a) Let n = 1. Then (2p,31)%% = 2, AL oy AP =L ADmE2 Ampm gy AP =

2 AP xox | and 22K is completely cancelled.

EmZpym_1Cmo1 *

4.b) Let n > 1. Then (z;,71)%% =| 20x | 20" ‘ .
‘* zm;v;l |w2yfl *‘
5.a) Let n = 1. Then x Apm“A Pmgy APm. AP"L“A Pmpy APm =

Pm+2 A—p D . D, o Pm+1 Pmi2—1 4—p P
Am+2Am mxlAmm (A Ty )Am+2 Am mmlAW;n_

Aﬁlmf; APy |-y x o

* ZmT1

5.b) Let n > 1. Then 23 :} e | 2P |,

—T =T
ZmT]  |T2Y;




6.a) Let1<i<n

1 — _ 1
Then ‘T Amiz_irz x1+1yz z; ( 1Am+4z— Am(fzrz—le !
—qat1
‘ Am+4z— ‘ ’ ‘ m%ﬁéli ‘ * Ok,
Yi—1T; ‘ \xi+1yf ‘

2¢ _ —qo q0 . A92 —q0 q0 _
Gb) K Am+4n 2Am+4n74anm+4n74 Am+4n72Am+4n74anm+4nf4_

T; —q1 )q3—1
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q2 —qo0 90 . a1 90 _
At an—2Amtan—aTnAm Lan—a Am+4n 4Ty ynAm+4n 2Am+4n 4T A fan—g =

q _
Am+4n72 Am 4n74xn " T

7&) If n=1. Then ($1y1)¢K = Afnm—:QZA'r_npmxl lejerl % %

7.b) If n > 1. Then (z1y1)? :‘ | ny ‘ .
\

7.c) If 1 <i < n. Then (z;y;)%% :‘ me | yf’K ‘ .
‘ — p—

7.d) (znyn)?* =] apx G

— 2
Inilil)n T,

8a) If n = 1. Then (y1z1)?% =| y* | «f*

—1
T1Y1|T1Z,,

_ A~ Pmtatl Pm+4a —Pm+atl —1,,—Pm+1
8.b) If n > 1. Then (yz,)%x = AL oo A AL Tay, T
—Pm+a+1 pm+1 _
Am+4 $2Am+4 1‘2:[/1 O *kk —
—Pm+44a+1 - Dm41 Pm42—1 4— - Dm1 -1
A T AP (2" Ty Ay AP )Py g
TPmA1 \pms—1 APm —
oy tay T (s T A =
ATPmtatl AP Pmt1 Apm+2—1‘ A=Pm | A
m—+4 T2 m m+2 m Tl m ‘
\ Zm:v1|z;1 i \
8.c) (Ynxn)?x =| ybx | afx |,
‘ znynlxnyn—l ‘
9.a) If n = 2, then (zoy; ')?x = erGAm+4
. 1 _
9.b) If n > 2,1 <i<n. Then (z;y; ,)%* —‘ Am‘fﬁz ‘xiﬂ oyt
\mi+1y1 T .%—196;1‘
gz3—1
-1 q2+1 ‘ —-1,.—q1
ol ‘ Avln-|—4z— 1| A71n+4z— Yi Xy
|21y wiaw; ey, vioim;
q0 go+1 1‘ qo—
‘ m+4i—4 ‘ Am+41,74 0 T;0y;—10T; Am+4l,

Tn—1Tn

=1 =T T =
‘Ii—lyi_z Yi—1T, ‘ ‘Ii—lyz_ Yi—1T,

'l

—q1

o

q1
Lk ok,



qa+1 —1,.—q1
‘ Am+4z ‘ Ti+10Y; X; ©

=T
‘l’i+1y1 Yi—1Z; ‘

g3—1
z; ! AP

K2

q2+1 ‘ —1,.—q
lmtai—g | Aql+4lf Yi %
‘Ii—1y172 Yio1T; | Ti-1Y; yl*lz;‘

—1 qofl
Ty ‘ qu+4i—4
‘Mflyiig Yi—1T; ‘

9.c) (xnyrjl ox _‘Aq +dn— 2|Am+4n 4 -

—1
‘ TnYn xny,,, ‘

10.a) Let n = 2, then (z] 'a)?x =
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— -1 ,_ — — —
Ampm( Pm+1y Ap7n+2 AmpM$1)pm+3 1x:i7m+1y1$2 1Ap7n+4 Apm+6A pm+4x2Ap7n+4 _

m—+2 m—+4 m—+6
AP @ AT A g A
(A Pm+4 127m+5y2)pm+6A Pm+4x2A;:7T;rjr+44 —_
Ao (g A3 A P12

-1 _pm+5 Pm+4 Pm+5 Pmte—1 :Dm+4 Pm+4a __ —p
a2 (A Ty Py )P e T A Ay = A
CmZm

-1 —Pm+2+1 71 Pm+1 DPm+5 ;Dm+4 o Pmts -1
‘rl A'Zr)nm Am+2 yl Apnzl- (A 2 y2)p7n+5
T

—Pm+4 Pm+4
Am+4 Am+4 .

10.b) If 1 <i < n—1, then (27 tz41)%% =| 2 xf’fl ‘
‘ yz L+1 ngy;ll

10.c) Similarly to 10.a) we get (z, ' z,)%% =

—Pm+4n—8 —1 gPm+4n—8 | gPm+an—6+1
‘A2n+4n—8 ‘ ’ ‘xn— Am+4n—8 m+dn—6  F*
Yn—sT, , PT T
1la) If 1 <i<n—1,then (z;112;)%% =
1 g6+, —1 —qs
Am+4z+4xl+2yz+1xz+l ( 2+1 m+47,Am4z+2yz+lxz+1) Am+47,

gq3—1
qa+1 q1 -1 g2+1 —q1 qo0 _
Am+4z ‘rH‘lyz z ( Am+4z— Am4z—2yz i ) Am+4i—4 -
gr—1
qe+1, —1 —qs .
Am+41+4w’b+2y1+1xz+l ( z+1Am+4zAm4z+2y1+l H—l) Am+474

gz3—1
o1 —a -1 g2+1 - % _
Li+1Y; xi ( Am+427 Amu 2yz €T, ) Am+4i74 -

gr—1
q+1, —1 —qs
Am+4z+4x7«+2y1+1$1+1 ( z+1Am+41Am4z+2yz+l z+1>

Am+4z—4x Yi m+4z—2‘Am+4z—4xl| Agr(z)+4i—4 ‘
\ w:fla«nhiqyf@
11.b) If n > 2, then (zow1)?% = * x| Aplox, | AL |

-1 _—1
zmmllzm C ‘

m+4
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__ AU —q4 qa qa+1 —q1
1.c) (TpTpn— 1)¢K = A tan—2Amtan—a1TnApm i an—1 Aptdn—aTnYn - 19% 1

- +1
(Inl Am+4n 8Amq—f4n Gyn 11‘r q11)q3 1A?72+4n 8 =
* ok ‘ Am+4n78x”—1 ‘ ! ‘ Am+4n78 ‘
\ T, oTn—1 Tn—2Y, 3 \
11.d) Similarly, if n = 2, then (zoz1)%% = x*|A Pmax| APm |

71
‘ Z"l'l’llzm Cm ‘

This proves the lemma. O
Notation. Denote by Y the following set of words

1) if n#0 and forn=1,m # 1, then
Y:{:ci,y,-,cjj|i:1,...,n, j=1,...,m}
2) if n =0, denote the element ¢i*...czm € F(X UCg) by a new letter d, then
Y ={cf,....c;r 7, d}.

a reduced word in this alphabet is a word that does not contain subwords (c;**d)*!
and (de;,7m)*;

3) ifn=1,m=1, then

Y = {Ahxl,yl},

a reduced word in this alphabet is a word that does not contain subwords (Ayzy)*!.

Lemma 49. Letm >3, n=0, K = K(m,0). Let p = (p1,...,px) be a 3-large tuple,
oK = oW, and XEOK = {295 |z € XFLY. Then the following holds:

(1) Every element from X®¥ can be uniquely presented as a reduced product of elements
and their inverses from the set

XU{Ch...,Cm_l,d}

Moreover:
— all elements 2% i # m have the form zP%
in the alphabet Y,

- zf;LK = ZmZm, where Z,, is a reduced word in the alphabet Y .

= ¢;2;%2;, where Z; is a reduced word

When viewing elements from X% as elements in
F(X @] {Cl, ‘e ,Cm_l,d},

the following holds:
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Cjzj (1<j<m), =
(2) Subp(XFx) = zilej, 22y (1<j<m—1),
zod, dz,,~ 4

Moreover:

— the word zmz;Ll_l occurs only in the beginning of z2X as a part of the subword
Zngll_lc;ll_lszl

— the words zod, dz;Ll_1 occur only as parts of subwords

Z1 22 2 —1 —1
(7' ¢3*) "z, 1 G 1 Zm—1Cm—1

and (¢5*c3?)?d.

— -1 —1 -1 . +1
Z; Cjzjs CiZiZivy Zi%ip1Ci41, (1< <m—1),
(3) Subs(X*0x) =4 z2lieiy (1<j<m-2),
—1 -1 -1
cozod, zodz, 4, dz,._qc,._q,

Proof. The lemma follows from Lemmas 44 and 48 by replacing all the products
ci'...cZm in subwords of X% by the letter d. O

Notation. Let m # 0,K = K(m,n),p = (p1,...,pk) be a 3-large tuple, and ¢x =
YK LAt Let W be the set of words in F'(X U Cg) with the following properties:

1. If v € W then Subs(v) C Subs(XT?K), Suby(v) C Suby(XTx);

2. Every subword :1:;'E2 of v € W is contained in a subword x;t3;

21 22

71 of v € W is contained in (¢i'¢3?)*3 when m > 2 or in (cf'zy)*?

3. Every subword ¢
when m = 1;
4. Every subword ¢t (m > 3) is contained in ([[/~, ¢f*)*!.

5. Every subword ¢37* of v € W is contained either in (¢i*c:2)*® or as the central

+zo —22 ,—21\3 22 21 22\3 : 22 (21 22\3\+1
occurrence of ¢5** in (¢35 *2¢] )%y ™ (¢ ¢3?)? or in (c121¢32 (¢t c5?)%) =1 .
Definition 30. The following words are called elementary periods:
zi, e (if m>2), art (if m=1).

We call the squares (cubes) of elementary periods or their inverses elementary squares

(cubes).
Notation.
1) Denote by Wr the set of all subwords of words in W.

2) Denote by Wr the set of all words v € Wr that are freely reduced forms of products
of elements from Y*'. In this case we say that these elements v are (group) words in
the alphabet Y.
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If U is a set of words in alphabet ¥ we denote by Sub, y(U) the set of subwords of
length n of words from U in alphabet Y.

Lemma 50. Let v € Wr. Then the following holds:

(1) If v begins and ends with an elementary square and contains no elementary cube, then
v belongs to the following set:

2 -1 -1 -2 2 -1 -2 +1
371-_23/1‘72961-,11561‘:1%;1yi,ﬂ?i,g7 TiYiZiY; 1%, 7, m>2,n#0

2 -1,2 .2 - -1, -
Ii72yi—2$i2—1xi7 xi—2gi—2mi—1miyi—1xi—1a
—2o —21 Z2 (22 22
(cg ey ™1)%e5? (77 e3?)?,

1
(PG e P (G T (12 3),
(F2e3?)2e? .. cirare,m .. 78 (cq 2e] )2,
(F2e52)2e® .. cimad,
(c?c3*)’c3’ .. cray lyp 2y,
(CT2C§2)20§3 . C;Iﬁa)‘;lxglxlc;lzm . C??Zii (65226;21)2’
(F2c52)2eq? ... cma gy a2,

(e e,y o (20 ™), amey (e 2er ™2, m = 3,n =0,

()25 e e (e ™) (i28),
(e ey )25 (e s )2,

w3y (zre; ™), (Cflfﬂfl)%z(ﬂﬁlcf“%z’ m=1,n>2,

(w107 )23, adyray (waer )2, 25 2 (2167 ™),

2 —1 -1, .—-2 2 -1 -2 o
1‘1'72yz‘—zxi,llxﬂi—fyiagmi,g7 xiylmyi,lgi,ll, m=0, n>1,
2 . - o - 2 —1,.2 —2,.—-1.2
xi_QyZ,%xi_lxlyé_lxi_h xlylf% Ty, Ty Ty 7,

27 4-2,2  p— 2 20 A— _ _
Af, ATz, ATTm A, i AT m=1, n=1.

(2) If v does not contain two elementary squares and begins (ends) with an elementary
square, or contains no elementary squares, then v is a subword of either one of the
words above or of one of the words in {x3y1x1, 23yswa} for m = 0.

Proof. Straightforward verification using the description of the set Subz(X*¢x) from
Lemma 48. (]

Definition 31. Let Y be an alphabet and E a set of words of length at least 2 in'Y. We
say that an occurrence of a word w € Y U E in a word v is maximal relative to E if it is
not contained in any other (distinct from w) occurrence of a word from E in v.

We say that a set of words W in the alphabet Y admits Unique Factorization Property
(UF) with respect to E if every word w € W can be uniquely presented as a product

wW=U...U

where u; are maximal occurrences of words from Y U E. In this event the decomposition
above is called irreducible.
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Lemma 51. Let E be a set of words of length > 2 in an alphabet Y. Suppose that W is
a set of words in the alphabet Y such that if wiwows is a subword of a word from W and
wiwsy, wews € E then wiwows € E. Then W admits (UF) with respect to E.

Proof. Obvious.

Definition 32. Let Y be an alphabet, E a set of words of length at least 2 in'Y and
W a set of words in'Y which admits (UF) relative to E. An automorphism ¢ € AutF(Y)
satisfies the Nielsen property with respect to W with exceptions E if for any word z € YUFE

there exists a decomposition
2=L,oM,oR,, (72)

for some words L,, M, R, € F(Y) such that for any uy,us € YUE with ujus € Sub(W)~\E

the words Ly, o M, and M,, o R,, occur as written in the reduced form of ufu%’

If an automorphism ¢ satisfies the Nielsen property with respect to W and E, then for
each word z € Y U E there exists a unique decomposition (72) with mazimal length of M.
In this event we call M, = My, the middle of z% with respect to ¢.

Lemma 52. Let W be a set of words in the alphabet Y which admits (UF) with respect
to a set of words E. If an automorphism ¢ € AutF(Y) satisfies the Nielsen property with
respect to W with exceptions E then for every w € W if w = wuy ... uy is the irreducible
decomposition of w then the words M, occur as written (uncancelled) in the reduced form

of w®.

Proof follows directly from definitions.
Set

T(m,l):{c“(s:l,...,m) Hz 16 £C1H c 7 }il m > 2.

i=m Ci
T(m,2) = T(m, VA TT o ey wown [T, e ™, yiwg ton [, o7 T, of ety 1,
if n > 3 then put
T(m,n) =T(m, 1) U{ T2, ¢f' ey ey, I e ey tyr 11 U Ta(m,n),
where
Ty (m,n) =
{yn—er_zilxnxn—lygiz, yr—2mr_j1x;17 Yr—1zy ty yn—lﬂfﬁlwn_l’yﬁg (n>r>2)

Now, let

}il'

= | Subi(T(m,n)) "N Wr, E(m,0) =0, E(1,1) = .

i>2

Lemma 53. Let m # 0,n # 0, K = K(m,n),p = (p1,...,px) be a 3-large tuple. Then
the following holds:

(1) Let w € X U E(m,n), v = v(w) be the leading variable of w, and j = j(v) (see

notations at the beginning of Section 7.1). Then the period A?rl occurs in wx and

, . ) . i—1
each occurrence of A? in wPK is contained in some occurrence of A?J . Moreover, no
square Ai occurs in w for k> j.
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(2) The automorphism ¢ satisfies the Nielsen property with respect to Wr with exceptions
E(m,n). Moreover, the following conditions hold:
(a) My, = A Pt ss o,y for j #n.
(b) Ml = qu OYn © Am+4n 2© AT_YL?‘,(-)47L—4 O Tn

(c) M, *y] K forj <n.
qs3

(d) My, = Z‘,qun‘ A?ri;m 2 | Am+4n 4 ‘xn Tl Yn -

[2nynly  @atn|oay,ly ynoaw, |

(e) My, = w? for any w € E(m,n) except for the following words:
° w =yr72$;_1133:1,3 <r<n-—1,wy=y,qz y 2<r<n-1,
© W3 = Yn—2Tp11Tn, Wi = Y2l lyTnlply, Ws = Yno2@, 18Tyl 1Yn s,
wWe = yn,gxgilxnxn,l, wy = yn,gx;ilxgl, wg = yn,lxgl, Wy = x;ilxn,
wip = x;ﬁlxnyrﬁl, wi1 = m;ilxnxn_ly,;l?
(f) The only letter that may occur in a word from Wr to the left of a subword w €
{wy,...,ws} ending withy; (i =r—1,7r—2,n—1,n—2, i > 1) is x;. The mazimal
number j such that L,, contains A?rl isj=m+4i—2, and Ry, = Ry, =1,

Proof. We first exhibit the formulas for u®%, where u € (J;~o Sub;(Ti(m,n)).
(L.a) Let ¢ < n. Then a

bm+ai ¢K _ ga+1 . —1,.—q1
(xlyz—) * (xlyz— Am+4z Ti+10Y; T; 0
‘$i+1y1 ybflw;l‘
g3—1
-1 g2+1 ‘ -1.—q qo
oz | A aia | Anlz+4z— ; Yi % | mAdi—4 |
‘wi—lyi,z Yim1T; |w¢71y1,2 Yi—1T; ‘wi—ly;,z Yi—1T; ‘
qo+1 o~ 71‘ qo— ‘
Am+4z OZ;0Yi—10 xi Avln—l—élz—
‘11'—1?!1,2 yz—ﬂfl
_ ga+1 ‘ . —-1,.—q1
_‘ Am+4z T oY T e
[zi1y; T yiaw; |
g3—1
-1 g2+1 ‘ —-1,.—¢ —1‘ go—1 ‘
o1 ‘ A’I{L+4’L* | Am+427 Y T C Ly A'r{z+4zf .
‘mi—ly,_ Yic1x, |@ic1y, s Yi—ix, ‘Ii—lyl_g Yi— 11;‘
(1.b) Let ¢ = n. Then
—1 \bmian—1 _ -1 ¢K— | ‘
(mnyn—l) e - (xnyn 1 ‘ m+4n 2 Am+4n 4 .

—1 1
‘wnyn,1 TnYn |TnY,_1 yn—2xn,1‘

K

Here y,, ” ¢

(2.a) Leti<n—1 Then
(@12 1) = (@i, ) omries = AL BEL 0w oyl o fo

is completely cancelled.
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q7r—
ge+1 1 qs —q0
( H—l © Am+4z Am+4z+2 © yz-‘rle—l) Am+4z—4 © l‘ yl © Am+4z—2 © Am+4z—

Here (w;y; ! )?m+4i+4 was completely cancelled.

11—

(2.b) Slmllarly, (ziy; ') )Pm+ei+3 is completely cancelled in (x1+1x1y )¢m+4l+3 and

Omtaits — q2—
(xZJrlxlyz ) Am+4z+2 o A7n+4z OTi+1© Am+4z Am+4z— o Am+41,

-1 -1 y T g6+1 —1 —qs
(2 C) (.13 LTy — 1y )¢m+4n ! Am+4n 4 © J} © Am+4n 4 © Am+4n 2 © yn © an ©

1
Am+4n 8 0 xn 1 ©Yn—-10 Am+4n 6 © Am+4n 89
and (2,13, "y)?m+4n=1 is completely cancelled.

_ 1 _
(33) (ylxlyz )¢m+41 Am?ﬁzrz © miJrl © Am?f4i—4 © xgl ©Y;© Am+4z— © Am+4z—47
and (x;y; )¢+ is completely cancelled.

(3.D) (YUnnyy, 11)?F = Y2 o (xny,, )"
(3 C) (yn_1$;1$n_1y;i2)¢K = Am+4n 40Am-ﬁ2_nl QOyn ox qsoAm+4n 8Ox ~19Yn—10

- -1
A%+4n 6 ° Amtan—s;
and y2%, and (z,_1y, ',)?* are completely cancelled.

(4.2) Let n > 2. (wyc;,2m)Pm+i = (p1c,7m)PK = A st zy 0y tey Mo

= = =
T2y, ety

q3—1
o (o1t o Ao A oy oar )" o) (g oaito g ) =

q3—1
1 _ - 1 - - _ _
A lr ozgoylloxlqlo( Lo Ao A %25 o ylloz1q1> oxyto A1,
Let n=1.
—c _ A- P41 Pmt2—1 -1 —c _ K —c
(wlzm(.m)(m( - Ampm © xlm oY1 © ATY;:—Z © Am ) (ylxlzmcnl)¢K - yl © (wlzm(.m)(m('

(4.b) (z1c,7m)?K is completely cancelled in x§% and for n > 2:

(om0, )PK = A qs“ oxzoy,toxyPo

(13 0 Aty 0 A 0 003 o Az o0 oy 0 AT TR0 A7)

and for n = 2:

(zaz1cp7m )oK = AL o A B o w0 A1 0zl oy 0 AT 2 o AL

(4.c) The cancellation between (z2x1c;,*™ )% and cmz_"i’l is the same as the cancellation

PK
0K
between A:nl and ¢,,, "y"*, namely,

LPK
A Zm—1 —_ <$10A Pm 1 ;lzm OAp’”*1>

m Cm—1
pm—1+1 =% pm 4 —Zm-—1 Pm—4 z pm—l—
(A e m o APt o Il o AP 6 pam o APmo1TL) g A=l
Kl
and cm """ is completely cancelled.

2PK

(4.d) The cancellations between (z221c;,*™)?% (or between (y;x1c;,*)?%) and HZ me1Ci

_ %K
are the same as the cancellations between A ! and Hl_m 16Gi %" namely, the product
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_2fK
I ¢, 7' is completely cancelled and

i=m—1 "1
1 bK 1
I —Z;
c; =2 c; .
i=m

i=m—1

Similarly one can write expressions for u®% for all u € E(m,n). The first statement of
the lemma now follows from these formulas.

Let us verify the second statement. Suppose w € E(m,n) is a maximal subword from
E(m,n) of a word u from Wr. If w is a subword of a word in T'(m, n), then either u begins
with w or w is the leftmost subword of a word in T'(m,n). All the words in T7(m,n) begin

with some y;, therefore the only possible letters in u in front of w are x?

‘We have m?K fo wPK = xf}‘ o x?’( o w?x if w is a two-letter word, and x¢K d’K wx =
a:j’K o a:j’K w?®s if w is more than a two-letter word. In this last case there are some cancel-

lations between xj-’K and w?x, and the middle of x; is the non-cancelled part of z; because

z; as a letter not belonging to £(m,n) appears only in z7.
We still have to consider all letters that can appear to the right of w, if w is the end
of some word in Ty(m,n) or w = y,_12, ' Tpn_1, W = Yn_17, . There are the following

possibilities:
. . ~1 —1 .
(i) wis an end of Yp_2x, " 1 TnTn_1Y, _o;
(ii) w is an end of y, _ox, yx; tr < i
. -1 -1
(i) w is an end of Y22, 1Y, 1.

Situation (i) is equivalent to the situation when w™? is the beginning of the word y,, o2, * 1 TpTn_19; "o,
we have considered this case already. In the situation (ii) the only possible word to the right

of w will be left end of xr 1y;12$;22 and w¢Ka:T 1Y, 2 < 2;’” =wPk ogx _lyr 2 ox 2(215",
and w?x x‘b = w?x o m . In the situation (iii) the first two letters to the right of w are
Tp1Tp_1, and w¢Kx¢K = w¢K ) 33¢K

There is no cancellation in the words (¢;7)?% o (¢ iﬁ“)‘i’f( (c2m)x o gF?% | 295 o x(fK.
For all the other occurrences of x; in the Words from Wr, namely for occurrences in 7', 22y,
we have (22y,)?% = 2% 0 2?% o y?* for i < n.

In the case n = i, the bold subword of the word

= A q04n 40 (qu Oyno Am+4n 50 Am_~_4n 40 xn> o A%+4n—4
is Mwn for ¢k, and the bold subword in the word

a3
b q0 ‘ qi1 ‘ qz—1 | —do ‘ q1
n Am+4n 4 Xn Yn Arr}+4n—2 Am+4n—4 Xn Xn Yn,
E T [%0¥nl1  Xo¥n|Xn¥aly Yn 2%,
is M,, for ¢k. g

Lemma 54. The following statements hold:

(1) Let u € E(m,n). If B? occurs as a subword in u®* for some cyclically reduced word
B (B # ¢;) then B is a power of a cyclic permutation of a period A;,j =1,... K.
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et u € Wr. occurs as a subword in u®¥ for some cyclically reduced wor
2) Let Wr. If B2 bword ¢ lically reduced d B
(B # ¢;) then B is a power of a cyclic permutation of a period Aj,j=1,... K.

Proof. 1) follows from the formulas (1.a)-(4.d) from Lemma 53.
2) We may assume that w does not contain an elementary square. In this case w is a
subword of a word from Lemma 50. Now the result follows from the formulas (1.a)-(4.d)

from Lemma 53.
O

Notation. 1) Denote by Wr 1, the least set of words in the alphabet Y that contains
Wr, is closed under taking subwords, and is ¢ -invariant.

2) Let WF,L be union of Wr 1, and the set of all initial subwords of z
the form cZ o z; ow, where w € Wr .

DK

i

which are of

Notation. Denote by Exc the following set of words in the alphabet Y .
1. If m>2,n > 2, then
—Zi—1 —2z1

_ —21 ,—Zi —z —21,..,,—1
Exc={c{ ™ c;%c, 1", c] *'mic,”™, ¢ x]yjfl}.

2. If m >2,n=1, then

_ —21 ,,— 2 T Ri—1 —Zz1 —Zz
Exc={c;™c; “c,-|", ¢ tare,”m}.

8. If m=2,n>2, then

I 21 -z —z1,, ,,—1
Exc = {c; " x10,7™, ] ac]yj_l}.

4. Ifm=2n=1, then
Exc={c;*'x1c,7m}.

5 Ifm=1,n>2, then
Exc = {c; " zjy; 1 }-

6. Ifm=0,n>2, then

1 .
Exc = {y1z12;, t12:y;_1,2 < i < n}.

Lemma 55. The following holds:
(]) SUb&y(WF)L) = S’U,bg}y(XiqﬁK) U Ezc.

(2) Let v € Wr 1 be a word that begins and ends with an elementary square and does
not contain any elementary cubes. Then either v € Wr or v = vivs for some words
v1, V2 € Wr described below:
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(a) form>2 n>2,

m 1 1
zZ1 22\2 Z; —z; 2 —z;
v € {v11 = (651 ¢3?) Hcilxlxgxl | I c; ©, vig = T | I c; 7}
=3 i=m

i=m
and

—Z; 723(0722 —Z1 —Z1 ,—Z1
.. o)

o 2 _ —z —z3 2 -1 2 .
v € {vg; = -C3 ey M) ugn = wie,, e3P ey ey )T g = xjyjqxj—l}a

o

(b) form=2, n>2,

1 1
z1 22\2 —ZzZi .2 —Z;
v1 € {v11 = (' e3?)“T12021 H ¢; %, vig = xi T H c; '}
i=m i=m

and

21

vy € {ug, = m1(c; 7y )%, upy = iy ywd o)

(c) form>2 n=1,

1
2 —Zz;
vy € {v12 = {111 H ¢ '}

i=m

and

—2Zz3 (62—22 —2Z1

vy € {vg; = ¢ .C3 c )2, Ug1 = ZT1C,7™ .. .30 (02_2101_21)2};

(d) form=2 n=1,
1

v; € {viz = x%ylxl H c; '}

1=m
and
vy € {ugy = w1(c3 e ™)}

(e) form=1, n>2,
v € {v11 = (] a7 ) z9m10] Y, v19 = Ty1w1c] 7}
and
vg € {ug; = ij;_l1$?—1}-

(3) If v € Wr 1, and either v does not contain two elementary squares and begins (ends)
with an elementary square, or v contains no elementary squares, then either v is a
subword of one of the words from [2] or (for m =0) v is a subword of one of the words

2 2
T1Y121, TaY222-

(4) Automorphism ¢ satisfies Nielsen property with respect Wr 1, with exceptions E(m,n).
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Proof. Let T = KIl. We will consider only the case m > 2, n > 2. We will prove all
the statements of the lemma by simultaneous induction on . If [ = 1, then T'= K and the
lemma is true. Suppose now that

SUb3,Y(Wf¢‘)T7K) = SUbg,Y(WF) U FEzxc.
Formulas in the beginning of the proof of Lemma 53 show that

Sub:),’y(E(m, n)i¢K) g Subg,y(WF).

By the third statement for Sub(Wg" ") the automorphism ¢ satisfies the Nielsen property
with exceptions E(m,n). Let us verify that new 3-letter subwords do not occur ”between”
u®s for u € Ty(m,n) and the power of the corresponding z; to the left and right of it. All
the cases are similar to the following:

-1 \¢r . 0K —q+1 -1 qo—1
(‘rnx7l—1yn—2) Ly mtdn—10 | Tn-1 Am 4n—8 |
* yn_3$;12 Tn—2 *

PK

‘Words
(v1v2)

produce the subwords from Fzc. Indeed, [(z221 H;:m ¢;*)]?% ends with vy5 and 07X ends
with v15. Similarly, Ug’g( begins with vs ;41 for j < m and with ug; for j = m. And ug”;
begins with us j+1 for j < n and with uy ; for j = n.

This and the second part of Lemma 48 finish the proof. (]

According to the definition of VVF, L, this set contains words which are written in the
alphabet Y*! as well as extra words u of the form (czw)*' or (zw)*' whose Y+
representation is spoiled at the start or at the end of u. For those u € Wr 1, which are written
in the alphabet Y*!, Lemma 51 gives a unique representation as the product u; ... u; where
u; € Y*' U E(m,n) and the occurrences of u; are maximal. We call this representation a
canonical decomposition of u. For u € Wr 1, of the form (¢} z;w)*! or (z;w)*! we define the
canonical decomposition of u as follows : u =¢;...c;z;uy ... u, where u; € Yy+ly E(m,n).
Clearly, we can consider the Nielsen property of automorphisms with exceptions E(m,n)
relative to this extended notion of canonical decomposition. Below the Nielsen property is
always assumed in this sense.

Lemma 56. The automorphism ¢x satisfies Nielsen property with respect to V_VRL with
exceptions E(m,n). The set Wr 1, is ¢k -invariant.

Proof. The first statement follows from Lemmas 53 and 55. For the second statement
j (c{ziw)¢K

: — w?K o
(2

notice that if cZzzw € Wr 1, then cﬁz"w =wlociowe Wr and ¢
cffk o w?® € Wr 1, therefore cszK ow?s € Wr p. O

Let W € G[X]. We say that a word U € G[X] occurs in W if W = W; oU o W5 for some
W1, Wy € G[X]. An occurrence of U? in W is called mazimal with respect to a property P
of words if UY is not a part of any occurrence of U” with ¢ < r and which satisfies P. We
say that an occurrence of U? in W is t-stable if ¢ > 1 and W = W, o UtUIU o Wy, t > 1,
(it follows that U is cyclically reduced). If ¢ = 1 it is stable. Maximal stable occurrences U4



116

will play an important part in what follows. If (U~1)7 is a stable occurrence of U=t in W
then, sometimes, we say that U1 is a stable occurrence of U in W. Two given occurrences
U4 and U? in a word W are disjoint if they do not have a common letter as subwords of W.
Observe that if integers p and ¢ have different signs then any two occurrences of A? and AP
are disjoint. Also, any two different maximal stable occurrences of powers of U are disjoint.
To explain the main property of stable occurrences of powers of U, we need the following
definition. We say that a given occurrence of U? occurs correctly in a given occurrence of
U? if |q| < |p| and for these occurrences U? and UP one has UP = UP* o U% o UP'. We say,
that two given non-disjoint occurrences of U9, UP owverlap correctly in W if their common
subword occurs correctly in each of them.

A cyclically reduced word A from G[X] which is not a proper power and does not belong
to G is called a period.

Lemma 57. Let A be a period in G[X] and W € G[X]. Then any two stable occurrences
of powers of A in W are either disjoint or they overlap correctly.

Proof. Let A%, AP (¢ < p) be two non-disjoint stable occurrences of powers of A in W.
If they overlap incorrectly then A% = u o A owv for some elements u,v € G[X]. This implies
that A = wov =wvowu and hence u and v are (non-trivial) powers of some element in G[X].
Since A is not a proper power it follows that w = 1 or v = 1 - contradiction. This shows
that A? and AP overlap correctly. O

Let W € G[X] and O = O(W, A) = {A?, ..., A%} be a set of pair-wise disjoint stable
occurrences of powers of a period A in W (listed according to their appearance in W from
the left to the right). Then O induces an O-decomposition of W of the following form:

W:BloAqlo'HOBkoAkoBk+1 (73)

For example, let P be a property of words (or just a property of occurrences in W) such
that if two powers of A (two occurrences of powers of A in W) satisfy P and overlap correctly
then their union also satisfies P. We refer to such P as preserving correct overlappings. In
this event, by Op = Op(W, A) we denote the uniquely defined set of all maximal stable
occurrences of powers of A in W which satisfy the property P. Notice, that occurrences
in Op are pair-wise disjoint by Lemma 57. Thus, if P holds on every power of A then
Op(W,A) = O(W, A) contains all maximal stable occurrences of powers of A in W. In this
case, the decomposition (73) is unique and it is called the canonical (stable) A-decomposition
of W.

The following example provides another property P that will be in use later. Let N be
a positive integer and let Py be the property of A? that |¢| > N. Obviously, Py preserves
correct overlappings. In this case the set Op, provides the so-called canonical N-large
A-decompositions of W which are also uniquely defined.

Definition 33. Let
W =BioA% 0.0 By, 0 A% o By
be the decomposition (73) of W above. Then the numbers
m}X(W) =max{q |i=1,...,k}, rr}in(W) =min{g; |i=1,...,k}

are called, correspondingly, the upper and the lower A-bounds of W.
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Definition 34. Let A be a period in G[X] and W € G[X]. For a positive integer N we
say that the N-large A-decomposition of W

W=BioA" o---0Bio A% o By
has A-size (I,7) if ming (W) > 1 and maxa(B;) <71 for everyi=1,... k.

Let A = {A;,As,...,} be a sequence of periods from G[X]. We say that a word
W € G[X] has A-rank j (rank4(W) = j) if W has a stable occurrence of (A;tl)q (¢g>1)
and j is maximal with this property. In this event, A; is called the A-leading term (or just
the leading term) of W (notation LT 4 (W) = A; or LT(W) = A;).

We now fix an arbitrary sequence A of periods in the group G[X]. For a period A = A;
one can consider canonical Aj;-decompositions of a word W and define the corresponding
Aj-bounds and Aj-size. In this case we, sometimes, omit A in the writings and simply write
max; (W) or min;(W) instead of mawa, (W), mina,(W).

In the case when rank4(W) = j the canonical Aj-decomposition of W is called the
canonical A-decomposition of W.

Now we turn to an analog of O-decompositions of W with respect to ”periods” which
are not necessarily cyclically reduced words. Let U = D~! o Ao D, where A is a period. For
aset O =0(W,A)={A%", ..., A%} as above consider the O-decomposition of a word W

W=B1oA"o---0Bpo A% o By, (74)
Now it can be rewritten in the form:
W = (BD)(D 'oA% o D)...(D"'B,D)(D™' 0 A% o D)(D By y1).

Let €;,d; = sgn(q;). Since every occurrence of A% above is stable, By = Bio A%, B; =
(A%-10 Bjo A%), Byy, = A% o By, for suitable words B;. This shows that the decompo-
sition above can be written as

W = (B A®*D)(D7YA" D) ... (D 'A% B;A% D) ... (D 'A% D)(D 'A% By, ) =
(BiD)(D™'A5D)(D'A"D) ... (DA% D)Y(D 'B;D)(D"'A"D)...
(D~YA% D)(D~*A% D)(D ™' By 1)
= (BiD)(U)(U™) ... (U*) (D™ ByD)(U) (U™ ) (U )(D ™" Byy1).-

Observe, that the cancellation between parentheses in the decomposition above does not
exceed the length d = |D| of D. Using notation w = u o4 v to indicate that the cancellation
between u and v does not exceed the number d, we can rewrite the decomposition above in
the following form:

W = (BlD) Od []E1 Od (]q1 Od [](sl Od *+*0O¢g Usk Od qu Od U(;k Od (D_13k+1),

hence
W =DjoqU% o404 DyogUm oy Dyyq, (75)

where Dy = B1D, Dy, = D™ 'Byy1, D; = D7'B;D (2 < i < k), and the occurrences
U% are (1,d)-stable. (We similarly define (¢, d)-stable occurrences.) We will refer to this
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decomposition of W as U-decomposition with respect to O (to get a rigorous definition of

U-decompositions one has to replace in the definition of the O-decomposition of W the

period A by U and o by o|p|). In the case when an A-decomposition of W (with respect

to O) is unique then the corresponding U-decomposition of W is also unique, and in this

event one can easily rewrite A-decompositions of W into U-decomposition and vice versa.
We summarize the discussion above in the following lemma.

Lemma 58. Let A € G[X] be a period and U = D=Yo Ao D € G[X]. Then for a word
W e GIX] if
W=B1oA" o---0Bro A% o By,
is a stable A-decomposition of W then

W = D1 Od []q1 Od~~~Ode Od qu Ode+1
is a stable U-decomposition of W, where D; are defined as in (75). And vice versa.

From now on we fix the following set of leading terms

App={4; [ <L,¢=0¢r,}
for a given multiple L of K = K(m,n) and a given tuple p.

Definition 35. Let W € G[X] and N be a positive integer. A word of the type As is
termed the N-large leading term LTn(W) of the word W if A% has a stable occurrence in
W for some ¢ > N, and s is maximal with this property. The number s is called the N-rank
of W (s = ranky(W),s > 1).

In Lemmas 44, 45, 46, and 47 we described precisely the leading terms A; for j =
1,..., K. It is not easy to describe precisely A; for an arbitrary j > K. So we are not going
to do it here, instead, we chose a compromise by introducing a modified version A; of A;
which is not cyclically reduced, in general, but which is “more cyclically reduced” then the
initial word A;. Namely, let L be a multiple of K and 1 < j < K. Define

Aj =A% (ryy) = ATE

Lemma 59. Let L be a multiple of K and 1 < j < K. Let p = (p1,...,pn) be N+3-large

tuple. Then
;=R 'oALjoR

for some word R € F(X UCg) such that rank(R) < L — K 4+ j+2 and |R| < |Ar4,].

21 R2

Proof. First, let L = K. Consider elementary periods z; = Ay,4+4,—3 and A; = ¢'c3*.
For ¢ # n, xfm‘ = x?" o x?“. For i = n,

A*(prcrmian—3) = R ' o Ak imian—3 o R,

where R = AP"+i- ! therefore ranky (R) = m + 4n — 4. For the other elementary period,
(€1 €3?)20 = (c]'e3?) " o (c7'e3?) .
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Any other A; can be written in the form A; = uy o vy o ug o0 vg o uz, where vy, vy are
the first and the last elementary squares in A;, which are parts of big powers of elementary
periods. The Nielsen property of ¢k implies that the word R for A*(¢x ;) is the word that
cancels between (vou3)®* and (ujv;)?%. It definitely has N-large rank < K, because the
element (vguSulvl)¢K has N-large rank < K. To give an exact bound for the rank of R we
consider all possibilities for A;:

1. A; begins with zi_l and ends with z;41,i=1,...,m —1,
2. A, begins with z,! and ends with 2",

3. Apmsais begins with @;_qy; Lo, %, if i = 3,...n, and ends with 22 ,y;_q2; ' if i =

2,...,n, If i = 2 it begins with 2111}_, ¢; ™ (¢; ¢ *1)2.
4. Aptai—o and Ag,q4i—1 begins with xiyi:lla:i_fl and ends with 2%y, ifi =1,...,n.
Therefore, Af’{ begins with 22111 and ends with z;40, 7 =1,...,m — 2, and is cyclically
reduced.

A% | begins with z;;! and ends with z;, and is cyclically reduced, A®% begins with z;;!
and ends with xl_l and is cyclically reduced.

We have already considered A(f;fj_ 453

Elements Aif;%_ 4’Af5,-4i—27Aizﬁ-4i—1 are not cyclically reduced. By Lemma 53, for
A% myai_gs One has R = (zi_1y; )% (rank(R) = m + 4i — 4); for Af fmtai_gy and
Af oy aioze B = (2iy21)?% (rank(R) = m + 4i).

This proves the statement of the Lemma for L = K.

We can suppose by induction that A} . ., = R Yo A;_kyjo R, and rank(R) <
L — 2K + j + 2. The cancellations between A% . +; and R?% and between A%% +; and
Aff K+j correspond to cancellations in words u®¥, where u is a word in Wr between two

elementary squares. These cancellations are in rank < K, and the statement of the lemma
follows. O

Lemma 60. Let W € F(XUCs) and A= A; = LTn(W), and A* = R"'oAoR. Then
W can be presented in the form

W = Bjog A" oy Byog---0q By og A" o4 B 11 (76)

where A*% are mazimal stable N-large occurrences of A* in W and d < |R|. This presen-
tation is unique and it is called the canonical N-large A*-decomposition of W.

Proof. The result follows from existence and uniqueness of the canonical A-decompositions.
Indeed, if
W =B1oA" o Byo---0Bj o A% o By

is the canonical A-decomposition of W, then
(BiR)(R™'AR)® (R 'ByR)--- (R™'BLR)(R"'AR)"™ (R ' By, 1)

is the canonical A*-decomposition of W. Indeed, since every A% is a stable occurrence, then
every B starts with A (if i # 1) and ends with A (ifi = k+1). Hence R"'B;R = R~'oB;oR.
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Conversely if
W = B A*1 By -+ - By A" By 44

is an A*-representation of W then
W =(BiR ") oA" o (RBsR ) o---0(RByR™') 0 A% o (RBy1)

is the canonical A-decomposition for W. (]

Let ¢ be an automorphism of F(X UC) which satisfies the Nielsen property with respect
to a set W with exceptions E. In Definition 32, we have introduced the notation My ,, for
the middle of w with respect to ¢ for w € Y U E. We now introduce a similar notation
for any w € Sub(W) denoting by M¢,1u the maximal noncancelled part of w? in the words
(uwv)? for all vwv € W with w # u~',v~!. Observe that, in general, My ,, may be empty
while this cannot hold for M ,,. If My, is nonempty then we represent w? as

W = Loy 0 My © R
Lemma 61. Let L =1K,1>0, p a 3-large tuple.

(1) If E is closed under taking subwords then M¢,w is nonempty whenever the irreducible
decomposition of w has length at least 3.

(2) Mg, (a2) is nonempty for an elementary period A.

(3) The automorphism ¢r = ¢, has the Nielsen property with respect to WRL with
exceptions E(m,n). For w € X U E(m,n) and | > 1, the middle My, ., can be
described in the following way. Let

Myw=FfoA"ogoB’oh

where A" and B* are the first and the last mazimal occurrences of elementary powers
in Mgy w- Then My, . contains My, .. (argBs) as a subword.

(4) If i < j < L then A? does not occur in A;.

Proof. To prove (1) observe that if w = ujusus, u; € Y U E, is the irreducible decompo-
sition of w then M¢>,w should contain Mg ., .

The middles My, , of elements from X and from E(m,n) contain big powers of some A;,
where j = 1,..., K and, therefore, big powers of elementary periods. Therefore, statements
(2) and (3) can be proved by the simultaneous induction on [. Notice that for [ = 1 both
statements follow from Lemma 56.

The statement (4) follows from Lemmas 44-46.

O

Lemma 62. Let L=I1IK >0, 1<ir <K, t>2, pa 3-large tuple,
(1) and
w=uocAlov

be a t-stable occurrence of A3 in a word w € Wr . Let A;,, = R Yo A,y 0R and
d=|R|. Then
wPr = y?r o4 (A:-i-L)S o4 vPr

where the occurrence of (Ay, )® is (t — 2,d)-stable.
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2) Let W € Wrp, and A% . =R YoAp ., oR and d = |R)|.
5 L—+r

Ift > 2 and
W:DloAg‘lODQ“-OAgkODkJrl

s a t-stable A,.-decomposition of W then
WL — D(fL o4 ( err)ql o4 Dg’L 04" 0g (A’Z+T)Qk o4 leil
is a (t — 2,d)-stable A3} | -decomposition of WL,

Proof. (1) Clearly, we can assume ¢ = 2 without loss of generality. Suppose first that
A, is not an elementary period. Then the canonical decomposition of A, is of length
> 3 and thus My, (A,) is nonempty by Lemma 61(a). This implies that u?* ends with
My, (A)Rg, (Ay), and thus the cancellation between u?% and (A;, )" is the same as in
the product A%, - A7, ;. Similarly, the same is the cancellation between (A7, ;)" and v?~
and the statement of lemma follows.

If A, is an elementary period, a slightly more careful anali/sis is needed. We first consider
the image of w under ¢x. If r = 1 one of the images AT?* of the periods AF! in the
occurrence of AsT4sen(m) jn o (i.e. the first or the last one) may be completely cancelled in
w?% | but all the others have nonempty noncancelled contributions in w?%. Then an easy
application of Lemma 61 (with L replaced with L — K) gives the result, and this is the case
when only (¢ — 2, d)-stability can be stated. If A, is an elementary period of the form z;, a
similar argument applies but with no possibility of completely cancelled period A?l under
Px-

(2) follows from (1). O

Lemma 63. Let Aj, ..., Aj, k > 0, be elementary periods, 1 < ji,...,jx < K. If
w e WF,L and

o~ *q ~ *q ~
w¢K = Wy odj1 Ajl—l‘rK Odj1 w1 ... Odjk Ajkink7 (77)
where ¢; > 5, W; does not contain an elementary square, and d;, = |R;,|, where A;TWK =

R;l o Aj,+K o Rj, (see Lemma 59), i =1,...,k, then
_ @ ax
wfwgoAj1 owlo...oAjkowk,

K

where w;* = w;, 1=0,...,k.

Proof. Case 1). Suppose that w does not contain an elementary square.

In this case either w € Wr or w = v,v9 for some words vy, vo € Wr which are described
in Lemma 55.

Claim 1. If w?% contains B* for some cyclically reduced word B # ¢;,i = 1,...,m,
and s > 2, then B is a power of a cyclic permutation of some uniquely defined period
Aji=1,...,K.

It suffices to consider the case s = 2. Notice that for w € Wr the claim follows from
Lemma 54. Now observe that if w = vjvy for v,v9 € Wr then w®x = vff‘ o ng and

K

"illegal” squares do not occur on the boundary between vy* and v5* (direct inspection).
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Claim 2. w® does not contain (E?¥)?, where E is an elementary period. By Claim 1
w®% contains (E?%)2, where E is an elementary period, if and only if E®% is a power of a

cyclic permutation of some period A;,i = 1,..., K. So it suffices to show that E?X¥ is not
a power of a cyclic permutation of some period A;,i =1,..., K. To this end we list below
all the words E¢x:

by Lemma 44

Atlﬁk _ Al—p1+1cgzzAIf1A2—p2+16§z3A1—p1+1c§2A1171—1c§3A1292—1(m > 2);
by Lemma 47

oK _ - ; .
x; " *‘ Ag§+4i—2 | Am(i(-)4i—4 ‘ Ty ‘ Agg+4i—4 ‘ (i #n);
‘ﬂﬁiy;l TiYi wzy;ll yi,2gg;11 ‘a:ifly;JQ Yi—1T;

and (direct computation from Lemmas 44 and 47).
(i'ay )P = 2Py AP AT (AP aP g AP AT )PPy (g ey P (> 1),

21, —1\orx _ —1 gp1 A—Pp3+1l, =1 _—p2 gp1 _
(ctay] )%% = zmy ATV A3 yp x{ PATY (n=1).

The claim follows by comparing the formulas above with the corresponding formulas for
A; (Lemmas 44 - 47).

Now the claim 2 implies the lemma since in this case the decomposition (77) for the w®x
is of the form w?* = W, and w = wy, as required.

Case 2. w?x contains (E?%)2, where E is an elementary period. By the case 1) w has
a non-trivial decomposition of the form

w:wooAgllowlo...oA?:owk,

where ¢; > 2, and w; does not have squares of elementary periods. Consider the A,.-
decomposition of w where r = max{j,...,ji}:

w=DjoA% o... A% 0 Dgyq,

where D; does not contain a square of an elementary period. It follows from the case 1
that this decomposition is at least 3-large canonical stable A,-decomposition of w. Indeed,
if £y and Fy are two distinct elementary periods then Efd’K does not contain a cyclically
reduced part of E§¢K as a subword (see the formulas above). So in the canonical 3-stable
Az jc-decomposition of w?* the powers A4, come from the corresponding powers of A,.
By Lemma 62

b _ NPK *q1 *qs (35
w?® = DY oq Ayl 0a .. ARY, 0a DY,

is the canonical stable A%, j-decomposition of w?% that contains all the occurrences of
powers of A;f 4k in the decomposition (77). Now by induction on the maximal rank of
elementary periods which squares appear in the words D; we can finish the proof. O

Lemma 64. Let L =1K >0, 1 <r <K, A}, | = RloA, roR and d = |R|. Then
the following holds for every w € Wr r:
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(1) Suppose there is a decomposition

w =1dos (A} k) o5 D,
where s > 5 and and the cancellation between U and A} (resp., between A} - and
0) is not more than f which is the maximum of the corresponding d and length of the
part of Ay, - before the first stable occurrence of an elementary power (resp., after the
last stable occurrence of an elementary power). Then

w=uoAlov, u’* =a, v’% =47

(2) Let R } .
Wwer :Dlod(A*L.H-)ql OdDQOd"'Od(Az_,_,.)qk og Dyy1

be a (1,d)-stable 3-large Aj ,,.-decomposition of WeL. Then W has a stable A,-
decomposition
W:Dl OAL;],1 O_DQ-“OA.Z"C ODkJrl

where DfL = D;.

Proof. (1) If A, is an elementary period, the statement follows from Lemms 63. Other-
wise represent A, as A, = A?i owy o A?j o ws, where Agj and A?i are the first and the last
maximal elementary powers (each A; begins with an elementary power).

Then
q2 QZ

® Pr\s—1 q é [ -
(oF] le Oq AJ2+K Oq ’LU2K)S OdA,;+K Oq ’le (o)) A32+K Oq sz Of V.

w¢K:ﬂOd(Aq1 ‘

Ji+K

Since ¢ is a monomorphism, by Lemma 63 we obtain
_ q1 q2 s—1 q1 q2
w=wuo (A} owy o AP ows)* " o Ajl 0wy o AT o wov,

where u?% = @, v®% = 0. We will show that wov = wy o v. Indeed, wy is either cli >3,
or yi,lel, or y;. If there is a cancellation between w and v, then v must respectively
begin either with ¢; **, or z; or y; ! and the image of this letter when ¢ is applied to v
must be almost completely cancelled. It follows from Lemma 53 that this does not happen.
Therefore w = uw o A% o v, and (1) is proved.

(2) For L = K statement (1) implies statement (2). We now use induction on [ to prove
(2)

Suppose
w? =G oy Ar p0q0. (78)

*
Represent A7, ;- as , ,
* — 1 2
Arp g = wo o A owy 0 AjZ 0w,

where A7' and Aj? are the first and the last maximal occurrences of elementary powers.
Then

~ PL-K $1PL—K dL—K S29L—K _K\s—1
wfr = UwW, (oF] (Ail 04 Wy o4 Al,2 o4 (w2w0)¢L K) o4

$19L—K LK S2Pr—K L K >
A 0q Wy og A;; og (ws) .
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By the assumption of induction
~ s s s—1 s s 2
w?% = quwg o (A7 0wy 0 A7? o (wawp))* ™" o AF 0wy o A7 o (wad),
where 4%2-% = @, 9%L-% = . Therefore
WP =qop A op D
- fAr+K Of V.

By statement (1), w = u o A% o v, where u?%x = 4, v?% = 9. Therefore (78) implies that
w = uo AS ov, where u®t = @, v?t = 9. This implies (2) for L. O

Corollary 10. (1) Let m # 0,n # 0,K = K(m,n),p = (p1,...,pK) be a 3-large
tuple, L = Kl. Then for any u € Y U E(m,n) the element My, ., contains A;I» for
some j > L — K and g > p; — 3.

(2) For any x € X if rank(z®) = j then every occurrence of A? in x®t occurs inside
some occurrence of A;V*?’.

Proof. (1) follows from the formulas for M,, with respect to ¢ in Lemma 53 and Lemma
62. (]

Corollary 11. Letu,v € Wr 1. If the canceled subword in the product u?Kv®x does not
contain Aé- for some j < K and | € Z then the canceled subword in the product u®x+ry®x+r

: !
does not contain the subword AL+j.

Lemma 65. Suppose p is an (N + 3)-large tuple, ¢; = ¢jp. Let L be a multiple of K.
Then:

(1) (a) :E?’ has a canonical N-large A%-decomposition of size (N,2) if either j = m +
4(i—1)(mod K), or j = m+4i—2(mod K), or j = m+4i(mod K). In all other
cases rank(z?) < j.
(b) yfj has a canonical N-large A%-decomposition of size (N,2) if either j = m +
4(i — 1)(mod K), or j = m+4i — 3(mod K), or j = m +4i — 1(mod K), or

j=m+4i (mod K). In all other cases rank(y?j) <j.

(c) sz has a canonical N-large A}-decomposition of size (N,2) if j =i (mod K)
and either 1 <i<m—1 ori=m and n # 0. In all other cases rcmk:(z?j) <j.

(d) if n = 0 then 2% has a canonical N-large A%-decomposition of size (N,2) if
j=m—1 (mod K). In all other cases rank(zf;") <j.

(2) Ifj=r+L,0<r <K, (w...wy) € Subp(XE1K7r+1) then either (wy ... wg)% =
w1 ... W) or (wy...wg)% has a canonica -large A% -decomposition. In an
¢ ) ical N-large Aj-d it I Yy

case, (wy ... wy)% has a canonical N -large A’ -decomposition in some rank s, j — K +
1<s<g.

Proof. (1) Consider yd)“’”*‘“ :

%

Primtai _ ( oL *¢L+m+4i—1)q471x¢L

OL+m+4i—1_,—PL\q
Y; Tit1Y; i+1(yi Tit1 )

Y
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. * _  Prtm4ai-1, —PLtm4ai—1
In this case A" (Arimiai) = T4, : .

To write a formula for 20"+ denote §;_1 = y?* "%, &; = 2", 3 = y?*. Then
PL+m—+4i = —PLtm+ai—1\qq—1 =
zp T = Ty )BT R0
= ~—1\q0=91 5 \q2—1(= ~—1\qo-01+1 - \—gs+1-—1-—q1/~ ~—1\gq
((@g;—) Pz g) 2 (2, 2y) ™2 5) 2y 2, " (G2 )™,
brii

Similarly we consider z;
(2) If in a word (w; ...wy)?% all the powers of A?j are cancelled (they can only cancel
completely and the process of cancellations does not depend on p) then if we consider an
A%-decomposition of (wy ... wg)?%, all the powers of A% are also completely cancelled. By
construction of the automorphisms 7;, this implies that (w; ... wy)Y %=1 = (wy ... wg)%-1.
O

7.2 Generic Solutions of Orientable Quadratic Equations

Let G be a finitely generated fully residually free group and S = 1 a standard quadratic
orientable equation over GG which has a solution in G. In this section we effectively construct
discriminating sets of solutions of S = 1 in G. The main tool in this construction is an
embedding

A GR(S) — G(U, T)

of the coordinate group Gr(s) into a group G(U,T') which is obtained from G by finitely
many extensions of centralizers. There is a nice set Zp (see Section 2.5) of discriminating
G-homomorphisms from G(U,T) onto G. The restrictions of homomorphisms from Zp onto
the image G;‘%(S) of Gp(sy in G(U,T') give a discriminating set of G-homomorphisms from
G)}\z(s) into G, i.e., solutions of S =1 in G. This idea was introduced in [20] to describe the
radicals of quadratic equations.

It has been shown in [20] that the coordinate groups of non-regular standard quadratic
equations S = 1 over G are already extensions of centralizers of G, so in this case we can
immediately put G(U,T) = Gp(s) and the result follows. Hence we can assume from the
beginning that S = 1 is regular.

Notice, that all regular quadratic equations have solutions in general position, except for
the equation [z1, y1][z2,y2] = 1 (see Section 2.7).

For the equation [z1,y1][z2,y2] = 1 we do the following trick. In this case we view the
coordinate group G g(s) as the coordinate group of the equation [z1,y1] = [y2, z2] over the
group of constants G x F(x3,y2). So the commutator [ys, 2] = d is a non-trivial constant
and the new equation is of the form [z,y] = d, where all solutions are in general position.
Therefore, we can assume that S = 1 is one of the following types (below d, ¢; are nontrivial

elements from G):

[Mlzmvl =1, n>3 (79)
i=1
H[wl,yz} Hz;lcizid =1, n>1,m>0; (80)
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K2

Hz-_lcizid =1, m>2, (81)
i=1
and it has a solution in G in general position.
Observe, that since S = 1 is regular then Nullstellenzats holds for S = 1, so R(S) =
ncl(S) and G sy = G[X]/ncl(S) = Gs.
For a group H and an element v € H by H(u,t) we denote the extension of the centralizer
Cr(u) of u:
H(u,t) = (H,t |t ‘ot =2 (x € Cgx(u))).

If
G = G1 S Gl(ul,tl) = G2 S S Gn(un,tn) = Gn+1

is a chain of extensions of centralizers of elements u; € G;, then we denote the resulting
group Gp41 by G(U,T), where U = {uy,...,u,} and T = {t1,...,tp}.
Let 3 : Gr(s)y — G be a solution of the equation S(X) = 1 in the group G such that

B

B8 _ B8 _ _
x; = aq,y; = b,z =e;.

Then

m n

d= He;lciei H[az,bz]

i=1 i=1
Hence we can rewrite the equation S = 1 in the following form (for appropriate m and n):

m n m n

[T ez [ leswi) = TT e tered ] Tlas b =

=1 i=1 i=1 =1

Proposition 4. Let S = 1 be a reqular quadratic equation (82) and B : Grsy — G a
solution of S =1 in G in a general position. Then one can effectively construct a sequence
of extensions of centralizers

G = G1 S Gl(ul,tl) = G2 S S Gn(un,tn) = G(U7T)
and a G-homomorphism A\g : Grsy — G(U,T).

Proof. By induction we define a sequence of extensions of centralizers and a sequence of
group homomorphisms in the following way.

Case: m # 0,n = 0. In this event for each i = 1,...,m — 1 we define by induction a
pair (0;, H;), consisting of a group H; and a G-homomorphism 6, : G[X]| — H,.

Before we will go into formalities let us explain the idea that lies behind this. If z; —
€1,...,%m — €, is a solution of an equation

siterz .z e, = d, (83)
then transformations

e; — Bi(CfiCﬁT)q’ €i+1 — 6¢+1(Cficfﬂl)qa €j — € (j #i,i+1), (84)
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produce a new solution of the equation (83) for an arbitrary integer ¢g. This solution is com-
position of the automorphism ~; and the solution e. To avoid collapses under cancellation
of the periods (c§c;i}")? (which is an important part of the construction of the discrimi-
nating set of homomorphisms Zp in Section 2.5) one might want to have number ¢ as big
as possible, the best way would be to have ¢ = co. Since there are no infinite powers in
G, to realize this idea one should go outside the group G into a bigger group, for example,
into an ultrapower G’ of G, in which a non-standard power, say t, of the element cfc:ff
exists. It is not hard to see that the subgroup (G,t) < G’ is an extension of the centralizer
Cal(cieiy!) of the element ¢'c;t' in G. Moreover, in the group (G, t) the transformation
(84) can be described as

ei — eit, eip1 — eipt, ej —e; (jF1,i4+1), (85)

Now, we are going to construct formally the subgroup (G,t) and the corresponding homo-
morphism using (85).

Let H be an arbitrary group and g : Gg — H a homomorphism. Composition of the
canonical projection G[X] — Gg and f gives a homomorphism 5y : G[X] — H. For i =0
put

Ho=H, 6y=70

Suppose now, that a group H; and a homomorphism 6; : G[X]| — H; are already defined.
In this event we define H; ;1 and 6,11 as follows

0; i
— Fit1 Fit2 —
Hip1 =< Hi,riq1|[Cr, (¢4 ¢45), riga] = 1>,
Oiv1  _0; Oiy1  _0; Oir1 _ _0; . . .
it1 = ZipaTiHl, Zido = ZihoTivl, Z; 0 =z, (j#i+1,i+2).

By induction we constructed a series of extensions of centralizers

z

G=Ho<H <..<Hp_1=Hy,_(G)

and a homomorphism
Gm,l’ﬁ = Gm,l : G[X] — mfl(G).

Observe, that,
0; 6,
241 Zito | eiyiTi e
Cit1 Ciy2 = Gip1 Cigo
so the element ;41 extends the centralizer of the element ¢;{}'" cfi,. In particular, the

following equality holds in the group H,,—1(G) for each i =0,...,m — 1:

[riva, iy eiia] = 1. (86)
(where ro = 1). Observe also, that
Om—1 _ Om—1 __ . . Om—1 _ ;
zq =e1r, % =e;ri—1Ti, 2yt =emrm-_1 (0 <i<m). (87)

From (86) and (87) it readily follows that

m m
(H 27 teizi)fm1 = He;lcl-ei, (88)
i=1 i=1
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50 0,,—1 gives rise to a homomorphism (which we again denote by 6,,—1 or 63)
Om-1:Gs — Hp—1(G).

Now we iterate the construction one more time replacing H by H,,—1(G) and 8 by 6,,_1
and put:
Hp(G) = Hy1(Hp-1(G)),  Ag=0p,,_, : Gs — Hp(G).

The group Hg(G) is union of a chain of extensions of centralizers which starts at the group
H.
If H = G then all the homomorphisms above are G-homomorphisms. Now we can write

Hy(G) = G(U,T)
where U = {ul, ey U —1, ULy - v - 777/771—1}7 T = {7"1, ey Tm—1,T1, -« ,fm_l} and u;,7; are
the corresponding elements when we iterate the construction:

. _ Eit1Ti €542 . € 1TiTi41Ty 42T i1 Ti42
Wit1 = Ciypq1 Cigo s Wikl = Cjqg i+2

Case: m = 0,n > 0. In this case S = [z1,y1]...[Zn,yn]d 1. Similar to the case above
we start with the principal automorphisms. They consist of two Dehn’s twists:
r—yPr, y—y; (89)
z—x, y— zly; (90)
which fix the commutator [z,y], and the third transformation which ties two consequent
commutators [z;, y;][Tit1, Yit1):

zi — (Wiri) 2y — (iry) (i)Y (91)

Tit1 — (yix;,-ll)_qxi+l(yix;+11)q» Yit1 — (Z/iwf_:1)_qyi+1~
Now we define by induction on 4, for i = 0,...,4n — 1, pairs (G;, «;) of groups G; and
G-homomorphisms «; : G[X] — G;. Put

G():G, Oz():ﬁ.

For each commutator [x;,y;] in S = 1 we perform consequently three Dehn’s twists (90),
(89), (90) (more precisely, their analogs for an extension of a centralizer) and an analog of
the connecting transformation (91) provided the next commutator exists. Namely, suppose
G4; and ay; have been already defined. Then

Gaiv1 =< Guistaip1|[Cay, (2357), taiyr] = 1>

Q4i+1 Qg oy Q4
Yip1 = taipryfy, so0 =™ (s # Yiv1)-

Gyiyo =< G4i+1,t4i+2‘[CG4i+1(y?ﬁ§+1)at4i+2] =12>;

Qaite _ 4 Qagit1 Qaite _ Q4it1 .
Ty =taipoxgy , ST =Tt (87&$z+17

Q4442

Gaits =< Gait2,t4i13|[Cau 5 (T,477), taips] = 1 >
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Q4543 . Q4i42 Q443 — O4i42 . .
Yir1 =laitsYiyy » s P =s w2 (s # Yiv1);

Qq; — Qg4
Gaita =< Guits, taira|[Cay s (i1 T ) taiga] = 1 >3

Qgi4a t—l Q4343 Qgi44 Qgit3taita Q4i44 Qqiy3taita
i+l = YaipaTipr HY¥i1 = Yip 1 LTiva = Tiyo )
Qgi44 _ 4—1 Q443 Q4itd _ 0443 ) ) ) )
Yire = lyiyaYiys > 8 =S (8 # Tig1, Yit1, Tit2, Yit2)-

Thus we have defined groups G; and mappings «; for all i = 0,...4n — 1. As above, the
straightforward verification shows that the mapping ay4,_1 gives rise to a G-homomorphism
Qgn_1 : Gg — Gupn_1. We repeat now the above construction once more time with Gy,_1
in the place of Gy, aun—1 in the place of 3, and ¢; in the place of ¢;. We denote the
corresponding groups and homomorphisms by G; and &; : Gg — G.
Put
GU,T)=Gan-1, Ag=0un—1,

By induction we have constructed a G-homomorphism
)\g : GS — G(U, T).

Case: m > 0,n > 0. In this case we combine the two previous cases together. To this
end we take the group H,,_1 and the homomorphism 6,, 1 : G[X] — H,,_1 constructed in
the first case and put them as the input for the construction in the second case. Namely,
put

0 mn
Go =< Hp—1,mn|[CH,,_, (cZ* ] ), ] =1 >,
and define the homomorphism «g as follows

o

Zm

= 0mp a0 =@l 20 = lhy, s = 91 (s € X, 5 # zZm, 21, Y1)
Now we apply the construction from the second case. Thus we have defined groups G; and
mappings «; : G[X] — G; for alli =0,...,4n—1. As above, the straightforward verification
shows that the mapping ay,—1 gives rise to a G-homomorphism ayy,—1 : Gg — Gap—1-
We repeat now the above construction once more time with Gy, _1 in place of Gg and
aun—1 in place of 3. This results in a group Gan—1 and a homomorphism @4n_1 : Gg —
G4n71~
Put
GU,T) = Gan—1, Ag=0un_1.

We have constructed a G-homomorphism
/\5 : GS — G(U, T).

We proved the proposition for all three types of equations (79), (80), (81), as required.
O

Proposition 5. Let S = 1 be a regular quadratic equation (2) and 3 : Grsy — G a
solution of S =1 in G in a general position. Then the homomorphism Ag : Gr(gy — G(U,T)
s a monomorphism.
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Proof. In the proof of this proposition we use induction on the atomic rank of the
equation in the same way as in the proof of Theorem 1 in [20].

Since all the intermediate groups are also fully residually free by induction it suffices to
prove the following:

1. n =1, m = 0; prove that ¥ = a3 is an embedding of Gg into G3.

2. n=2,m = 0; prove that ¥ = a4 is a monomorphism on H =< G, x1,y1 > .

3. n=1,m = 1; prove that ¥ = azag is a monomorphism on H =< G, 21 > .

4. n =0, m > 3; prove that 0205 is an embedding of Gg into H,.

Now we consider all these cases one by one.

Case 1. Choose an arbitrary nontrivial element h € Gg. It can be written in the form

h=gq Ul(fl?l,yl) g2 02(171,111) gs. --'Un(xlyyl) In+1,

where 1 # v;(z1,y1) € F(x1,y1) are words in x1, y1, not belonging to the subgroup ([z1, 11]),
and 1 # ¢; € G,g; €< [a,b] > (with the exception of g1 and g,1, they could be trivial).
Then

hw = g1 U1 (tgtla, tgb) g ’Ug(tgtla, th) gs... ’l}n(tgtla, tzb) In+1- (92)

The group G(U, T) is obtained from G by three HNN-extensions (extensions of centralizers),
so every element in G(U,T) can be rewritten to its reduced form by making finitely many
pinches. Tt is easy to see that the leftmost occurrence of either ¢3 or ¢; in the product (92)
occurs in the reduced form of A¥ uncancelled.

Case 2. z1 — t;thal, Yy — t;1t3t161t4, Ty — t21a2t4, Yg — t;lbg. Choose an arbitrary
nontrivial element h € H = G * F(x1,y1). It can be written in the form

h = g1 vi(z1,91) g2 v2(T1,91) 93 - - Vn(Z1,Y1) Gnt1s

where 1 # v;(z1,y1) € F(x1,y1) are words in x1,y1, and 1 # g; € G. (with the exception of
g1 and g,41, they could be trivial). Then

hY = g1 vi(t] "taa, (t3t10)™) ga va(ty 'taa, (tst10)™) gs...va(t] Htaa, (t3t10)™) gnir. (93)

The group G(U,T) is obtained from G by four HNN-extensions (extensions of centralizers),
so every element in G(U,T) can be rewritten to its reduced form by making finitely many
pinches. Tt is easy to see that the leftmost occurrence of either ¢4 or ¢; in the product (93)
occurs in the reduced form of A¥ uncancelled.

Case 3. We have an equation c*[z,y] = cla,b], 2 — 2rify, * — (t2a™)™, y —
7 tatyr b, and [ry,ca™t] = 1, [, (¢ta" "5 )] = 1. Here we can always suppose, that
[e,a] # 1, by changing a solution, hence [r1, 7] # 1. The proof for this case is a repetition
of the proof of Proposition 11 in [20]. O

Case 4. We will consider the case when m = 3; the general case can be considered
similarly. We have an equation ¢i'c5%¢5* = cicacs, and can suppose [¢;, ¢it1] # 1.

We will prove that ¢ = 656 is an embedding. The images of z1, 22, 23 under 626, are
the following:

Z] — C1T1T1, 22 — CoT1TaTy, 23 — C3T2,

where

ri,cice] =1, [ra,chles] =1, [Py, citey' ] =1
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Let w be a reduced word in G * F(z;,i = 1,2,3), which does not have subwords ¢;*.
We will prove that if w¥ = 1 in Hi, then w € N, where N is the normal closure of
the element ¢}'c3?cZ%c3 ey eyt We use induction on the number of occurrences of 2! in
w. The induction basis is obvious, because homomorphism ) is injective on the subgroup
< Fiz9,23 > .

Notice, that the homomorphism 1) is also injective on the subgroup K =< 2125 Vg, F >

Consider H; as an HNN-extension by letter #1. Suppose w¥ = 1 in H;. Letter 7; can
disappear in two cases: 1) w € KN, 2) there is a pinch between 7, ' and 7; (or between 7;
and 7, ') in w¥. This pinch corresponds to some element zf%uzb (or z10u(z] 5) "), where
21,2, Zi’z S {21, Zz}.

In the first case w?¥ # 1, because w € K and w € N.

In the second case, if the pinch happens in (z12u(2] 5)")¥, then 21 2u(z] )t € KN,
therefore it has to be at least one pinch that corresponds to (2 %uz’l,g)w. We can suppose,
up to a cyclic shift of w, that zf% is the first letter, w does not end with some z{”Q, and w
cannot be represented as z;%uz’ljzvl 21 ov2, such that 27 ,u; € KN. A pinch can only happen
if zf;uziz €< ci'cy® >. Therefore, either 21 2 = 21, or 2] 5 = 21, and one can replace c*
by cicacse; ey *2, therefore replace w by w; such that w = wws, where w is in the normal
closure of the element ¢;'c32ci*c; 'ey 'ert, and apply induction. O

The embedding A\g : Gs — G(U,T) allows one to construct effectively discriminating
sets of solutions in G of the equation S = 1. Indeed, by the construction above the group
G(U,T) is union of the following chain of length 2K = 2K (m, n) of extension of centralizers:

G=Hy<Hy..<H, 1<G <G <L...<Gyp_1=

=Hy<H <..<Hp 1=G<...<Gun1=GUT).

Now, every 2K-tuple p € N2K determines a G-homomorphism
& GUT) — G.

Namely, if Z; is the i-th term of the chain above then Z; is an extension of the centralizer
of some element g; € Z;_; by a stable letter ¢;. The G-homomorphism &, is defined as
composition

fp:d)lo...ow[{

of homomorphisms v; : Z; — Z;_1 which are identical on Z;_; and such that t?i =g,
where p; is the i-th component of p.

It follows (see Section 2.5) that for every unbounded set of tuples P C N2X the set of
homomorphisms

Ep={&{pe P}
G-discriminates G(U,T') into G. Therefore, (since g is monic), the family of G-homomorphisms

Epp = {)\,ng | gp € EP}

(G-discriminates Gg into G.
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One can give another description of the set Ep 3 in terms of the basic automorphisms
from the basic sequence I'. Observe first that

Agép = P2k,

therefore
Epg ={d2xpB| p € P}

‘We summarize the discussion above as follows.

Theorem 10. Let G be a finitely generated fully residually free group, S =1 a regular
standard quadratic orientable equation, and I' its basic sequence of automorphisms. Then
for any solution B : Gg — G in general position, any positive integer J > 2, and any
unbounded set P C N7K the set of G-homomorphisms Zp g G-discriminates GRrs) into G.
Moreover, for any fived tuple p' € N the family

Epgyp = {1tk 0 |0 €Epg}
G-discriminates Gp(s) into G.

For tuples f = (f1,..., fx) and ¢ = (g1, .- ., gm) denote the tuple

fg:(fl?"'afk?.glu"wgm)‘

Similarly, for a set of tuples P put

fPg={fpg|pe P}

Corollary 12. Let G be a finitely generated fully residually free group, S =1 a regular
standard quadratic orientable equation, I' the basic sequence of automorphisms of S, and
B:Gg — G a solution of S =1 in general position. Suppose P C N?K s unbounded set,
and f € NEs g € NE" for some r,s € N. Then there exists a number N such that if f is
N-large and s > 2 then the family

Ppp.rg = {PK(r+s+2).45 [ 4 € fPg}
G-discriminates G(s) into G.

Proof. By Theorem 10 it suffices to show that if f is N-large for some IV then 3y = ¢ox, ;8
is a solution of S = 1 in general position, i.e., the images of some particular finitely many
non-commuting elements from G sy do not commute in G. It has been shown above that
the set of solutions {¢ax n3 | h € N?£} is a discriminating set for GR(s)- Moreover, for
any finite set M of non-trivial elements from Gr(g) there exists a number N such that for
any N-large tuple h € N2X the solution ¢ox 53 discriminates all elements from M into G.
Hence the result. O
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7.3 Small cancellation solutions of standard orientable equations

Let S(X) = 1 be a standard regular orientable quadratic equation over F' written in the
form (82):

m n

11z e [Tl vl =

=1 i=1 %

n

61»_101'61' H[ai, bl]

=1

= 1

In this section we construct solutions in F' of S(X
conditions.

= 1 which satisfy some small cancellation

Definition 36. Let S =1 be a standard regular orientable quadratic equation written in
the form (82). We say that a solution 3 : Fs — F of S =1 satisfies the small cancellation
condition (1/X) with respect to the set Wr (resp. Wr 1) if the following conditions are
satisfied:

1) B is in general position;

2) for any 2-letter word wv € Wr (resp. uv € Wr.1,)(in the alphabet Y') cancellation in
the word uPv® does not exceed (1/\) min{|uP|, |vP|} (we assume here and below that
uB,vP are given by their reduced forms in F);

3) cancellation in a word uPvP does not exceed (1/X) min{|u?|, [v°|} provided u,v satisfy
one of the conditions below:
a’) U= 20V = (Zi_—llci_—llzi—l)7
b) u=cv =2z,

) u=v=c,
(we assume here that u®,v® are given by their reduced forms in I ).

Notation: For a homomorphism g : F[X] — F by Cs we denote the set of all elements
that cancel in u”v? where u,v are as in 2), 3) from Definition 36 and the word that cancels
in the product (¢3*)8 - (dc, ™~ ")P.

Lemma 66. Let u,v be cyclically reduced elements of G« H such that |ul, |v| > 2. If for
some m,n > 1 elements u™ and v™ have a common initial segment of length |u| + |v|, then
u and v are both powers of the same element w € G x H. In particular, if both u and v are
not proper powers then u = v.

Proof. The same argument as in the case of free groups.

Corollary 13. If u,v € F, [u,v] # 1, then for any A > 0 there exist mo,ng such that
for any m > mo,n > ng cancellation between u™ and v™ is less than ymaz{|u™],[v"[}.

Lemma 67. Let S(X) =1 be a standard regular orientable quadratic equation written
in the form (82):
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where all ¢; are cyclically reduced. Then there exists a solution 3 of this equation that satisfies

the small cancellation condition with respect to Wr 1. Moreover, for any word w € Wr L

that does not contain elementary squares, the word wﬁ does not contain a cyclically reduced
23 .

part of A" for any elementary period A;.

Proof. We will begin with a solution
Br:xi — ai,yi — bi,zi — e

of S = 1 in F in general position. We will show that for any A € N there are positive
integers m;, n;, k;,q; and a tuple p = (p1,...pmn) such that the map 5 : F[X] — F defined
by

xf _ (E;lel)[dl,gl]’"l’ y,lﬁ’ _ ((5?161)&61)[&1,51]’"17 where a; = xfmﬁl bl _ y¢m51
B _ (b?iai)[aiybi]mi7 ylﬁ _ ((b?iai)k}ibi)[ai,bi]mi’ i=2.. . .m,

2 =l 2]

B ¢m31 i=1,...m,

is a solution of S = 1 satisfying the small cancellation condition (1/)) with respect to Wr.
Moreover, we will show that one can choose the solution (1 such that ( satisfies the small
cancellation condition with respect to Wr .
The solution 37 is in general position, therefore the neighboring items in the sequence
ety e far, bl .. [an, byl

7m7

do not commute. We have [¢f*, ¢;3'] # 1.

There is a homomorphism 6g, : Fg¢ — F = F(U,T) into the group F obtained from
F by a series of extensions of centralizers, such that 8 = 63,1, where ¥, : F — F. This
homomorphism g, is a monomorphism on F * F(z1,. .., 2y, ) (this follows from the proof of
Theorem 4 in [20], where the same sequence of extensions of centralizers is constructed).

The set of solutions 1, for different tuples p and numbers m;, n;, ki, g; is a discriminating
family for F. We just have to show that the small cancellation condition for /3 is equivalent
to a finite number of inequalities in the group F.

We have zi = ¢! z‘bmﬁl such that (1(z;) = e;, and p = (p1,...,pm) is a large tuple.
Denote A; = Agl, j=1,...,m. Then it follows from Lemma 44 that
iﬁ clitle AV Z_fprl ,wherei=2,...,m—1
2y = e AP gt Al

zZ

where

__ .f1 .62 A _ A __  A—DP1_.e2 gAP1 €3 A Pz 1 _e; APi— 1 €1+1 .
Ay = ' c?, Ay = Ai(pr) = ATP R AT P, Ay = AT AV el i =

p'mlmpml—l
— 1, A = A Pmoteem AP g

One can choose p such that [A;, A 1] # 1, [Ai_1, ¢ N ] # 1 [Ai—1, ¢f'] # Land [Ay,, [aq, b1]] #
1, because their pre-images do not commute in F. We need the second and third inequality

5.
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here to make sure that A; does not end with a power of A;_;. Alternatively, one can prove
by induction on 7 that p can be chosen to satisfy these inequalities.

13 48
1 .

B B 8
Z; Z; . . .
Then c;* and ¢; ++11 have small cancellation, and com has small cancellation with YL

Let _ _
2 = (piay)@nbd™ B = (briag) kb lentd™ =2 n

for some positive integers m;, n;, ki, s; which values we will specify in a due course. Let
uv € Wr. There are several cases to consider.
1) wv = x;x;. Then

uPo? = (a) T ()

Observe that the cancellation between (b]“a;) and (b;“a;) is not more then |a;|. Hence the
cancellation in ©?v? is not more then |[a;, b;]™| + |a;|. We chose n; >> m; such that

i, ba)™ | + las| < (1/2)|(B} az)lebd™

which is obviously possible. Similar arguments prove the cases uv = z;y; and uv = y;x;.

2) In all other cases the cancellation in u’v® does not exceed the cancellation be-
tween [a;, b;]™ and [a;41,b;41]™+", hence by Lemma 66 it is not greater than |[a;, b;]| +
@1, biga]]-

B
—Z_ . . - " T—1i_
Let u = zf,v = ¢, ; '. The cancellation is the same as between A5?" and A; "/~ and,

therefore, small.

Since ¢; is cyclically reduced, there is no cancellation between ¢; and zlﬁ .

The first statement of the lemma is proved.

We now will prove the second statement of the lemma. We have to show that if u = ¢;* or
u= x;l and v = ¢}, then the cancellation between u? and v is less than (1/\)min{|ul, |v|}.
We can choose the initial solution ey, ..., €, a1,b1,...,an, b, so that [cf*c5?, ¢35 ... '] # 1
(i>3), [, [as, bi]] # 1, (i =2,...,n) and [c{"c5?, by Fay *b1] # 1. Indeed, the equations
[(ites?,cs® ... cf'l =1, [cf' e, [z, )] = 1,(t = 2,...,n) and (3 e3?, yy oy tyr] = 1 are not
consequences of the equation S = 1, and, therefore, there is a solution of S(X) = 1 which
does not satisfy any of thjese equations.

s B
To show that u = cz" and v = c’il, have small cancellation, we have to show that p

can be chosen so that [A;, A;] # 1 (which is obvious, because the pre-images in GG do not

commute), and that A;l does not begin with a power of A;. The period A;l has form

(et ... c3™ATP? ). Tt begins with a power of Ay if and only if [A1,c§* ... ¢f'] =1, but

this equality does not hold.

-8

s
z .
;7 and v = ¢;' is small. U

Similarly one can show, that the cancellation between u = x

Lemma 68. Let S(X) =1 be a standard regular orientable quadratic equation of the
type (81)

m

—1 __ el em __
Hzi cizi =ci' ... =d,
i=1

where all ¢; are cyclically reduced, and

Bi:zi — e
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a solution of S =1 in F in general position. Then for any A\ € N there is a positive integer
s and a tuple p = (p1,...pK) such that the map B : F[X] — F defined by

B _ 4 9P gs
zy = ¢z, "7d?,

is a solution of S =1 satisfying the small cancellation condition (1/X) with respect to WF’L
with one exception when w = d and v = ¢, """ (in this case d cancels out in v°). Notice,
however, that such word uv occurs only in the product wuv with w = ¢3?, in which case
cancellation between w” and dv” is less than min{|w?|, |dv?|}. Moreover, for any word w €
Wr.L that does not contain elementary squares, the word wP does not contain a cyclically

reduced part of A?’g for any elementary period A;.

Proof. Solution ( is chosen the same way as in the previous lemma (except for the
multiplication by d®) on the elements z;, ¢ # m. We do not take s very large, we just
s

need it to avoid cancellation between 25 and d. Therefore the cancellation between c;* and

+2° . ) .. _
cif{“ is small for i < m — 1. Similarly, for u = ¢3*, v=d, w =¢, """, we can make the
cancellation between ©® and dw” less than min{|u”|, |dw®|}. O

Lemma 69. Let U,V € Wr 1, such that UV =UoV and UV € Wr .

1. Let n # 0. If u is the last letter of U and v is the first letter of V' then cancellation
between UP and VP is equal to the cancellation between u® and v°.

2. Let n = 0. If uyus are the last two letters of U and vy,vs are the first two letters of
V then cancellation between UP and VP is equal to the cancellation between (UlUQ)ﬁ and

(1)1’[}2)’6.

Since § has the small cancellation property with respect to VVR L, this implies that the
cancellation in UPV? is equal to the cancellation in u%v”, which is equal to some element

in Cg. This proves the lemma. O
Let we Wr 1,¢; = ¢jp, W = w?, and A = Aj.

W =B1oA"o...0Bro A% o By, (94)

the canonical N-large A-representation of W for some positive integer N.
Since the occurrences A% above are stable we have

Bl = Bl O ASgn(ql), Bl = ASgn(qi_l) o Bi e} ASgn(qi) (2 S 7 S k), Bk+1 = Asgn(qk) o Bk-‘,—l-
Denote A? = c71A’c, where A’ is cyclically reduced, and ¢ € C. Then
BY = BOe (A ma)e, B — o) (Ao Bl (Ao (@), B o) (A 5P

By Lemma 69 we can assume that the cancellation in the words above is small, i.e., it does
not exceed a fixed number ¢ which is the maximum length of words from C3. To get an
N-large canonical A’-decomposition of W# one has to take into account stable occurrences
of A'. To this end, put g; = 0 if A”*"%) occurs in the reduced form of BZc=1(A’)s9m(a:)
as written (the cancellation does not touch it), and put ¢; = sgn(q;) otherwise. Similarly,
put 8 = 0 if A”*"9) oecurs in the reduced form of (A’)Sém(q’?)ch+1 as written, and put
0; = sgn(q;) otherwise.
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Now one can rewrite W# in the following form

Wo =B o(A)n™5 " o Byo (A)B752 % 0 o (A)B"5 "% 0 By, (95)

where By = (B¢ 1 (A))*Y), By = (A9 ¢eBYc Y (A2, Epyq = ((A’)‘S’CCBIEH).

Observe, that d; and ¢;,d; can be effectively computed from W and (. It follows that
one can effectively rewrite W# in the form (95) and the form is unique.

The decomposition (95) of W7 induces the corresponding A*-decomposition of W. This
can be shown by an argument similar to the one in Lemmas 63 and 64, where it has been
proven that Ay ;- decomposition induces the corresponding A,-decomposition. To see that
the argument works we need the last statement in Lemmas 67 (n > 0) and 68 (n = 0)
which ensure that the ”illegal” elementary squares do not occur because of the choice of the
solution (3.

If the canonical N-large A*-decomposition of W has the form:

D1(A*)" Dy ... Di(A*)?* Dy1q
then the induced one has the form:
W = (DlA*El)A"““*Elf‘s1 (A*‘SlDQA*€2) .. (A*‘S’“”DkA*E’C)A*qk*a’c —0k (A’“S’c Dg41). (96)

We call this decomposition the induced A*-decomposition of W with respect to 8 and
write it in the form:

W = Di(A")E D5 ... D{(A*)* Dy, |, (97)
where D} = (A*)(si’lDZ-(A*)Ei7 qf = q; — €; — 6;, and, for uniformity, ;1 = 0 and e441 = 0.

Lemma 70. For given positive integers j, N and a real number € > 0 there is a constant
C = C(j,e,N) > 0 such that if pt11 —p: > C for everyt = 1,...,5 — 1, and a word

W € Wr 1, has a canonical N-large A*-decomposition (97), then this decomposition satisfies
the following conditions:

(D)’ = Erog(cR?), (D)” = (R™cV)ogEiop(cR), (Djy1)” = (R P )ogEpya, (98)
where 6 < e|A’|. Moreover, this constant C' can be found effectively.

Proof. Applying homomorphism (3 to the reduced A*-decomposition of W (97) we can
see that

WP = ((D})°R%¢) (A)™ (¢RP(D3)PRPe™1) (AN ... (eRP(D})PRPe™1) (A (R (D))

Observe that this decomposition has the same powers of A’ as the canonical N-large A’-
decomposition (95). From the uniqueness of such decompositions we deduce that

E, = (D})’c'R™P, E;=cR*(D;)’R Pc™!, Eji1 =cR°(Dj,)"
Put 0 = |c| + |R®|. Rewriting the equalities above one can get

(D7) = E1og (cR%), (D;)? = (R Pc™")oq E; 09 (cR”), (DZH)ﬁ = (R Pc™) og By
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Indeed, in the decomposition (95) every occurrence (A’)%~:=% is stable hence E; starts
(ends) on A’. The rank of R is at most rank(A) — K + 2, and § has small cancellation.
Taking p; 1 >> p; we obtain g|A’| > |¢| + |RP|. O
Notice, that one can effectively write down the induced A*-decomposition of W with
respect to (.
We summarize the discussion above in the following statement.

Lemma 71. For given positive integers j, N there is a constant C' = C(j,N) such that
if pey1 —pr > C, for everyt =1,...,5—1, then for any W € Wr 1, the following conditions
are equivalent:

1. Decomposition (94) is the canonical (the canonical N-large) A-decomposition of W,
2. Decomposition (95) is the canonical (the canonical N-large) A’-decomposition of W8,

3. Decomposition (96) is the canonical (the canonical N-large) A*-decomposition of W.

7.4 Implicit Function Theorem for Quadratic Equations

In this section we prove Theorem 9 for orientable quadratic equations over a free group
F = F(A). Namely, we prove the following statement.

Let S(X, A) =1 be a reqular standard orientable quadratic equation over F. Then every
equation T(X,Y, A) = 1 compatible with S(X, A) = 1 admits an effective complete S-lift.

A special discriminating set of solutions £ and the corresponding cut equation
I1.

Below we continue to use notations from the previous sections. Fix a solution § of
S(X, A) = 1 which satisfies the cancellation condition (1/A) (with A > 10) with respect to

Wr.
Put

Recall that _

Pjp :'ij M =Ly
where j € N, I'; = (v1,...,7;) is the initial subsequence of length j of the sequence INCON
and p = (p1,...,p;) € N7. Denote by v;,, the following solution of S(X) = 1:

Vjp = ¢j7pﬂ'

Sometimes we omit p in ¢; ,,1;, and simply write ¢;, ;.
Below we continue to use notation:
A=A4j, A" =A5=A¢;) =R oAjoR;, d=d; = |Ry|.
Recall that R; has rank < j — K + 2 (Lemma 59). By A’ we denote the cyclically reduced
form of AP (hence of (4*)?). Recall that the set Cjg was defined right after Definition 36.
Let
®={¢;,|jeN,peN}
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For an arbitrary subset £ of ® denote
L8 ={¢p| <L}

Specifying step by step various subsets of ® we will eventually ensure a very particular
choice of a set of solutions of S(X)=1in F.

Let K = K(m,n) and J € N, J > 3, a sufficiently large positive integer which will be
specified precisely in due course. Put L = JK and define P; = N%,

Ly ={¢rp|p€ P}

By Theorem 10 the set L% is a discriminating set of solutions of S(X) =1 in F. In fact,
one can replace the set P; in the definition of £; by any unbounded subset P, C P;, so
that the new set is still discriminating. Now we construct by induction a very particular
unbounded subset Py C NE. Let a € N be a natural number and h : N x N — N a function.
Define a tuple

p@ =P
where . . o
P =a, P, =p\" +h(0,j).
Similarly, if a tuple p(¥ = (pgi), e ,p(Li)) is defined then put plith = (p(liﬂ), o ,p(LH_l)),
where

P =l +h(i+1,0), pE =0TV 4R+ 1),

This defines by induction an infinite set
Pan ={p" | i€ N} C N

such that any infinite subset of P, 5 is also unbounded.
From now on fix a recursive monotonically increasing with respect to both variables
function h (which will be specified in due course) and put

Po="Pan, Lo=A{érp|pcPa}

Proposition 6. Let r > 2 and K(r +2) < L then there exists a number ag such that if
a > ag and the function h satisfies the condition

h(i+1,5) > h(i,j) foranyj=Kr+1,....K(r+2),i=1,2,...; (99)
then for any infinite subset P C Py the set of solutions
Lp® ={¢r,8 |p € P}

is a discriminating set of solutions of S(X,A) = 1.

Proof. The result follows from Corollary 12. O

Let ¢ € L. Denote by U, the solution X% of the equation S(X) = 1 in F. Since
T(X,Y) =1 is compatible with S(X) =1 in F the equation T'(Uy,Y’) =1 (in variables Y)
has a solution in F, say Y = Vy;. Set

A={(Uy,Vy) | v € LS}
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It follows that every pair (Uy, Vy) € A gives a solution of the system
RX,V)=(S(X)=1 AN T(X,)Y)=1).

By Theorem 8 there exists a finite set CE(R) of cut equations which describes all solutions
of R(X,Y) = 1in F, therefore there exists a cut equation IIz, » € CE(R) and an infinite
subset L3 C Ly such that IIz, o describes all solutions of the type (Uy, Vi), where ¢ € L.
We state the precise formulation of this result in the following proposition which, as we have
mentioned already, follows from Theorem 8.

Proposition 7. Let Lo and A be as above. Then there exists an infinite subset Py C Po
and the corresponding set L3 = {¢rp | p € Ps} C Lo, a cut equation g, n = (€, fx, fu) €
CE(R), and a tuple of words Q(M) such that the following conditions hold:

1) fx(€) c X+

2) for everyy € Eg there exists a tuple of words Py, = Py (M) and a solution ay, : M — F
of Uz, A with respect to ¢ : F[X] — F such that:

e the solution Uy, = XV of S(X) =1 can be presented as Uy = Q(M®+) and the
word Q(M>¥) is reduced as written,
o Vy = P¢(Maw),
3) there exists a tuple of words P such that for any solution (any group solution) (3, a) of

Iz, A the pair (U, V), where U = Q(M®) and V = P(M®), is a solution of R(X,Y) =
1 F.

Put
P=Ps;, L=Ls, =1z, 4.
By Proposition 6 the set £7 is a discriminating set of solutions of S(X) =1 in F.
The initial cut equation II,.

Now fix a tuple p € P and the automorphism ¢ = ¢r, € L. Recall, that for every

j < L the automorphism ¢; is defined by ¢; :F?, where p; is the initial subsequence of p
of length j. Sometimes we use notation v = ¢3,¢; = ¢;0.

Starting with the cut equation II; we construct a cut equation Ily = (€, fg x, fmr)
which is obtained from II; by replacing the function fx : &€ — F[X] by a new function
fo.x : € — F[X], where fy x is the composition of fx and the automorphism ¢. In other
words, if an interval e € £ in II; has a label 2 € X*! then its label in Il is z?.

Notice, that II; and Il4 satisfy the following conditions:

a) ofx?0 = gfo.xB for every o € &;
b) the solution of I, with respect to ¢f is also a solution of II, with respect to 3;

c) any solution (any group solution) of II, with respect to § is a solution (a group
solution) of IT, with respect to ¢f.
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The cut equation II, has a very particular type. To deal with such cut equations we
need the following definitions.

Definition 37. Let Il = (€, fx, fm) be a cut equation. Then the number
length(I1) = max{|fap(0)| | 0 € E}
is called the length of II. We denote it by length(IT) or simply by Niy.

Notice, by construction, length(Ily) = length(Ily) for every ¢, ¢’ € L. Denote
N = length(ILy).

Definition 38. A cut equation II = (&, fx, fam) is called a T-cut equation in rank j
(rank(Il) = j) and size l if it satisfies the following conditions:

1) let Wy = fx (o) for o € € and N = (1+2)Nn. Then for every o € € W, € Wr 1, and
one of the following conditions holds:

1.1) W, has N-large rank j and its canonical N -large A;-decomposition has size (N, 2)
i.e., W, has the canonical N-large Aj-decomposition

W, = B oAglo...BkoAg’“oBk+1, (100)

with maz;(B;) <2 and ¢; > N;
1.2) W, has rank j and max;(W,) < 2;
1.3) Wy has rank < j.

Moreover, there exists at least one interval o € £ satisfying the condition 1.1).

2) there exists a solution o : F[M] — F of the cut equation II with respect to the homo-
morphism 3 : F[X] — F.

Lemma 72. Let | > 3. The cut equation Il is a I'-cut equation in rank L and size l,
provided
pr > (I +2)Nm, + 3.

Proof. By construction the labels of intervals from II, are precisely the words of the
type x%= and every such word appears as a label. Observe, that rcmk(m?“) < L for every
i,1 <i<n (Lemma 65, 1a). Similarly, rank(z?") < L for every i < n and rank(y®*) = L
(Lemma 65 1b). Also, rank(z?*) < L unless n = 0 and i = m, in the latter case 20%) = L
(Lemma 65 1c and 1d). Now consider the labels y¢% and z¢L) (in the case n = 0) of rank L.
Again, it has been shown in Lemma 65 1) that these labels have N-large Ay -decompositions
of size (N, 2), as required in 1.1) of the definition of a I'-cut equation of rank L and size [.

O

Agreement 1 on P. Fix an arbitrary integer [, [ > 5. We may assume, choosing the
constant a to satisfy the condition

a> (I+2)Nn, +3,
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that all tuples in the set P are [(I + 2) Ny, + 3]-large. Denote N = (I 4 2) N,
Now we introduce one technical restriction on the set P, its real meaning will be clarified
later.

Agreement 2 on P. Let r be an arbitrary fixed positive integer with Kr < L and ¢ be
a fixed tuple of length Kr which is an initial segment of some tuple from P. The choice of
r and ¢ will be clarified later. We may assume (suitably choosing the function h) that all
tuples from P have ¢ as their initial segment. Indeed, it suffices to define h(i,0) = 0 and
h(i,j) =h(i+1,j) foralli e Nand j=1,...,Kr.

Agreement 3 on P. Let r be the number from Agreement 2. By Proposition 6 there
exists a number aq such that for every infinite subset of P the corresponding set of solutions
is a discriminating set. We may assume that a > ag.

Transformation 7" of I'-cut equations.

Now we describe a transformation T* defined on I'-cut equations and their solutions,
namely, given a I'-cut equation IT and its solution « (relative to the fixed map 8 : F[X] — F
defined above) T* transforms II into a new I'-cut equation IT* = T*(II) and « into a solution
a* = T*(a) of T*(II) relative to 3.

Let IT = (&, fx, fu) be a T'-cut equation in rank j and size I. The cut equation

(1) = (&7, fx=s fare)
is defined as follows.

Definition of the set £*.
For o € £ we denote W, = fx(o). Put

Ejn ={0o €& | W, satisfies 1.1)}.

Then £ = &; v U E<j n where £ n is the complement of & y in £.
Now let o € &; y. Write the word W/ in its canonical A’ decomposition:

WP =E oA" oEyo---0Ey0A" 0 Ejyy (101)

where |¢;| > 1, E; # 1 for 2 < i < k.
Consider the partition
fu(o) =pa . pin
of 0. By the condition 2) of the definition of I'-cut equations for the solution 8 : F[X] — F

there exists a solution « : F[M] — F of the cut equation II relative to 5. Hence Wf =
fu(Me) and the element

S (M) = p§ .oy
is reduced as written. It follows that
Woﬁ =E0A" oFyo-- 0B o A" 0By 1 =pfo---opu (102)

A/:t(l+2)

We say that a variable p; is long if occurs in p¢ (i.e., p$ contains a stable

occurrence of A''), otherwise it is called short. Observe, that the definition of long (short)
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variables p € M does not depend on a choice of o, it depends only on the given homomor-
phism «. The graphical equalities (102) (when ¢ runs over &; y) allow one to effectively
recognize long and short variables in M. Moreover, since for every o € £ the length of
the word fas(o) is bounded by length(Il) = Ny and N = (I + 2)Ny, every word fus(o)
(o € 5j,N) contains long variables. Denote by Mgort, Miong the sets of short and long
variables in M. Thus, M = Mgnore U Miong is a non-trivial partition of M.

Now we define the following property P = Py, of occurrences of powers of A’ in W/:
a given stable occurrence A’? satisfies P if it occurs in pu® for some long variable u € Mjong
and ¢ > [. It is easy to see that P preserves correct overlappings. Consider the set of stable
occurrences Op which are maximal with respect to P. As we have mentioned already in
Section 7.1, occurrences from Op are pair-wise disjoint and this set is uniquely defined.
Moreover, W/ admits the unique A’-decomposition relative to the set Op:

Wf:Dlo(A’)‘hngo-uoDko(A’)q’“oDkJrl, (103)

where D; # 1 for i = 2,..., k. See Figure 13.

5 — 52 — 33 —, %
D, Dy D, D,
W a3 93
A )| A A ] A A |ay] A
u shot ANAM <— 11
W(E Viq 1 Vio MAN\vanabIeS Viq i Vio Vi

Figure 13: Decomposition (103)

Denote by k(o) the number of nontrivial elements among Dy, ..., Dgy1.
According to Lemma 71 the A’-decomposition 103 gives rise to the unique associated
A-decomposition of W, and hence the unique associated A*-decomposition of W, .
Now with a given o € £; x we associate a finite set of new intervals E, (of the equation
T ()):
Ey ={61,...,01)}

and put
g* — E<],N U U EU'
o€E; N
Definition of the set M*
Let pn € Mjong and
p* =wuypo (A ougo---ouso (AN oupyq (104)

be the canonical I-large A’-decomposition of u*. Notice that if u occurs in fas(o) (hence
p® occurs in W/2) then this decomposition (104) is precisely the A’-decomposition of u®
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induced on u® (as a subword of W/2) from the A’-decomposition (103) of W/ relative to
Op.

Denote by ¢(x) the number of non-trivial elements among uy,...,us+1 (clearly, u; # 1
for 2 <i<t).

We associate with each long variable p a sequence of new variables (in the equation
T*(I1)) S, = {v1,..., v }. Observe, since the decomposition (104) of u® is unique, the
set S, is well-defined (in particular, it does not depend on intervals o).

It is convenient to define here two functions viere and vrighe on the set Miong: if 1t € Miong
then

Viefe (1) = V1, Vright (1) = Vi(p)-
Now we define a new set of variable M* as follows:

M* = Myore U U S,.
HEMiong

Definition of the labelling function f%.

Put X* = X. We define the labelling function f%. : £* — F[X] as follows.
Let 0 € £*. If § € £ n, then put

fx(8) = fx(9).

Let now § = §; € E, for some o € & n. Then there are three cases to consider.

a) § corresponds to the consecutive occurrences of powers A’“~" and A’¥ in the A’-
decomposition (103) of W/ relative to Op. Here j =i or j =i — 1 with respect to whether
D1 =1lor D1 # 1.

As we have mentioned before, according to Lemma 71 the A’-decomposition (103) gives
rise to the unique associated A*-decomposition of W, :

W, = D oq (A*)% 04 D} o ---04 Dj 04 (A*)% o4 D . (105)
Now put
fx(6:;) = D; € F[X]

where j =i if Dy =1 and j =i —1if Dy # 1. See Figure 14.
The other two cases are treated similarly to case a).
b) § corresponds to the interval from the beginning of o to the first A’ power A’" in the
decomposition (103) of W2. Put
fx(8) = Dy.
c) § corresponds to the interval from the last occurrence of a power A’?" of A’ in the
decomposition (103) of W2 to the end of the interval. Put

fx(8) = Djps-

Definition of the function f},..

Now we define the function f*:&* — F[M*].



145

* = + € + 6
B GEETHT 5
%
3k k
q4j Tin
A* A*
WO_—
Op— decomposition
0.
1
D;
9 i+]
A A A A A A

“r

A*— decomposition

Figure 14: Defining f%..

Let 6 € £*. If § € £ n, then put
S (8) = e (6)

(observe that all variables in fs(9) are short, hence they belong to M*).

Let 0 = 9; € E, for some o € £; n. Again, there are three cases to consider.

a) ¢ corresponds to the consecutive occurrences of powers A’? and A’**™ in the A’-
decomposition (103) of W/ relative to Op. Let the stable occurrence A’?* occur in u for
a long variable p;, and the stable occurrence A’**! occur in p§ for a long variable p;.

Observe that

Dy = right(ps) o pityy © -+ - o pj_y o left(u;),

for some elements right(u;),left(p;) € F.
Now put
fare(0) = Virighttit1 - - - j—1Vj lefts
See Figure 15.
The other two cases are treated similarly to case a).
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o
4 qi+1
A (A A A Ay A
A Ca a v
Hi ! | dright 3 9 i1 uj—l : Jileft

Figure 15: Defining f3,., case a)

b) § corresponds to the interval from the beginning of o to the first A’ power A’" in the
decomposition (103) of W2. Put

f;\}*(fs) =M1 Hj—1Vjleft-

c) § corresponds to the interval from the last occurrence of a power A’?" of A’ in the
decomposition (103) of W2 to the end of the interval.

Denote II* = (E*, fx., fi<)-

Now we apply an auxiliary transformation 7" to the cut equation IT* as follows. The
resulting cut equation will be o

(1) = (&, fx, fm),

with the same sets X* and M*, and where fx-, fi+ are defined as follows. The transfor-
mation 7" can be applied only in the following two situations.

1) Suppose there are two intervals o,y € £* such that

frr(0) =pe M fi(y) =uope FIM*],
for some u € F[M*] and f%. (o) = (A*)*, f%.(7) = wo (A*)%. Then put
fX*(’Y) =w, fu- () =,
Fx(8) = fx%-(8),  fu+(8) = f3r-(8) (6 #7).
2) Suppose there are two intervals o,y € £* such that
fir(o) =pe M fi.(y) =vope F[M],
and f%.(y) = (A*)* o f%.(c). Then put

fNX*(V) = (A*)k» fM*('Y) =V,

fx=(8) = fx-(8),  fm(6) = fy-(6) (6# )
We apply the transformation 7" consecutively to IT* until it is applicable. Notice, since
T’ decreases the length of the element f,.(7) it can only be applied a finite number of times,
say s, so (T")%(IT*) = (T")*T1(I1*). Observe also, that the resulting cut equation (7”)*(IT*)
does not depend on a particular sequence of applications of the transformation 7" to II*.
This implies that the cut equation T*(IT) = (7")*(IT*) is well-defined.
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Claim 1. The homomorphism o* : FIM*] — F defined as (in the notations above):

o (1) = a(p) (1 € Mnort),
a*(yi7right) = Riﬂcilright(ui) (Vi S S,u fOT we Mlong)
o* (Vigest) = left(p;)cR?
is a solution of the cut equation T*(II) with respect to 3 : F[X] — F.

Proof. The statement follows directly from the construction. O

Agreement 4 on the set P: we assume (by choosing the function h properly, i.e.,
h(i,j) > C(L,N + 3), see Lemma 70) that every tuple p € P satisfies the conditions of
Lemma 70, so Claim 1 holds for every p € P.

Definition 39. Let w € WF,L' Let 1 <i< K. A cut of rank i of w is a decomposition
w = uowv where either u ends with AE% or v begins with AF2. In this event we say that u
and v are obtained by a cut (in rank i) from w.

Definition 40. Given a 3-large tuple p € NX, for any 0 < j < L we define by induction
(on L — j) a set of patterns of rank j which are certain words in F(X UC):

(1) Patterns of rank L are precisely the letters from the alphabet X*1.

(2) Now suppose j = Ks+r, where 0 <r < K and Ks < L. We represent p as
p=p'qp"” where |p|=Ks, |q=K, |p’|=L—-Ks—-K. (106)

Then a pattern of rank j is either a word of the form u®%< where u is a pattern of
rank Ks + K, or a subword of u®%a formed by one or two cuts of ranks > r (see
Definition 39).

Remark 8. w € Wr 1, for any pattern w of any rank j < L.

Claim 2. Let ¢, = ¢, where p € N such that p, > (I +2)Np +3 fort =1,...,L,
and !l > 3. Denote Il =1ly, . _

1) For j < L the cut equation II;,_; = (T%)?(Ily) s well defined and it is a I'-cut
equation of rank < L — j and size l. In particular, the sequence Xr, , of I'-cut equations

Spp: 5B B (107)

is well defined.

2) Let j = Ks+r, where 0 <r < K, L =K(s+1), and p’' be from the representation
(106). Denote ¢pxs = ¢rsp - Then the following are true:

(a) for any interval o of I there is a pattern w of rank j such that fx (o) = w®xs;

(b) if j = Ks (r =0) then for every interval o of the cut equation II; the pattern w, where
fx (o) = wPxs, does not contain N -large powers of elementary periods.
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Proof. Let j = Ks+71,0<r < K, L=K(s+1i). We prove the claim by induction on ¢
and m = K —r for i > 0.
Case © = 0. In this case ;7 = L, so the labels of the intervals of II; are of the form
%L, x € X, and the claim is obvious.
Case i = 1. We use induction on m = 1,..., K — 1 to prove that for every interval o
from the cut equation
HL—m = (S(Lim)y f)((L_M)a fI(\f_m))

the label f)((Lfm)(U) is of the form u?2-x for some pattern u € Sub(X?x).

Let m = 1. In this case j = L — 1. For every x € X*! one can represent the element

x?t as a product of elements of the type y?=-¥, y € X*! (so the element 2 is a word in
the alphabet X?2-x). Indeed,

9L — (J;¢K)¢L—K — w¢L—K7

where w = z?¥ is a word in X. By Lemma 64 there is a precise correspondence between
stable A} -decompositions of

_ br— . - b . br—
2?t = wPt K = DYF N oq AjT oq DyF TN DY “oqg Ap™ o D"

and stable A g-decompositions of w
w=Dj0Ag" 0Dy...Dyo A¥ o Dyiq.

By construction, application of the transformation T* to IT;, removes powers A;%* = A(ﬁm K
which are subwords of the word w®:-% written in the alphabet X?.-%. By construction
the words DfL ~* are the labels of the new intervals of the equation II;_;. Notice, that D,
are subwords of w = 2% which obtained from w by one or two cuts in rank L. Hence D
are patterns in rank L — 1, as required in 2a).

Now we show that II;_; is a I'-cut equation in rank < L — 1 and size . By 2a) and
Remark 8 fx(o) € Wr 1 for every interval o € II;,_;. Thus the initial part of the first
condition from the definition of I'-cut equations is satisfied. To show 1) it suffices to show
that 1.1) in rank L does not hold for I _;. Let § € ££71. By the construction (A’)"*+2
does not occur in p® for any pu € M. Therefore the maximal power of A’ that can occur
in far(9)« is bounded from above by (I + 1)|fa ()] which is less then (I 4 2)length(IT_1).
Hence there are no intervals in II;_; which satisfy the condition 1.1 from the definition of
I'-cut equations. It follows that the rank of IT;_; is at most L — 1, as required. Let ¢t be
the rank of II;,_;. For an interval 6 € II;_; if the conditions 1.1) and 1.3) for fx(d) and
the rank ¢ are not satisfied, then the condition 1.2) is satisfied. Indeed, it is obvious from
the definition of patterns that either fx(d) has a non-trivial N-large decomposition in rank
t or max;(fx(9)) < 2. Finally, it has been shown in Claim 1 that 7%(II) has a solution o*
relative to B. This proves the condition 2) in the definition of the I'-cut equation. Hence
II;,_; is a I'-cut equation of rank at ¢t < j — 1 and size [.

Suppose now by induction on m that for an interval o of the cut equation II; (for

m = L —j) f)(g)(a) = u®L-% for some u € Sub(X*?x). Then either ¢ does not change
under 7% or ;g)(a) has a stable (I + 2)-large A;*-decomposition in rank j = r + (L — K)



149

associated with long variables in fl(\j)(a):

uPr-K — DTL—K o4 A;(h o4 DSL—K ...D’fL—K 04 A;qk ODIfiIK7
and o is an interval in II;. By Lemma 64, in this case there is a stable A,-decomposition of
u: B B B B
u=D10AM oDy...Dio A% o Dy;.

The application of the transformation 7% to II; removes powers AJ% = ALor-x (since
A = AfL‘K) which are subwords of the word u®>~¥ written in the alphabet X?2-¥. By
construction the words BfL‘K are the labels of the new intervals of the equation IT;_1, so
they have the required form. This proves statement 2a) for m+ 1. Statement 1) now follows
from 2a) (the argument is the same as in rank L — 1). By induction the Claim holds for
m = K, so the label f)((L_K) (o) of an interval o in II;_ is of the form u®t-% for some
pattern u, where u € Sub(X*?%). Notice that Sub(X*¢%) C Wr 1, which proves statement
2) (and, therefore, statement 1) of the Claim for ¢ = 1.

Suppose, by induction, that labels of intervals in the cut equation IIj_g; have form
w®L-Ki q is a pattern in WDL. We can rewrite each label in the form v®2-xG+1) where
v =w?% € Wr 1. Similarly to case i = 1 we can construct the T*-sequence

Op-gi — .. = U ks

where each application of the transformation T removes subwords in the alphabet

X9%r-xG+1, The argument above shows that the labels of the new intervals in all cut
equations Iy g 1y,..., 1L f(it1) are of the required form v®r-xG+1) | for patterns v where
v € Wr . Following the proof it is easy to see that in labels of intervals in II;_ g (;11) the

word v does not contain N-large powers of e?2-%G+1) for an elementary period e.
O

Claim 3. Let P C NY be an infinite set of L-tuples and for p € P let
.
—

S IP SO Lo Ta®

be the sequence (107) of cut equations ng) = (5j’p,f§(’pa g/’[p). Suppose that for a given
Jj > 2K the following P-uniformity property U(P, j) (consisting of three conditions) holds:

(1) E3P = E79 for every p,q € P, we denote this set by E7;
(2) fiP = f22 for every p,q € P;

(3) for any o € &7 there ewists a pattern w, of rank j such that for any p € P fg(’p(a) =

¢Kl,p’

Wer where p’ is the initial segment of p of length Kl, where j = Kl + r and
O0<r<K.

Then there exists an infinite subset P’ of P such that the P’ -uniformity condition U(P’, j—1)
holds for j — 1.
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Proof. Follows from the construction.
O

Agreement 5 on the set P: we assume, in addition to all the agreements above, that
for the set P the uniformity condition U (P, j) holds for every j > 2K. Indeed, by Claim 3
we can adjust P consecutively for each j > 2K.

Claim 4. Let Il = (&, fx, far) be a T-cut equation in rank j > 1 from the sequence
(107). Then for every variable pn € M there exists a word MM(MT(H),X‘%’“,F) such that
the following equality holds in the group F

Ma _ MH(M%EH)7X¢j71)ﬁ'

Moreover, there exists an infinite subset P' C P such that the words M, (M), X) depend
only on exponents s1,..., s of the canonical l-large decomposition (104) of the words p®.

Proof. The claim follows from the construction. Indeed, in constructing 7*(II) we cut
out leading periods of the type (A%)® from u® (see (104)). It follows that to get u® back
from Mq‘f(*n) one needs to put the exponents (A’)* back. Notice, that

Aj = Alyy)?

Therefore,
(4))° = Aly;)*—P

Recall that A7 is the cyclic reduced form of A? , SO
(4))° = uA(y )2

for some constants u,v € Cz C F. To see existence of the subset P’ C P observe that the
length of the words fas(o) does not depend on p, so there are only finitely many ways to
cut out the leading periods (A’)* from p®. This proves the claim. O

Agreement 6 on the set P: we assume (replacing P with a suitable infinite subset)
that every tuple p € P satisfies the conditions of Claim 4. Thus, for every Il = II; from the
sequence (107) with a solution « (relative to 3) the solution a* satisfies the conclusion of
Claim 4.

Definition 41. We define a new transformation T which is a modified version of T™*.
Namely, T transforms cut equations and their solutions a precisely as the transformation
T*, but it also transforms the set of tuples P producing an infinite subset P* C P which
satisfies the Agreements 1-6.

Now we define a sequence

m, Lo, ., 5. . 5m (108)

of N-large I'-cut equations, where I, = II,;, and II;_; = T'(II;). From now on we fix the
sequence (108) and refer to it as the T-sequence.
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Definition 42. Let II = (&, fx, fm) be a cut equation. For a positive integer n by
kn(IT) we denote the number of intervals o € € such that |far(o)| = n. The following finite
sequence of integers

Comp(H) = (kQ (H)7 k3(H>7 ceey klength(H) (H))
is called the complexity of II.

We well-order complexities of cut equations in the (right) shortlex order: if II and IT
are two cut equations then Comp(II) < Comp(Il') if and only if length(II) < length(Il’) or
length(II) = length(II") and there exists 1 < i < length(II) such that k;(II) = k;(II') for all
j > but kZ(H) < kl(H/)

Observe that intervals o € £ with |fa(0)] = 1 have no input into the complexity of a
cut equation IT = (&, fx, far). In particular, equations with |fas(0)| = 1 for every o € £
have the minimal possible complexity among equations of a given length. We will write
Comp(IT) = 0 in the case when k;(II) = 0 for every i = 2,...,length(II).

Claim 5. Let Il = (&, fx, far). Then the following holds:
1. length(T(I1)) < length(II);
2. Comp(T(II)) < Comp(II);

Proof. By straightforward verification. Indeed, if o € £ then far(o) = fi(0). If

o €& and §; € B, then
f]ﬂ\c/[* (61) = /J/;kl Miq+1--- /”‘;-&-r(i)v

where fu, fii, 41 - - . iy 4r(s) is a subword of p1 ... p, and hence |f3,.(6;)| < |far(o)|, as re-
quired. O

We need a few definitions related to the sequence (108). Denote by M; the set of variables
in the equation II;. Variables from II; are called initial variables. A variable p from Mj is
called essential if it occurs in some fyy, (o) with |faz, ()| > 2, such occurrence of y is called
essential. By n,, ; we denote the total number of all essential occurrences of y in I1;. Then

Nnj
SA) = k() = > np;
i—2 pEM;

is the total number of all essential occurrences of variables from M; in II;.
Claim 6. If 1 < j < L then S(II;) < 2S(I1z).

Proof. Recall, that every variable ;i in M; either belongs to M, or it is replaced in
M 11 by the set S, of new variables (see definition of the function f;,. above). We refer to
variables from S, as to children of pu. A given occurrence of y in some fyr;,,(0), 0 € 41,
is called a side occurrence if it is either the first variable or the last variable (or both) in
fa;.. (o). Now we formulate several properties of variables from the sequence (108) which
come directly from the construction. Let 1 € M;. Then the following conditions hold:

1. every child of p occurs only as a side variable in Il;;
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2. every side variable p has at most one essential child, say pu*. Moreover, in this event
Ny i+l S M

3. every initial variable p has at most two essential children, say pyef; and pirigne. More-
over, in this case 1y, ,, j+1 + Ppignej+1 < 20

Now the claim follows from the properties listed above. Indeed, every initial variable from
II; doubles, at most, the number of essential occurrences of its children in the next equation
IT, 41, but all other variables (not the initial ones) do not increase this number. O

Denote by width(IT) the width of IT which is defined as

width(IT) = max k; (IT).

Claim 7. For every 1 < j < L width(II;) < 2S5(Il1)

Proof. 1t follows directly from Claim 6. [J
Denote by x(II) the number of all (length(IT) — 1)-tuples of non-negative integers which
are bounded by 25(I1z).

Claim 8. Comp(IlL) = Comp(Il.).

Proof. The complexity Comp(Il;,) depends only on the function fy; in ITz,. Recall that
IT;, =11, is obtained from the cut equation Il by changing only the labelling function fx,
so 11, and II;, have the same functions fj;, hence the same complexities. [J

We say that a sequence

T T
I, > 1l 1 —...—

has 3K -stabilization at K(r +2) , where 2 <r < L/K, if
Comp(Ug (r42)) = ... = Comp(Ilg(r_1))-
In this event we denote
Ky=K(r+2), Ki=K(r+1), Ky=Kr, K;=K(r—-1).

For the cut equation IIx, by Myeryshort We denote the subset of variables from M (Ilx,)
which occur unchanged in IIx, and are short in Ilg,.

Claim 9. For a given I'-cut equation I and a positive integer ro > 2 if L > Krg +
k(IN)4K then for some r > rq either the sequence (108) has 3K -stabilization at K(r+2) or
Comp( g (r41y) = 0.

Proof. Indeed, the claim follows by the ”pigeon hole” principle from Claims 5 and 7 and
the fact that there are not more than x(IT) distinct complexities which are less or equal to
Comp(Il). O

Now we define a special set of solutions of the equation S(X) = 1. Let L = 4K +x(I1)4K,
p be a fixed N-large tuple from NI=4K ¢ be an arbitrary fixed N-large tuple from N2X
and p* be an arbitrary N-large tuple from N2X. In fact, we need N-largeness of p* and ¢
only to formally satisfy the conditions of the claims above. Put

By.g.8 = {dL—ak pbar pP2x,q8 | P* € NzK}-



153

It follows from Theorem 10 that B, 4 g is a discriminating family of solutions of S(X) = 1.
Denote 8, = ¢ak,q © 5. Then 3, is a solution of S(X) =1 in general position and

Bys = {b2kpBq | D" € NZK}

is also a discriminating family by Theorem 10.
Let

B = {r, = O (r2)p b2K.p-P2k.q8 | p* € N*KY,

where p’ is a beginning of p.
Proposition 8. Let L = 2K + x(I1)4K and ¢, € By, 4 3. Suppose the sequence

T T
HL—>HL_1—>...—>

of cut equations (108) has 3K -stabilization at K(r +2),r > 2. Then the set of variables M
of the cut equation g 1) can be partitioned into three disjoint subsets

M = Mveryshort ) Mfree U Museless

for which the following holds:

1. there ezists a finite system of equations A(Myeryshort) = 1 over F' which has a solution
mn F;

2. for every pn € Mygeless there exists a word V,, € F[X U Maee U Myeryshort] which does
not depend on tuples p* and q;

3. for every solution 6 € B, for every map Ggree : Mpee — F, and every solution ay :
F[Myeryshort] — F' of the system A(Myeryshort) = 1 the map o : F[M] — F defined by

pivee if t € Mpee;
pe = s if u e Mveryshort;
V#(X(s? Mggeee’ M\(ri;yshort) if 1 € Museless-

is a group solution of U, 1) with respect to (3.

Proof. Below we describe (in a series of claims 10-21) some properties of partitions of
intervals of cut equations from the sequence (108):

Mg, 5T, 1 = ... 5 g,

Fix an arbitrary integer s such that K7 > s > Ko.

Claim 10. Let far(0) = p1 ... pr be a partition of an interval o of rank s in Ils. Then:
1. the variables s, ..., up—1 are very short;

2. either uy or uk, or both, are long variables.



154

Proof. Indeed, if any of the variables us, ..., ur—1 is long then the interval o of Il is
replaced in T(ITy) by a set of intervals E, such that |fa(8)| < |fa ()| for every 6 € E,.
This implies that complexity of T'(Il;) is smaller than of Il - contradiction. On the other
hand, since o is a partition of rank s some variables must be long - hence the result. O

Let far(o) = p1 ... pg be a partition of an interval o of rank s in II;. Then the variables
w1 and py are called side variables.

Claim 11. Let far(0) = p1 - .- g be a partition of an interval o of rank s in Ils. Then
this partition will induce a partition of the form pipa ... pux—1p), of some interval in rank
s—114n s_1 such that if py is short in rank s then py = p1, if py is long in g then p) is
a new variable which does not appear in the previous ranks. Similar conditions hold for .

Proof. Indeed, this follows from the construction of the transformation 7. O

Claim 12. Let o1 and og be two intervals of ranks s in Il such that fx(o1) = fx(02)
and

fa(or) = pave. vk, fu(oe) = e A
Then for any solution a of Iy one has
Vg =1 vy CATT AN
i.e, vy’ can be expressed via A\ and a product of images of short variables.

Claim 13. Let far(0) = p1 ... ux be a partition of an interval o of rank s in Ils. Then
for any v € X U E(m,n) the word u§ ...u5_, does not contain a subword of the type

c1 (Mfkl)ﬁc% where c1,co € Cg, and quKl is the middle of u with respect to ¢, .

Proof. By Corollary 10 every word Mf ®1 contains a big power (greater than (I+2)Np,)

of a period in rank strictly greater than Ks. Therefore, if (Mfle)/B occurs in the word
p1s ... py_, then some of the variables pg, ..., r—1 are not short in some rank greater than
K5 - contradiction. O

Claim 14. Let o be an interval in I, . Then fx (o) = W, can be written in the form
W, = w¢K1 ’
and the following holds:

(1) the word w can be uniquely written asw = vy ... v, where vy, ... v, € XTUE(m,n)*!,
and v;viy1 & E(m,n)TL.

(2) w is either a subword of a word from the list in Lemma 50 or there exists i such that
V; = Tak1 Hi:m c; % and v1 ...V, Vg1 ...V are subwords of words from the list in
Lemma 50. In addition, (vv;11)®% = 0?% o v?fl.

(3) if w is a subword of a word from the list in Lemma 50, then at most for two indices
i,j elements v;,v; belong to E(m,n)*, and, in this case j =i+ 1.
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Proof. The fact that W, can be written in such a form follows from Claim 2. Indeed, by
Claim 2, W, = w?%1, where w € Wr, 1, therefore it is either a subword of a word from the
list in Lemma 50 or contains a subword from the set Exc from statement (3) of Lemma 53.
It can contain only one such subword, because two such subwords of a word from X+~ are
separated by big (unbounded) powers of elementary periods.

The uniqueness of w in the first statement follows from the fact that ¢, is an automor-
phism. Obviously, w does not depend on p.

Property (3) follows from the comparison of the set E(m,n) with the list from Lemma
50. O

Claim 15. Let I, = (€, fx, fm) and p € M be a long variable (in rank K;) such that
far(8) # w for any 6 € E. If i occurs as the left variable in fpr(o) for some 6 € € then it
does not occur as the right variable in fr(8) for any & € € (however, u=* can occur as the
right variable). Similarly, If i occurs as the right variable in fur(o) then it does not occur
as the right variable in any far(9).

Proof. Suppose p is a long variable such that fa(o) = ppe... and fu(8) = ... psp
for some intervals o,¢ from Ilg,. By Claim 14 W, = w?x1 for some w = vy . ..v,., where
V1. ..V € XTLUE(m,n)*, and viv;11 ¢ E(m,n)*. We divide the proof into three cases.

Case 1). Let v # z;,y,,*. Then W, begins with a big power of some period Az, j> Ko

(see Lemmas 44 - 47), therefore py begins with a big power of A;ﬁ . It follows that in the
rank j the transformation 7' decreases the complexity of the current cut equation. Indeed,
when T transforms p and o it produces a new set of variables S, = {v1,...,v4(,)} and
a new set of intervals E, = {01,...,04(0)} such that fx(o1) = A3* for some k > 1 and
fir(o1) = v1. Simultaneously, when 7' transforms ¢ it produces (among other things) a
new set of intervals Es = {01,...,0x(s)} such that f%(dx(5—1) ends on A;k and f;(0r(5)-1)
ends on v;. Now the transformation 7" (part 1) applies to o1 and dj(5)—1 and decreases the
complexity of the cut equation - contradiction.

Case 2). Let viest = 2. Then p® begins with zf =cfi zj)m’gl (see Lemma 67) for some
sufficiently large g;. This implies that ¢/ occurs in f3(6)® = fx(8)? somewhere inside (since
far(8) # p). On the other hand, fx(§) € Wr 1, so ¢! can occur only at the beginning of
fx(0)P (see Lemmas 55 and 50) - contradiction.

Case 3). Let vjept =y, *. Then Ws = ...z, oy, '. In this case, similar to the case 1),
after application of T to the current cut equation in the rank Ko + m + 4n — 4 one can
apply the transformation 7" (part 2) which decreases the complexity - contradiction.

This proves the claim. U

Our next goal is to transform further the cut equation Il g, to the form where all intervals
are labeled by elements %1, x € (X U E(m,n))*!. To this end we introduce several new
transformations of I'-cut equations.

Let II = (&, fx, fa) be a T'-cut equation in rank K; and size [ with a solution « :
F[M] — F relative to 8 : F[X] — F. Let 0 € £ and

Wy = (v1...0)%%1, e>2,
be the canonical decomposition of W,. For i,1 <1i < e, put

Vo ileft = V1 ...Vi, Vgiright = Vitl ... Ve-
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Let, as usual,
ful(o) = p ... .

We start with a transformation T} j.r;. For 0 € £ and 1 < i < e denote by ¢ the

boundary between vffllfft and vf?jg ne in the reduced form of the product Uffllfftvfflrfght.

Suppose now that there exist ¢ and ¢ such that the following two conditions hold:

P, B

C1) u§ almost contains the beginning of the word Vg i left

till the boundary 6 (up to a

o B

very short end of it), i.e., there are elements uy,us, uz, us € F such that Vg ileft =

B _ . .
U1 O Ug O U3, vfff = ug Lo Ug, UU2Ug = U1 O U2 O Ug, and pf begins with u;, and ug

is very short (does not contain Ali(i) or trivial.

C2) the boundary 6 does not lie inside uf'.

In this event the transformation T4 ;¢ ¢+ is applicable to IT as described below. We consider
three cases with respect to the location of 8 on fus(0).

My 223 Her &

Figure 16: T2, Case 1)

Case 1) 0 is inside puf (see Fig. 16). In this case we perform the following:

DK, '

a) Replace the interval o by two new intervals oy, o2 with the labels v_; left> Vo iright’

b) Put far(o1) = p1 - .. pk—1 v, far(o2) = v~ ), where ) is a new very short variable,
v is a new variable.

¢) Replace everywhere py, by Apj,. This finishes the description of the cut equation
T e pe (IT).

d) Define a solution o* (with respect to 3) of T je(II) in the natural way. Namely,
o* (1) = a(p) for all variables  which came unchanged from II. The values A\*", p// g*,
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v®" are defined in the natural way, that is ;’ z‘ is the whole end part of uj after the

boundary 6, (v~ })*" = 05510 X = g (W)~

Case 2) 6 is on the boundary between pg and pfyy for some j. In this case we perform the

following:

a) We split the interval ¢ into two new intervals o7 and oo with labels vfflle t and
DK,

vo,i,right’

b) We introduce a new variable A and put fas(o1) = pt1 ... i\, far(o2) = A" pwjpn - g
¢) Define A*" naturally.

Case 3) The boundary 6 is contained inside u$* for some (2 < ¢ <7 — 1). In this case we do
the following:

a) We split the interval o into two intervals o and oo with labels v;i:;% and vfflm ght>
respectively.

b) Then we introduce three new variables u;, u, A, where i}, yi/f are “very short”, and
add equation p; = u;- u;-’ to the system Avyeryshort-

c) We define fas(o1) = pur - .- ph A, far(o2) = ANl pigr - .

d) Define values of o* on the new variables naturally. Namely, put A" to be equal

to the terminal segment of vlqi};}fﬁ that cancels in the product vil;;ﬁvfffght. Now the

1o

values u;" and pj* are defined to satisfy the equalities

*

fx(00)? = far(o1)®, fx(02)? = far(o2)*.

We described the transformation T4 ;o ;. The transformation 17 ,sgx; is defined similarly.
We denote both of them by 7T3.

Now we describe a transformation 75 ;.

Suppose again that a cut equation II satisfies C1). Assume in addition that for these o
and ¢ the following condition holds:

C3) the boundary 6 lies inside uf.
Assume also that one of the following three conditions holds:
C4) there are no intervals § # o in IT such that fu(8) begins with u; or ends on uj*;

C5) Voiteft # xn (Le., either ¢ > 1 or i =1 but v1 # ) and for every 6 € £ in ITif f37(9)
begins with j; (or ends on g ') then the canonical decomposition of fx(§) begins

Ky (

with Vg ileft

ends with v;??ﬂ );

C6) Vo itert = xp (i =1 and v1 = z,,) and for every 6 € £ if fa;() begins with pq (ends

with ;') then the canonical decomposition of fx () begins with 20 or with yi <

ends with x;d)Kl or ;m(l .
Y

In this event the transformation 75 ;. is applicable to II as described below.
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Case C4) Suppose the condition C4) holds. In this case we do the following.

DK, DK, .
o,ileft? va,i,right’

b) Replace pq with two new variables pf,pf and put fuy(o1) = pi, fu(o2) =
g e

) Define ()" and (i)*" such that fir(o1)*" = o257, and far(02)*" = v)500 0

a) Replace o by two new intervals o1, 09 with the labels v

Case C5) Suppose Vg eft # Trn. Then do the following.
a) Transform o as described in C4).

b) If for some interval § # o the word fi;(d) begins with py then replace py in fr(9)
by the variable pf and replace fx () by v;ffelft

that end with py*.

fx(0). Similarly transform intervals o

Case C6) Suppose Uy ; et = Tn. Then do the following.
a) Transform o as described in C4).

b) If for some ¢ the word fy;(9) begins with p1 and fx (d) does not begin with y,, then
transform J as described in Case C5).

c) Leave all other intervals unchanged.

We described the transformation 75 ;.r¢. The transformation 75 ,.;gn: is defined similarly.
We denote both of them by T5.

Suppose now that II = IIx,. Observe that the transformations 7T and T, preserve the
properties described in Claims 5 - 8 above. Moreover, for the homomorphism g : F[X] — F
we have constructed a solution a* : F[M] — F of T,,(Ilk,) (n = 2,3) such that the initial
solution « can be reconstructed from o* and the equations IT and T, (II). Notice also that
the length of the elements W, corresponding to new intervals ¢ are shorter than the length
of the words W, of the original intervals ¢ from which ¢’ were obtained. Notice also that
the transformations T3, T, preserves the property of intervals formulated in the Claim 10.

Claim 16. Let II be a cut equation which satisfies the conclusion of the Claim 10.
Suppose o is an interval in I such that W, satisfies the conclusion of Claim 14. If for some
i

(v1 .. .ve)¢K =(v1... vi)(z’K 0 (Vjg1--- ve)¢K

then either Ty or Ty is applicable to given o and i.

Proof. By Corollary 61 the automorphism ¢, satisfies the Nielsen property with respect
to Wr with exceptions E(m,n). By Corollary 12, equality

(v1 .. .Ue)¢K =(v1... vi)(b" 0 (Vjg1 .- ve)¢K

implies that the element that is cancelled between (v;...v;)?%? and (viy...ve)?57? is
short in rank K. Therefore either ¢ almost contains (vy ...v;)?5? or u¢ almost contains
(Vig1--- ve)¢Kﬁ. Suppose u§ almost contains (v; ... vi)¢Kﬁ. Either we can apply T jey¢, or
the boundary 6 belongs to pf. One can verify using formulas from Lemmas 44-47 and 53
directly that in this case one of the conditions C'4) — C6) is satisfied, and, therefore T5 ;e st
can be applied. O
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Lemma 73. Given a cut equation Ik, one can effectively find a finite sequence of
transformations Q1,...,Qs where Q; € {T1,Ta} such that for every interval o of the cut
equation 1l = Qs...Q1(Ilk,) the label fx(o) is of the form u®s1, where v € X+ U
E(m,n).

Moreover, there exists an infinite subset P’ of the solution set P of Ik, such that this
sequence is the same for any solution in P’.

Proof. Let o be an interval of the equation IIx,. By Claim 14 the word W, can be
uniquely written in the canonical decomposition form

W, = w?c1 = (vy...v,)%%1,

so that the conditions 1), 2), 3) of Claim 14 are satisfied.

It follows from the construction of Il that either w is a subword of a word between two
elementary squares x # ¢; or begins and (or) ends with some power > 2 of an elementary
period. If u is an elementary period, u??% = u®% o u®< except v = x,, when the middle
is exhibited in the proof of Lemma 53. Therefore, by Claim 16, we can apply 77 and 715
and cut o into subintervals o; such that for any ¢ fx(o;) does not contain powers > 2 of
elementary periods. All possible values of u?% for u € E(m,n)*! are shown in the proof of
Lemma 53. Applying 77 and T» as in Claim 16 we can split intervals (and their labels) into
parts with labels of the form 2?1, 2 € (X U E(m,n)), except for the following cases:

1. w = uv, where u is £2,i < n, v € Ep, », and v has at least three letters,

2. W= T pYn—2Ty  EnTn-1YpaTh s,

3.w= 1‘%,1yn_1l‘;1$n_1y;i2$7:32,

4. yp_1m ty 7t r <o,

5. w = uv, where u = (c¢j'c?)?, v € E(m,n), and v is one of the following: v =
e | | e | KTV N o

6. w = uv, where u = (cj*c3?)?, v € E(m,n), and v is one of the following: v =
[T, cftay ey or o =TI, ftay yr

7. w= z.

Consider the first case. If fpr(o) = py ... gk, and pf almost contains

‘?Kl ( * )7Pm+4i+K2+1x¢K26
(]

€Z; m+4i+ Ko +1

1A up to a very short part of it), then either

20K,

%

(which is a non-cancelled initial peace of x?m(

Ty jept or T 1yt is applicable and we split o into two intervals oy and o with labels x
and v?x1 .

Suppose 1§ does not contain fol (A giyx,) Prmtiivke Hx?ffﬁ up to a very short part.
Then u¢ contains the non-cancelled left end E of v +18 and peE~! is not very short. In
this case Ty gt is applicable.

We can similarly consider all Cases 2-6.

Case 7. Letter z; can appear only in the beginning of w (if 2;1 appears at the end of w,
we can replace w by wil) If w = z;jty ...ts is the canonical decomposition, then ¢ = c;-tzj
for each k. If u$ is longer than the non-cancelled part of (c?z;)?, or the difference between
p$ and (¢f2;)P is very short, we can split o into two parts, o1 with label fx(o1) = 2%
and o9 with label fx(o2) = (t1...ts)%%1.
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If the difference between u¢ and (cfz;)” is not very short, and u$ is shorter than the
non-cancelled part of (cf'z;)?, then there is no interval § with f(8) # f(o) such that fa(5)
and fys(o) end with pg, and we can split o into two parts using T3, T» and splitting py.

We have considered all possible cases.

Denote the resulting cut equation by

Corollary 14. The intervals of H’K1 are labelled by elements u®%1, where

forn=1
1
u € {Zi; Liy Yis HC§S7 Z1 Hc;Zt’}
t=m
formn =2

1 m 1
zZ —Zt zZ
u € {z, @i, yi, Hcssa Y11 H ¢t Hcttxl H ¢ Hct Ty 132 )
t=m t=1 t=m

1

m m 1

ze —1 z¢ —1 —Z¢ —1 —z —z
| |ct'5x1 ToTq, | Ict‘:v1 Toxq | | c; "t xy T Tamy | I ¢ ~t, xamy | I c
t=1 t=1 t=m t=m t=m

—1
Xy Lo, Talyl),

and for n > 3,
3 1
25 —2
u € {Z'iv Tiy Yiy Cg7y Y121 H Ct Hc -Tl .’L’2 sy YrZyr, T1 H Cy 5
t=m t=m

-1 -1 -1 1 -1 -1
yr—2x7-_1xr ) yr—2x7«_17 $7._1.73T ) yT—l-rr , T < n, -rn_1xnxn—la
-1 -1 -1 _+1 -1
Yn—2T _1TnTn-1Yp_o, Yn—2T, 1Ty 5 Tp_1Tn, Tnln—1,

—1 —1 —1 -1 -1
Yn—1Tp Tn—1Yp_os Yn—1Ty »Yr—1L, Yr }

Proof. Direct inspection from Lemma 73. O

Below we suppose n > 0.

We still want to reduce the variety of possible labels of intervals in % . We cannot
apply 11, T» to some of the intervals labelled by z?¥1, 2 € X U E(m,n), because there are
some cases when 2?51 is completely cancelled in y®%1, 2,y € (X U E(m,n))*".

We will change the basis of F(X U Cs), and then apply transformations 77, T5 to the
labels written in the new basis. Replace, first, the basis (X U Cg) by a new basis X U Cg
obtained by replacing each variable xs; by us = msy;_ll for s > 1, and replacing z; by
U = T1C,,° "

% —z —1 —1
X ={u1 =216, u2 = T2y -3 Un = Tn¥Yp—1sYls---sYns 21y« -3 Zm )

Consider the case n > 3. Then the labels of the intervals will be rewritten as u®%: , where

Zs —Zzj -1, -1, -1 1
u e {Zia WilYi—1y Yis Hcsév Yyiuy H Cj ]a Uy " Yp Uy y YrUrYr—1,Ur, Up_ 1yr 1u
s

j=n—1
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1

—z
UrYr—1Ur—1Yr—2, U2Y1U1 H Cj
j=n—1

j -1 -1
Tor <y Yp—2Up_1UnYn—1Un—1Yn—2;

-1 -1 -1 -1 -1
un—lunyn—lun—h un—luny”l—17 un—lyn—lu’n ’

y;ig'u;ilunynfh UnYn—1Un—1Yn—2, ur_llunfla un}

In the cases n = 1,2 some of the labels above do not appear, some coincide. Notice,
that 8% = ufx o yﬁf_‘ 1, and that the first letter of yfff_‘ 1 is not cancelled in the products
(yn,lxn,lygiz)‘i”‘, (Yn—17n_1)?% (see Lemma 46). Therefore, applying transformations
similar to T7 and T, to the cut equation H’K1 with labels written in the basis X, we can

split all the intervals with labels containing (u,y,_1)?%1 into two parts and obtain a cut
equation with the same properties and intervals labelled by u?%1, where

1

z —zj -1, -1, -1 -1, -1, -1
u e {Zi7 UiYi—15 Yi, HCSS, Yyiui H Cj ) ul yl u2 s YrUrYr—1, Up, urflyrflur )

s j=n—1

1

—z
UpYr—1Ur—1Yr—2, U2y1U1 H c; <y
j=n—1

-1, -1 -1
Yp_oUy_1Un, Yn—-1Un—-1Yn—2, Uy_1Un, Yn—-1Un—1, un}

_ A*pm+4i+1

Consider for i < n the expression for (y;u;)?% et s

) —Pm+4i—4 Dm+4i—3 ) Pmtai—2—1 o o~—1
oxip1 0 Ay Tyt o oyio ATy 0w oYy

Formula 3.a) from Lemma 53 shows that w]*

ny U?K. This implies that y?K = vf’K ) u;(ZbK.
6k

i

is completely cancelled in the product

Consider also the product y,* ¢1K U

—Pm4ai-a+1 Ao —1 gAPm44i—a—1
(Am+4i—4 oxjoyi-1ox; Ay,

—Pm+ai—atl Pmi4i-3_ Pmidi—1—1yPm+4i-8_ —1 A Pmtai—1
Al o (x Yio1...%)Pmrai X; YiXi1Amyai )

where the non-cancelled part is made bold.

Notice, that (y,_ju,_1)%% yfo = (Yp_1up_1)%% 0 yfo, because u.*; is completely can-

celled in the product y?*ul*™.
Therefore, we can again apply the transformations similar to 77 and 75 and split the

intervals into the ones with labels u®%:1, where

1
—ZzZj —1 _ =
H Cj y Uy _1Un = Un,
=m

4
w€ {ze, yir wi, [[ €2 vrun, 1
s —1

j
1<i<n, 1<j<m, 1<r<n}
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Now we change the basis X with a new basis X replacing y,,1 < r < n, by a new

. 1 —z; _
variable v, = y,u,, y1u1 Hj:m_l c; ™ by v1, and up_1uy, by Up:

1

N - .
X = {21, Zmy Uty ey Un 1, T = U 1Un, 01 = Y11 [ €5 7,02 = yatin, -, Vn = Ynlin, Yn}-
j=m—1
[237% K
— - DK — DK 21 Fm—1 —¢K (1
Then y#% = v?% ou ?%, and y{* = v{X oc]' oc, " ou; ®% (if n # 1). Formula 2.c)

shows that u®% = u®*, o (u;t u,)?x.

Apply transformations similar to 77 and T to the intervals with labels written in the
new basis X and obtain intervals with labels u®¥1, where

we X U{cmy.

Denote the resulting cut equation by Mg, = (€, fg, fir). Let a be the corresponding
solution of I, with respect to 3.

Denote by Mg;qe the set of long variables in I, , then M = Myeryshort U Mside-

Define a binary relation ~j. ¢+ on M=L as follows. For w1, 1y € Msﬁe put p1 ~ege py if

side
and only if there exist two intervals 0,0’ € E with fg(0) = fx (o) such that

fao) = ppa . e, fir(o!) = phpy .

and either p, = p1!, or ., pil., € Myeryshort- Observe that if py ~epe pf then

M1 :ull)q)\t
for some Ay,..., A € M\i}yshort' Notice, that p ~eps .
Similarly, we define a binary relation ~;4n; on M;'Z?;e. For pu,, ), € Mjl?glle put fbr ~right

., if and only if there exist two intervals 0,0’ € E with fg(o) = fg(o’) such that

fa(o) = papo- . pe fra(o) = prps . g
and either M1 = /”’/1 or pi, IU//l € Mveryshort~ Againv if My ~right /,L{,,/ then

Uy = )\1 )\t,uz;n/

for some \q,...,\ € MT!

Verys_hort'
Denote by ~ the transitive closure of

() | ~tepe Y UL 1)) | 18 ~rvighe 0O { (o ™) | e MZ Y

Clearly, ~ is an equivalence relation on Msf;e. Moreover, pu ~ ' if and only if there exists
a sequence of variables

= 05 sy e = (109)
from ]\Zfiée such that either p;—1 = p;, or p;—1 = ui_l, OF fUi—1 ~left Mi, OF [i—1 ~right i
fori=1,...,k. Observe that if u; 1 and u; from (109) are side variables of ”different sides”
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(one is on the left, and the other is on the right) then p; = /%:11- This implies that replacing
in the sequence (109) some elements u; with their inverses one can get a new sequence

U=V, V1, v = ()° (110)

for some € € {1, —1} where v;_1 ~ v; and all the variables v; are of the same side. It follows
that if p is a left-side variable and u ~ p’ then

(1) =pA1.. N\ (111)

for some \; € ME!

veryshort "

It follows from (111) that for a variable v € MZ} all variables from the equivalence
class [v] of v can be expressed via v and very short variables from Myeryshors. S0 if we fix a
system of representatives R of 1\7[ gﬂe relative to ~ then all other variables from Mg;q. can
be expressed as in (111) via variables from R and very short variables.

This allows one to introduce a new transformation 75 of cut equations. Namely, we fix a
set of representatives R such that for every v € R the element v* has minimal length among
all the variables in this class. Now, using (111) replace every variable v in every word f;(o)
of a cut equation II by its expression via the corresponding representative variable from R
and a product of very short variables.

Now we repeatedly apply the transformation 73 till the equivalence relations ~.¢; and
~right Decome trivial. This process stops in finitely many steps since the non-trivial relations
decrease the number of side variables.

Denote the resulting equation again by I, .

Now we introduce an equivalence relation on partitions of Ilx,. Two partitions fas (o)
and fas(9) are equivalent (fas (o) ~ far(0)) if fx (o) = fx(0) and either the left side variables
or the right side variables of fi;(0) and far(d) are equal. Observe, that fx (o) = fx(0)
implies far(0)® = far(6)%, so in this case the partitions fas (o) and fas(d) cannot begin with
p and p~' correspondingly. It follows that if fas(o) ~ fas(0) then the left side variables
and, correspondingly, the right side variables of fy; (o) and far(0) (if they exist) are equal.
Therefore, the relation ~ is, indeed, an equivalence relation on the set of partitions of II K-

If an equivalence class of partitions contains two distinct elements fys(o) and fps(9) then
the equality

fu (o) = fu(0)”

implies the corresponding equation on the variables Mveryshort, which is obtained by deleting
all side variables (which are equal) from fi;(0) and fy(6) and equalizing the resulting words
in very short variables.

Denote by A(Myeryshort) = 1 this system.

Now we describe a transformation 7. Fix a set of representatives R, of partitions of
I, with respect to the equivalence relation ~. For a given class of equivalent partitions
we take as a representative an interval o with far(o) = fuiest - - - firight-

Below we say that: a word w € F[X] is very short if the reduced form of w” does not
contain (A%)? for any j > Ko; a word v € F is very short if it does not contain (A%)* for
any j > Ks; we also say that p® almost contains u” for some word v in the alphabet X if
p® contains a subword which is the reduced form of fiu? f, for some fi, fo € Cg.
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Principal variables. A long variable pief; or firignht for an interval o of l:IK1 with
fri(0) = thest - - - fright 1S called principal in o in the following cases.

1) Let fx(0) = u; (i # n), where u; = z;y; ") for i > 1 and u; = xyc,*™ for m # 0.
Then (see Lemma 53)

by gx—qatl PKy —PKy, —NPK,
Uy _AK2+m+4i‘T’i+1 Y; Ty

-1
—®Ky A%xqo *(—q2+1) Py —q1PK, a3 *qo
(xi AK2+m+4i—4AK2+m+4i—2 i T AK2+m+4i—4‘

The variable fiight is principal in o if and only if [ight almost contains a cyclically
reduced part of

—VKy g*q0f3 #(—q2+1)B, iy —ardr, \T 0 gy -1 —
(xi 2Alg;+m+4i—4‘4m+4§72 Y, x; 2) —(mglyi)wK2(AK2+m+4i—1) Wy, ql)wKQ;

for some ¢ > 2. Now, the variable et is principal in o if and only if pyight is not principal
in o.

2) Let fx(o) = v;, where v; = yu; (1 # 1,n) and v = yr1uq H;:mq C;Zj. Then (see
formula 3.a) from Lemma 53)

Ory _ gx(—qut1) Ky 4*(—qo) G PKy PKy 4%(qa—1) s—1 .
Ui —AK2+m+4i33i+1 AK2+m+4i—433i Yi AK2+m+4i—2AK2+m+4i—4’ i # 1,

and

Oy ax(—qat+l) OKy gx(—qo)  G1bKy Ky 4x(g2—1) 1 —z;
Uy _AK2+m+4x2 AK2+2m 1 Y1 AK2+m+1171H' ¢ T

j=n
A side variable puigns (tefs) i principal in o if and only if Hright (correspondingly, pifie)

almost contains (Ai2 tmaai)” 4, for some ¢ > 2. In this case both variables ufy, piig, could

be simultaneously principal.
3) Let fx(0) = @y = tp—1uy,. Then (by formula 3.c) from Lemma 53)

_PKy 4% —q2+1 -1 .—qi1\¢x, A*%0 qs oK, A*q6—1 *—1
Un = = K2+m+4n—8AK2+m+4n—6(yn—lxn ) 1AK2+m,+4n—8(‘Tn Yn) VARt an—2 A%y tman—a-

A side variable firight (thers) is principal in o if It ght (correspondingly, uf) almost

contains (A?(2+m+4n_2)‘1, for some ¢ > 2. In this case both variables ufts, fiyigy, could be
simultaneously principal.

4) Let fx(0) = yn- Then (by Lemma 47)

Pry _ pgxqof3 xq3f NVKy YK,
Yn _AK2+m+4n—4AK1 Tn Y -

The variable piright (tiete) is principal in o if It ght (correspondingly, uf, ) almost contains
(A%,

for some ¢ such that 2¢ > px, — 2. In this case both variables ui., Pyight could be simul-
taneously principal.
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5) Let fx(0) =2, j=1,...,m—1. Then (by Lemma 44)

PK
K, Gy A¥BPj—1  Zi4l A*Bp;—1
zi =z PA, ey ARy

A variable pues (fright) is principal if Hright (correspondingly, i) almost contains

(A7

Kot j)q, for some |g| > 2. Both left and right side variables can be simultaneously principal.

6) Let fx(0) = zm. Then (by Lemma 44)

Ok, Ko PKy g*Pm—1 —PKy p¥pm—1
Zm ' = Cp%Zm AK2+m71m1 AK;'jrm.
In this case peg is principal in o if and only if pjeg is long (i.e., it is not very short),

and we define pighe to be always non-principal. Observe that if pere is very short then

Hright = fsz,Kl’B for a very short f € F.

Let fx(0) = 2. ¢mzm. Then (by Lemma 44)

_ px—DPm+l_PKy g%pm
fX(U)(ZsK1 *AK2+m L1 2AKQJﬂn'

The variable jues is principal in o if and only if the following two conditions hold: ui,

almost contains (A§<2+m)q, for some ¢ with |g| > 2; pop # fzf,)f(lﬁ for a very short f € F.

Similarly, the variable piright is principal in o if and only if the following two conditions

hold: pi,p,, almost contains (Af(ﬁm)q, for some g with [q| > 2; pfly,, # fsz(lﬁ for a very
short f € F.
Observe, that in this case the variables pes and fiyight can be simultaneously principal

in ¢ and non-principal in o. The latter happens if and only if p,, = flszlﬁ and it =
z;f)Klﬁ f2 for some very short elements fi, fo € F'. Therefore, if both per and pirighe are
non-principal then they can be expressed in terms of 2, ' and very short variables.

Claim 17. For every interval o of Ik, its partition fir(c) has at least one principal
variable, unless this interval o and its partition fur(o) are of those two particular types
described in Case 6).

Proof. Let far(0) = teft1 - - - Vihhright, Where vy ... vy are very short variables. Suppose
A, 1k, is the oldest period such that fx (o) has N-large A, k,-decomposition.

If r # 1 then (see Lemmas 44 - 47) A, 1k, contains some N-large exponent of A, _14k,.
Therefore v{*...vy does not contain Al o hence either pief; Or pright almost contains

AfiKz, where |g| > 2. This finishes all the cases except for the Case 1). In Case 1) a similar
argument shows that v*...v{ does not contain A,y , so one of the side variables is
principal.

If r = 1, then Ai4k, contains some N-large exponent of Aoy k.,. Again, vf* ... vy does
not contain A} K,» because the complexity of the cut equation I, does not changed in
ranks from Ky to K3. Now, an argument similar to the one above finishes the proof. O

Claim 18. If both side variables of a partition fp(o) of an interval o from g, are
non-principal, then they are non-principal in every partition of an interval from I, .
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Proof. It follows directly from the description of the side variables piee and firight in
the Case 6) of the definition of principal variables. Indeed, if e and piright are both non-

principal, then (see Case 6)) each of them is either very short, or it is equal to flzf:flﬁ fa for
some very short fi, fo € F. Clearly, neither of them could be principal in other partitions.
O

Claim 19. Let n # 0. Then a side variable can be principal only in one class of
equivalent partitions of intervals from I, .

Proof. Let far(0) = teft1 - - - Vifiright, Where vy ... vy are very short variables. Suppose
A4k, is the oldest period such that fx (o) has N-large A, k,-decomposition.

In every case from the definition of principal variables (except for Case 1)) a principal
variable in ¢ almost contains a cube (Al , )?. In Case 1) the principal variable almost
contains (A, _, | . )?, moreover, if e is the principal variable then pf; contains an N-large
exponent of (A] . ).

We consider only the situation when the partition fys (o) satisfies Case 1), all other cases
can be done similarly.

Clearly, if fx(o) = u; then a principal variable in o does not appear as a principal
variable in the partition of any other interval § with fx () # w;, fx(d) # v;. Suppose that
a principal variable in o appears as a principal variable of the partition of § with fx (§) = w;.
Then partitions fy;(o) and fas(d) are equivalent, as required. Suppose now that a principal
variable p in o appears as a principal variable of the partition of § with fx(J) = v;. If
[t = [lright then it cannot appear as the right principal variable, say Ayignt, of far(9). Indeed,
[yighe ends (see Case 1) above) with almost all of the word (A;?2‘)+m+4i_4)5 (except, perhaps,
for a short initial segment of it). But the write principal variable Aight should end (see Case
2) above ) with almost all of the word A*K;i_m +4i—4 (except, perhaps, for a short initial
segment of it), SO fright 7 Arigns. Similarly, if the left side variable Ao of far(9) is principal
in § then firight 7# Aere. Suppose now that p1 = ess, then pirigne is not principle in o, so it
is not true that e almost contains the cube of the cyclically reduced part of

w AR i Ay
Then et is very long, so it is easy to see that it does not appear in the partition of § as a
principle variable. This finishes the Case 1). O

For the cut equation Ilx, we construct a finite graph I' = (V, E). Every vertex from V
is marked by variables from M Sﬁe and letters from the alphabet {P, N}. Every edge from
FE is colored either as red or blue. The graph I' is constructed as follows. Every partition
far(o) = py ...y, of T, gives two vertices Voleft and Vg right into I', so

V= Uo’{va,lefh Ua,right}-

We mark vs 1c5: by p1 and vy rigne by pr. Now we mark the vertex vy jer¢ by a letter P or
letter IV if p1; is correspondingly principal or non-principal in o. Similarly, we mark ve right
by P or N if py is principal or non-principal in o.

For every o the vertices vy o+ and v, rigns are connected by a red edge. Also, we connect
by a blue edge every pair of vertices which are marked by variables u, v provided g = v or
p = v~1. This describes the graph T.
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Below we construct a new graph A which is obtained from I' by deleting some blue edges
according to the following procedure. Let B be a maximal connected blue component of T,
i.e., a connected component of the graph obtained from I' by deleting all red edges. Notice,
that B is a complete graph, so every two vertices in B are connected by a blue edge. Fix
a vertex v in B and consider the star-subgraph Starp of B generated by all edges adjacent
to v. If B contains a vertex marked by P then we choose v with label P, otherwise v is
an arbitrary vertex of B. Now, replace B in I' by the graph Starg, i.e., delete all edges in
B which are not adjacent to v. Repeat this procedure for every maximal blue component
B of T'. Suppose that the blue component corresponds to long bases of case 6) that are

non-principal and equal to flzfnf{l fo for very short fi, fo. In this case, we remove all the
blue edges that produce cycles if the red edge from I' connecting non-principal pes and
Uright 15 added to the component (if such a red edge exists).

Denote the resulting graph by A.

In the next claim we describe connected components of the graph A.

Claim 20. Let C be a connected component of A. Then one of the following holds:

(1) there is a vertex in C' marked by a variable which does not occur as a principal variable
in any partition of g, . In particular, any component which satisfies one of the
following conditions has such a vertex:

a) there is a verter in C marked by a variable which is a short variable in some
partition of Ik, .

b) there is a red edge in C with both endpoints marked by N (it corresponds to a
partition described in Case 6 above);

(2) both endpoints of every red edge in C are marked by P. In this case C is an isolated
vertex;

(8) there is a vertex in C' marked by a variable p and N and if p occurs as a label of an
endpoint of some red edge in C' then the other endpoint of this edge is marked by P.

Proof. Let C be a connected component of A. Observe first, that if p is a short variable
in IIx, then p is not principle in ¢ for any interval o from I, , so there is no vertex in
C marked by both p and P. Also, it follows from Claim 18 that if there is a red edge e
in C with both endpoints marked by N, then the variables assigned to endpoints of e are
non-principle in any interval o of Ilx,. This proves the part ”in particular” of 1).

Now assume that the component C' does not satisfy any of the conditions (1), (2). We
need to show that C has type (3). It follows that every variable which occurs as a label of
a vertex in C' is long and it labels, at least, one vertex in C' with label P. Moreover, there
are non-principle occurrences of variables in C.

We summarize some properties of C below:

e There are no blue edges in A between vertices with labels N and N (by construction).
e There are no blue edges between vertices labelled by P and P (Claim 19).

e There are no red edges in C' between vertices labelled by N and N (otherwise 1) would
hold).
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e Any reduced path in A consists of edges of alternating color (by construction).

We claim that C' is a tree. Let p = e ...ex be a simple loop in C (every vertex in p has
degree 2 and the terminal vertex of ey is equal to the starting point of ey).

We show first that p does not have red edges with endpoints labelled by P and P. Indeed,
suppose there exists such an edge in p. Taking cyclic permutation of p we may assume that
ey is a red edge with labels P and P. Then es goes from a vertex with label P to a vertex
with label N. Hence the next red edge e3 goes from N to P, etc. This shows that every
blue edge along p goes from P to IN. Hence the last edge e which must be blue goes from
P to N -contradiction, since all the labels of e; are P.

It follows that both colors of edges and labels of vertices in p alternate. We may assume
now that p starts with a vertex with label IV and the first edge e; is red. It follows that the
end point of e; is labelled by NV and all blue edges go from N to P. Let e; be a blue edge from
v; to v;41. Then the variable p; assign to the vertex v; is principal in the partition associated
with the red edge e;_1 , and the variable p;41 = ,ufl associated with v;41 is a non-principal
side variable in the partition fjs(o) associated with the red edge e; 1. Therefore, the the
side variable p;4o associated with the end vertex wv;yo is a principal side variable in the
partition fys(o) associated with e; 1. It follows from the definition of principal variables
that the length of pf, , is much longer than the length of pf, ,, unless the variable p; is
described in the Case 1). However, in the latter case the variable p;1o cannot occur in any
other partition fy;(d) for § # o. This shows that there no blue edges in A with endpoints
labelled by such p;12. This implies that v;12 has degree one in A - contradiction wit the
choice of p. This shows that there are no vertices labelled by such variables described in
Case 1). Notice also, that the length of variables (under «) is preserved along blue edges:
g1l = ()] = |ug|. Therefore,

lug| = |M?+1‘ < |N;‘X+2|

for every i.

It follows that going along p the length of |u$| increases, so p cannot be a loop. This
implies that C is a tree.

Now we are ready to show that the component C has type 3) from Claim 20. Let
be a variable assigned to some vertex vy in C' with label N. If p; satisfies the condition 3)
from Claim 20 then we are done. Otherwise, p1 occurs as a label of one of P-endpoints, say
vg of a red edge ey in C' such that the other endpoint of es, say vs is non-principal. Let ug
be the label of v3. Thus v; is connected to vy by a blue edge and vy is connected to vs by
a red edge. If u3 does not satisfy the condition 3) from Claim 20 then we can repeat the
process (with ug in place of p1). The graph C is finite, so in finitely many steps either we
will find a variable that satisfies 3) or we will construct a closed reduced path in C. Since
C' is a tree the latter does not happen, therefore C satisfies 3), as required.

O

Claim 21. The graph A is a forest, i.e., it is union of trees.

Proof. Let C be a connected component of A. If C' has type (3) then it is a tree, as
has been shown in Claim 20 If C of the type (2) then by Claim 20 C is an isolated vertex -
hence a tree. If C is of the type (1) then C is a tree because each interval corresponding to
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this component has exactly one principal variable (except some particular intervals of type
6) that do not have principal variables at all and do not produce cycles), and the same long
variable cannot be principal in two different intervals. Although the same argument as in
(3) also works here.

O

Now we define the sets My seless, Mfree and assign values to variables from M = My s01es5U
M free U Mveryshort. To do this we use the structure of connected components of A. Observe
first, that all occurrences of a given variable from Mg;4., are located in the same connected
component.

Denote by M ... subset of M which consists of variables of the following types:

1. variables which do not occur as principal in any partition of (Ilx, );

2. one (but not the other) of the variables y and v if they are both principal side variables
of a partition of the type (20) and such that v # pu~*.

Denote by Museless = _side - Mfree-

Claim 22. For every u € J\_Zuseless there exists a word V,, € F[X_U Miree U ]\vaeryshort]
such that for every map Qree : Miee — F', and every solution o : F[Miyeryshort]| — F of the
system A(Myeryshort) = 1 the map o : F[M] — F defined by

Hree lf 1% S Mfree;

Zf ne Mveryshort;'
W% 6 NfQfree A fCs ; v
VM(X 7Mfrcc 7Mvcryshort) lf IS MUSdESS'

is a group solution of T, with respect to (3.

Proof. The claim follows from Claims 20 and 21. Indeed, take as values of short vari-
ables an arbitrary solution «; of the system A(]\vaeryshort) = 1. This system is obviously
consistent, and we fix its solution. Consider connected components of type (1) in Claim
20. If p is a principal variable for some ¢ in such a component, we express u® in terms of
values of very short variables ]\vaeryshort and elements t¥%1, t € X that correspond to labels
of the intervals. This expression does not depend on ay, 5 and tuples ¢, p*. For connected
components of A of types (2) and (3) we express values pu® for g € Myseiess in terms of
values v, v € Mpee and t¥x1 corresponding to the labels of the intervals. [J

We can now finish the proof of Proposition 8. Observe, that Myeryshort C Mveryshort. If
A is an additional very short variable from M* that appears when transformation 77

veryshort
. N . v . .
or T5 is performed, A* can be expressed in terms My, .- Also, if a variable A belongs to

M. and does not belong to M, then there exists a variable y € M, such that u® = u¥x1 \*,
where u € F(X,Cs), and we can place p into Miee.
Observe, that the argument above is based only on the tuple p, it does not depend on

the tuples p* and ¢. Hence the words V,, do not depend on p* and g.
PK,

The Proposition is proved for n # 0. If n = 0, partitions of the intervals with labels z, "}
and zg %1 can have equivalent principal right variables, but in this case the left variables will
be different and do not appear in other non-equivalent partitions. The connected component

of A containing these partitions will have only four vertices one blue edge.
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In the case n = 0 we transform equation Ilx, applying transformation 73 to the form
when the intervals are labelled by u®%1, where

wE {21,y Zmy Co T 2w, !
If puefs is very short for the interval & labelled by (z,c,,” ™" )?51, we can apply T to §,

_ 0
and split it into intervals with labels szl and cmz_"i’l. Indeed, even if we had to replace
Hright by the product of two variables, the first of them would be very short.

If puest is not very short for the interval § labelled by

—Zm—1 ¢K2 *Pm—1—1
( Am—l

ZmCpy—1 )d)Kl = CmZm y

we do not split the interval, and s will be considered as the principal variable for it. If

et is not very short for the interval § labelled by szl = zfqb APt it is a principal
variable, otherwise fiyight is principal.
*— PK * .
If an interval ¢ is labelled by (¢! )%x1 = Amf{”_1+1c;fm : APt we consider firight

P K
principal if pg,,, ends with (c;*m P A28 and the difference is not very short. If g

is almost z;,%*% and Hyight 18 almost 2918 we do not call any of the side variables principal.

In all other cases pjef is principal.
Definition of the principal variable in the interval with label z?Kl ,i=1,...m—2is the
same as in 5) for n # 0.
A variable can be principal only in one class of equivalent partitions. All the rest of the
proof is the same as for n > 0.
O

Now we continue the proof of Theorem 9. Let L = 2K + x(II)4K and
H¢,:HL—>HL_1 — ... T ..

be the sequence of T'-cut equations (108). For a I'-cut equation II; from (108) by M; and
a; we denote the corresponding set of variables and the solution relative to [.

By Claim 9 in the sequence (108) either there is 3K -stabilization at K (r+2) or Comp(Ilx(,11)) =
0.

Case 1. Suppose there is 3K-stabilization at K (r + 2) in the sequence (108).

By Proposition 8 the set of variables Mg ,.,1) of the cut equation Ilg .41y can be par-
titioned into three subsets

MK(T+1) = Mveryshort U Meree U Myseless

such that there exists a finite consistent system of equations A(Myeryshort) = 1 over F' and
words V,, € F[X, Mee, Mveryshors], Where f1 € Mygeless, such that for every solution ¢ € B,
for every map turee : Miree — F, and every solution aesport @ F'[Myeryshort] — F' of the system
A(Myeryshort) = 1 the map ag(,41) : F[M] — F defined by

Mafree if e Mfree;
pOKEH) = Jshort if € M eryshort;
VM(X(S’ M Sree [ f&s ) if JTRS M iseless

free ’“"*veryshort
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is a group solution of Iy (., 1) with respect to 3. Moreover, the words V,, do not depend on
tuples p* and gq.

By Claim 4 if IT = (&, fx, far) is a T-cut equation and p € M then there exists a word
M (Mpary, X) in the free group F[Mpry U X| such that

= MM, X,

where agr and azpy are the corresponding solutions of IT and T'(II) relative to (3.
Now, going along the sequence (108) from Ilx(,41) back to the cut equation Iz and
using repeatedly the remark above for each pu € My we obtain a word

’ ’
M ;L,L(MK(T+1)7 X¢K(T+1)) =M u,L(Musele557 Mfreey Mveryshort7 X¢K(T+1))

such that
o = M L (M X )P,

Let 0 = ¢k (r41) € B and put

Mu L(X¢K("“)) — M/u L(VH(X¢K(7~+1)’Mgércee7Mashort )’Mafree N short quK(,.H))_

veryshort free °“"“veryshort?’

Then for every p € My,
MaL _ M# L(X¢K(r+1))ﬁ

If we denote by M (X) a tuple of words
ML(X) = (Mltl,L(X)a s 7MH\ML|7L(X))7
where p1, ..., par, | is some fixed ordering of My, then
MtLlL — ML(X¢K(T+1))B.

Observe, that the words M,, 1,(X), hence My (X) ( where X?x(+v is replaced by X) are
the same for every ¢r, € B 4.
It follows from property c) of the cut equation II, that the solution ay, of Iy with respect
to § gives rise to a group solution of the original cut equation Il with respect to ¢, o 3.
Now, property c) of the initial cut equation Il = (&, fx, far, ) insures that for every
o1 € Bpq the pair (Ug, 3, Vs, 3) defined by

Upp = QM) = QM (XPx0+n )P,

Vo = P(ML") = P(Mp(X?xe0))5,

is a solution of the systemS(X)=1AT(X,Y) = 1.
We claim that
Y(X) = P(ML(X))
is a solution of the equation T'(X,Y) = 1 in Fp(g). By Theorem 10 B, 4 s is a discriminating
family of solutions for the group Fp(s). Since

T(X,Y(X)? =T(X, V(X)) = T(X?, ML(X??)) = T(Us .5, Vi..5) = 1
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for any ¢ € B, 4,5 we deduce that T'(X,Y), (X)) = 1 in Fpg).

Now we need to show that T'(X,Y) = 1 admits a complete S-lift. Let W (X,Y) # 1 be
an inequality such that T(X,Y) = 1 AW(X,Y) # 1 is compatible with S(X) = 1. In this
event, one may assume (repeating the argument from the beginning of this section) that the
set

A={(Uy, Vy) | € Lo}

is such that every pair (Uy, Vi) € A satisfies the formula T'(X,Y) = 1AW(X,Y) # 1. In
this case, W(X,Y}, (X)) # 1 in Fg(s), because its image in I’ is non-trivial:

W(X, Yp,q(X))(w =W(Uy,Vy) # 1.

Hence T'(X,Y) = 1 admits a complete lift into generic point of S(X) = 1.

Case 2. A similar argument applies when Comp(Ilg(r42)) = 0. Indeed, in this case
for every o € Eg(r42) the word far, ., (o) has length one, so far, ., (¢) = p for some
p € Mg (r42). Now one can replace the word V,, € F[X U Mgee U Myeryshors] by the label
fXiin (@) Where far ., (o) = p and then repeat the argument.

O
7.5 Non-orientable quadratic equations
Consider now the equation
m n n
Hzflcizinx?:cl...cmﬂa?, (112)
=1 i=1 1=1

where a;, ¢; give a solution in general position (in all the cases when it exists). We will now
prove Theorem 9 for a regular standard non-orientable quadratic equation over F.

Let S(X,A) =1 be a regular standard non-orientable quadratic equation over F. Then
every equation T(X,Y, A) = 1 compatible with S(X,A) = 1 admits an complete S-lift.

The proof of the theorem is similar to the proof in the orientable case, but the basic
sequence of automorphisms is different. We will give a sketch of the proof in this section.

It is more convenient to consider a non-orientable equation in the form

m n n
S = Hz;lcizi H[xi,yi]:riH =C1...Cnm H[ai, bilaZ (113)
i=1 i=1 i=1
or
m n n
S = zi_lciziH[xi,yi]x%+lxi+2 = cl...cmH[ai,bi}ai+1ai+2. (114)
i=1 i=1 i=1

Without loss of generality we consider equation (114). We define a basic sequence

I'= (’717727"'7’7K(m,n))

of G-automorphisms of the free G-group G[X] fixing the left side of the equation (114).
We assume that each v € I" acts identically on all the generators from X that are not
mentioned in the description of ~.
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Automorphisms v;, i =1,...,m 4 4n — 1 are the same as in the orientable case.
Let n = 0. In this case K = K(m,0) = m + 2. Put

2
. z 2 (eqmzy),
TYm * Bm Zm(cmmxl)v Ty — 2, " )
. 1,
Ym+1 : T1 — 331(331@)7 Ty — (1‘1332) T2;
2.2

. (z723) (z323)
Ym42 i T1— Ty U, T — Ty

Let n > 1. In this case K = K(m,n) =m + 4n + 2. Put

2 2
. 2 —1 (Yn®hi1) (y"mn+1).
Ym+dn ¢ Tn — (ynxn+1) Tny, Yn — Yn y  Tntl 7 Ty 5
. -1 .
TYm+4n+1 © Tpig1 — l‘n+1(xn+1mn+2)a Tn4+2 — ($n+1mn+2) Tn4-2;
(zi,+193i+2) (mi,+117121+2)
TYm+dn+2 ¢ Tn+l = LTy )y Tn42 77 Tyyg .

These automorphisms induce automorphisms on Gg which we denote by the same letters.

Let I' = (71, ...,vK) be the basic sequence of automorphisms for S = 1. Denote by I',
the infinite periodic sequence with period I, i.e., T'oo = {V:}i>1 With v4x = ;. For j € N
denote by T'; the initial segment of I'y, of length j. Then for a given j and p € N7 put

<—;
P, =Ty .
Let

We can prove the analogue of Theorem 10, namely, that a family of homomorphisms I'p(
from Gg = Gp(s) onto G, where 3 is a solution in general position, and P is unbounded, is
a discriminating family.

The rest of the proof is the same as in the orientable case.

7.6 Implicit function theorem: NT(Q systems

Definition 43. Let G be a group with a generating set A. A system of equations S =1
is called triangular quasiquadratic (shortly, TQ) if it can be partitioned into the following
subsystems

SI(X13X27"'7XH7A) :17
S2(Xa, ..., Xn, A) =1,

Sn(Xn,A) =1
where for each i one of the following holds:
1) S; is quadratic in variables X;;

2) S =A{ly, 2] =1,[y,u] =1|y,z € X;} where u is a group word in X;41U...UX, UA
such that its canonical image in G;11 is not a proper power. In this case we say that
S; = 1 corresponds to an extension of a centralizer;
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4) S; is the empty equation.

Define G; = GRgs,,....s,,) fori =1,...,n and put Go11 = G. The TQ system S = 1
is called non-degenerate (shortly, NTQ) if each system S; = 1, where X;14,...,X, are
viewed as the corresponding constants from G,11 (under the canonical maps X; — Git1,
j=1i+1,...,n, has a solution in G;11. The coordinate group of an NTQ system is called
an NTQ group.

An NTQ system S = 1 is called regular if for each i the system S; = 1 is either of the
type 1) or 4), and in the former case the quadratic equation S; = 1 is in standard form and
reqular (see Definition 6).

One of the results to be proved in this section is the following.

Theorem 11. Let U(X, A) =1 be a regular NTQ-system. Every equation V(X,Y,A) =
1 compatible with U = 1 admits a complete U-lift.

Proof. We use induction on the number n of levels in the system U = 1. We construct a
solution tree Tso (V (X, Y, A)AU(X,Y)) with parameters X = X;U...UX,. In the terminal

vertices of the tree there are generalized equations €2,,, ..., {,, which are equivalent to cut
equations II,,, ... ,IL,,.
If S1(Xy,...,X,) =1 is an empty equation, we can take Merzljakov’s words (see Theo-

rem 4) as values of variables from X, express Y as functions in X; and a solution of some
W (Y1, Xs,...,X,) =1 such that for any solution of the system
So(Xay ..o, Xn, A) =1

Sn(Xn, A) =1
equation W =1 has a solution.
Suppose, now that S1(X71,...,X,) = 1is a regular quadratic equation. Let I" be a basic
sequence of automorphisms for the equation S7(X1,...,X,, A) = 1. Recall that

—p
o AP P1
¢J,p—"Yj e =Ty,

where j € N, I'; = (v1,...,7;) is the initial subsequence of length j of the sequence (o),
and p = (p1,...,pj) € N7. Denote by 9, ,, the following solution of
Sl (Xl) =1:
Vip = jpc,
where « is a composition of a solution of S; = 1 in G2 and a solution from a generic family

of solutions of the system
Sa(Xay. .o, Xn, A) =1

Sn(XmA) =1
in F(A). We can always suppose that « satisfies a small cancellation condition with respect
toT.
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Set, _
®={¢;,|jeN,peN}

and let £* be an infinite subset of ®“ satisfying one of the cut equations above. Without
loss of generality we can suppose it satisfies II;. By Proposition 8 we can express variables
from Y as functions of the set of I'-words in X7, coefficients, variables M. and variables
Myeryshort, satisfying the system of equations A(Myeryshort) The system A(Myeryshort) can
be turned into a generalized equation with parameters Xs U ... U X,,, such that for any
solution of the system

Sa(Xay ..o, X0, A) =1

Sn(Xn, A) =1
the system A(Myeryshort) has a solution. Therefore, by induction, variables (Myeryshort)
can be found as elements of G5, and variables Y as elements of G1. [J

Lemma 74. All stabilizing automorphisms (see [15])) of the left side of the equation
e (eie) ™t =1 (115)
have the form 20 = cFzy (1 e2)", 28 = 2y (¢ ¢22)™. All stabilizing automorphisms of the

left side of the equation
22 (a’e) ™t =1 (116)

have the form z¢ = 2@ )" 29 = ckz(x2c*)™. All stabilizing automorphisms of the left side
of the equation
riwj(aia) ™ =1 (117)

have the form z$ = (xl(xlxg)m)(zfm?)”,xg = ((wy20) ™my)@iaD)"

Proof. The computation of the automorphisms can be done by utilizing the Magnus
software system. []

If a quadratic equation S(X) = 1 has only commutative solutions then the radical R(S)
of S(X) can be described (up to a linear change of variables) as follows (see [20]):

Rad(S) = nd{[zia Ij]’ [Iia b]v | i,j=1,..., k},

where b is an element (perhaps, trivial) from F. Observe, that if b is not trivial then b is
not a proper power in F. This shows that S(X) =1 is equivalent to the system

Ucom(X> = {[xi,xj] = 1, [xl,b} = 1,‘ i,j = 1, .. ,k}} (118)

The system Uy (X) = 1 is equivalent to a single equation, which we also denote by
Ucom(X) = 1. The coordinate group H = Frw...,, of the system Ucom = 1, as well as of
the corresponding equation, is F-isomorphic to the free extension of the centralizer Cr(b)
of rank n. We need the following notation to deal with H. For a set X and b € F by A(X)
and A(X,b) we denote free abelian groups with basis X and X U{b}, correspondingly. Now,
H ~ F %, A(X,b). In particular, in the case when b = 1 we have H = F x A(X).
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Lemma 75. Let F = F(A) be a non-abelian free group and V(X,Y,A) =1, W(X,Y, A) =
1 be equations over F. If a formula

& =VX(Usom(X)=1— Y (V(X,Y,A) = LAW(X,Y, A) # 1))

is true in F then there exists a finite number of < b >-embeddings ¢ : A(X,b) —
A(X,b) (k € K) such that:
1) every formula

Bi = IV (VX Y, 4) = LAW(XP, Y, A) # 1)

holds in the coordinate group H = F xp—p A(X,b);
2) for any solution A : H — F there exists a solution \* : H — F such that A = ¢p\*
for some k € K.

Proof. We construct a set of initial parameterized generalized equations GE(S) =
{Q,...,Q.} for V(X,Y,A) = 1 with respect to the set of parameters X. For each
Q € GE(S) in Section 5.6 we constructed the finite tree T, (£2) with respect to parameters
X. Observe, that non-active part [jy,, Puv,] it the root equation Q = Q,,; of the tree Ty ()
is partitioned into a disjoint union of closed sections corresponding to X-bases and constant
bases (this follows from the construction of the initial equations in the set GE(S)). We
label every closed section o corresponding to a variable € X*! by z, and every constant
section corresponding to a constant a by a. Due to our construction of the tree T (12)
moving along a brunch B from the initial vertex vy to a terminal vertex v we transfer all the
bases from the non-parametric part into parametric part until, eventually, in €, the whole
interval consists of the parametric part. For a terminal vertex v in Ts,(€2) equation 2, is
periodized (see Section 5.4). We can consider the correspondent periodic structure P and
the subgroup Z,. Denote the cycles generating this subgroup by z1,...,%m. Let a; = bk
and z; = b%. All z;’s are cycles, therefore the corresponding system of equations can be

written as a system of linear equations with integer coefficients in variables {k1, ..., k,} and
variables {s1,...,8m} :
m
ki =Y oujsj+ B, i=1,...n. (119)
j=1

We can always suppose m < n and at least for one equation 2, m = n, because otherwise
the solution set of the irreducible system U,,,, = 1 would be represented as a union of a
finite number of proper subvarieties.

We will show now that all the tuples (k1,...,k,) that correspond to some system (119)
with m < n (the dimension of the subgroup H, generated by k — 3 = ky — 31,...,k, — 3 in
this case is less than n), appear also in the union of systems (119) with m = n. Such systems
have form k — Bq € Hy, g runs through some finite set @, and where H, is a subgroup of
finite index in Z™ =< 81 > X ... X < s, >. We use induction on n. If for some terminal
vertex v, the system (119) has m < n, we can suppose without loss of generality that the
set of tuples H satisfying this system is defined by the equations k. = ..., k, = 0. Consider
just the case k, = 0. We will show that all the tuples kg = (ki,...,k,_1,0) appear in the
systems (119) constructed for the other terminal vertices with n = m. First, if N, is the
index of the subgroup H, qu_f € H, for each tuple k. Let N be the least common multiple
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of N1,...,Ng. If a tuple (k1,...,k,_1,tN) for some t belongs to 3, + H, for some g, then
(k1,...,kn-1,0) € B, + Hy,, because (0,...,0,tN) € H,. Consider the set K of all tuples
(K1, ... kn—1,0) such that (ky,...,k,—1,tN) & B, + H, forany ¢ = 1,...,Q and t € Z .
The set {(k1,...,kn—1,tN)|(k1,...,kn—1,0) € K,t € Z} cannot be a discriminating set for
Ucomm = 1. Therefore it satisfies some proper equation. Changing variables ki,..., k,_1
we can suppose that for an irreducible component the equation has form k,_; = 0. The
contradiction arises from the fact that we cannot obtain a discriminating set for Ueomm = 1
which does not belong to ﬂ_q +H,foranyg=1,...,Q.

Embeddings ¢ are given by the systems (119) with n = m for generalized equations £,
for all terminal vertices v. O

There are two more important generalizations of the implicit function theorem, one — for
arbitrary NTQ-systems, and another — for arbitrary systems. We need a few more definitions
to explain this. Let U(Xy,...,X,, A) =1 be an NTQ-system:

Sl(XlaX27~"aXn7A) =1
So(Xoy. ., X, A) =1

Sn(Xn, 4) =1

and G; = GRs,,....8,)» Gni1 = F(A).
A Giy1-automorphism o of G; is called a canonical automorphism if the following holds:

1) if S; is quadratic in variables X; then o is induced by a G;;1-automorphism of the
group G;41[X;] which fixes S;;

2) if S, ={[y,2] =1,[y,u] = 1] y,z € X;} where u is a group word in X;1U---UX,UA,
then G; = Giq1 *y=y Ab(X; U {u}), where Ab(X; U {u}) is a free abelian group with
basis X; U {u}, and in this event ¢ extends an automorphism of Ab(X; U {u}) (which
fixes u);

3) It S; =A{ly,2] = 1] y,z € X;} then G; = G341 * Ab(X;), and in this event o extends
an automorphism of Ab(X;);

4) If S; is the empty equation then G; = G;41[X;], and in this case o is just the identity
automorphism of G;.

Let m; be a fixed G;11[Y;]-homomorphism
w2 GilYi] = G [Yiga)s

where ) =Y; C Y5 C ... CY, C Y, isan ascending chain of finite sets of parameters, and
Gr41 = F(A). Since the system U = 1 is non-degenerate such homomorphisms 7; exist.
We assume also that if S;(X;) = 1 is a standard quadratic equation (the case 1) above)
which has a non-commutative solution in G;1, then X™ is a non-commutative solution of
SZ(XZ) =1in Gi+1[Y;+1].
A fundamental sequence (or a fundamental set) of solutions of the system U (X7, ..., X,, A) =

1 in F(A) with respect to the fixed homomorphisms 71, ..., 7, is a set of all solutions of

U =1 in F(A) of the form

0171 - OnTnT,
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where o, is Y;-automorphism of G;[Y;] induced by a canonical automorphism of G;, and
is an F'(A)-homomorphism 7 : F(AUY,41) — F(A). Solutions from a given fundamental
set of U are called fundamental solutions.

Below we describe two useful constructions. The first one is a normalization construction
which allows one to rewrite effectively an NTQ-system U(X) = 1 into a normalized NTQ-
system U* = 1. Suppose we have an NTQ-system U(X) = 1 together with a fundamental
sequence of solutions which we denote V(U).

Starting from the bottom we replace each non-regular quadratic equation S; = 1 which
has a non-commutative solution by a system of equations effectively constructed as follows.

1) If S; =1 is in the form

Til Li2 __
C1 Cy " = (102,

where [c1, ca] # 1, then we replace it by a system
{zi1 = 210123, Ti2 = 220223, [21, 1] = 1, [22, ¢2] = 1, [23, c102] = 1}.
2) If S; =1 is in the form
z? ¢ = a’c,
where [a, ] # 1, we replace it by a system
{zy = a®*,xig = 29¢21, [22,¢] = 1, [21,a26] =1}

3) If S; =1 is in the form

2 2 _ 22
Ti1Ti9 = 109

then we replace it by the system
{ir = (a121)™, @2 = (21 "a2)™, [21, a102] = 1, [z, aTa3] = 1}.

The normalization construction effectively provides an NTQ-system U* = 1 such that
each fundamental can be obtained from a solution of U* = 1. We refer to this system
as to the normalized system of U corresponding to the fundamental sequence. Similarly,
the coordinate group of the normalized system is called the normalized coordinate group of
U=1.

Lemma 76. Let U(X) =1 be an NTQ-system, and U* = 1 be the normalized system
corresponding to the fundamental sequence V(U). Then the following holds:

1) The coordinate group Fr(yy canonically embeds into Fr(y-);

2) The system U* =1 is an NTQ-system of the type

S1 (X1, Xa, .., Xn, A) =1
So(Xa, .., Xn, A) =1

Sn(Xn, A) =1

in which every S; = 1 is either a regular quadratic equation or an empty equation or a
system of the type

Ucom (X, b) = {[zs,z;] =1, [x;,0] =1,| ¢, =1,...,k}
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where b € Giy1. B
3) Every solution Xy of U(X) = 1 that belongs to the fundamental sequence V(U) can
be obtained from a solution of the system U* = 1.

Proof. Statement 1) follows from the normal forms of elements in free constructions or
from the fact that applying standard automorphisms ¢, to a non-commuting solution (in
particular, to a basic one) one obtains a discriminating set of solutions (see Section 7.2).
Statements 2) and 3) are obvious from the normalization construction.(]

Definition 44. A family of solutions U of a regular NTQ-system U(X, A) =1 is called
generic if for any equation V(X,Y, A) = 1 the following is true: if for any solution from ¥
there exists a solution of V(X¥,Y,A) =1, then V =1 admits a complete U-lift.

A family of solutions © of a regular quadratic equation S(X) = 1 over a group G is
called generic if for any equation V(X,Y, A) = 1 with coefficients in G the following is true:
if for any solution 6 € © there exists a solution of V(X% Y, A) =1 in G, then V = 1 admits
a complete S-lift.

A family of solutions ¥ of an NTQ-system U(X, A) = 1 is called generic if O = Uy ... U,
where W, is a generic family of solutions of S; = 1 over Gi11 if S; = 1 is a regular quadratic
system, and V; is a discriminating family for S; = 1 if it is a system of the type Ucom -

The second construction is a correcting extension of centralizers of a normalized NTQ-
system U(X) = 1 relative to an equation W(X,Y, A) = 1, where Y is a tuple of new
variables. Let U(X) =1 be an NTQ-system in the normalized form:

S1(X1, Xo, .., Xn, A) =1
SQ(X27"'aXnaA) =1

Sn(Xn, A) =1

So every S; = 1 is either a regular quadratic equation or an empty equation or a system of
the type
Ucom(X7 b) = {[l’i7$j] = ].7 [{Iiz,b] = ].7 | Z,] = ]., e ,k}

where b € G;11. Again, starting from the bottom we find the first equation S;(X;) = 1
which is in the form Uy, (X) = 1 and replace it with a new centralizer extending system
Ucom(X) = 1 as follows.

We construct Ty, for the system W(X,Y) = 1AU(X) = 1 with parameters Xj, ..., X,.
We obtain generalized equations corresponding to final vertices. Each of them consists of
a periodic structure on X; and generalized equation on X;;;...X,. We can suppose that
for the periodic structure the set of cycles C'?) is empty. Some of the generalized equations
have a solution over the extension of the group ;. This extension is given by the relations
Ueom(Xi) = 1,81(Xig1,..., Xn) = 1,...,8,(X,) = 1, so that there is an embedding
or + A(X,b) — A(X,b). The others provide a proper (abelian) equation F;(X;) = 1 on
X;. The argument above shows that replacing each centralizer extending system 5;(X;) =1
which is in the form Uy, (X;) = 1 by a new system of the type Ueom(X;) = 1 we eventually
rewrite the system U(X) = 1 into finitely many new ones Uy (X) = 1,...,U,,(X) = 1. We
denote this set of NTQ-systems by Cy (U). For every NTQ-system U,,(X) = 1 € Cw (U)
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the embeddings ¢ described above give rise to embeddings ¢ : F r) — Frw)- Finally,
combining normalization and correcting extension of centralizers (relative to W = 1) starting
with an NTQ-system U = 1 and a fundamental sequence of its solutions V' (U) we can obtain
a finite set

NCw (U) =Cw (U*)
which comes equipped with a finite set of embeddings 0; : Frw) — Fpgg,) for each

Ui € NCw(U). These embeddings are called correcting normalizing embeddings. The
construction implies the following result.

Theorem 12. (Parametrization theorem) Let U(X, A) = 1 be an NTQ-system with a
fundamental sequence of solutions V(U). Suppose a formula

O =VYX(U(X)=1—3IY(W(X,Y,A) = 1 AWi(X,Y, A) £ 1)
is true in F. Then for every U; € NCw (U) the formula
Y (W(X% Y, A) =1 AW (X%,Y,A) #1)

is true in the group G g,y for every correcting normalizing embedding 0; : Fruy — Fr(p,)-
This formula can be effectively verified and solution Y can be effectively found.

Futhermore, for every fundamental solution ¢ : Fry — F there exists a fundamental
solution v of one of the systems U; = 1, where U; € NCw (U) such that ¢ = 0;3).

As a corollary of this theorem and results from Section 5 we obtain the following theo-
rems.

Theorem 13. Let U(X,A) = 1 be an NTQ-system and V(U) a fundamental set of
solutions of U = 1 in F = F(A). If a formula

d=VX(U(X)=1— WV (W(X,Y,A) =LAWL (X,Y,A) # 1)

is true in F' then one can effectively find finitely many NTQ systems Uy = 1,..., U =1
and embeddings 0; : Fry — Fr,) such that the formula

Iy (W (X% Y,A) =1 AW (X%, Y, A) #1)

is true in each group Frw,). Furthermore, for every solution ¢ : Fruy — F of U =1
Jrom V(U) there exists i € {1,...,k} and a fundamental solution 1 : Fr,y — F such that
¢ =0;y.

Theorem 14. Let S(X) =1 be an arbitrary system of equations over F. If a formula
O=vXAY(S(X)=1 — (WX, Y,A)=1A"W1(X,Y,A) #1))

1s true in F' then one can effectively find finitely many NTQ systems Uy = 1,..., U =1
and F-homomorphisms 0; : Fr(sy — Fru,) such that the formula

Y (W(X% Y, A) =1 AW (XY, A) #1)

is true in each group Fry,). Furthermore, for every solution ¢ : Fr(gy — F of S =1 there
exists i € {1,...,k} and a fundamental solution 1 : Fry,y — F' such that ¢ = 0;3).
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