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Abstract. In [16] we introduced graph-theoretic techniques for finitely gen-

erated subgroups of FZ[t] and solved effectively the membership problem in
finitely generated fully residually free groups. In the present paper we prove
that finitely generated fully residually free groups satisfy Howson property
and show how one can effectively find the intersection of two finitely generated
subgroups, we solve the conjugacy problem, the malnormality problem, and
provide an algorithm to compute ranks of centralizers.
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1. Introduction

Finitely generated fully residually free groups play a crucial role in the theory
of equations and first-order formulas over a free group. It is remarkable that these
groups, which have been widely studied before, turn out to be the basic objects
in newly developing areas of algebraic geometry and model theory of free groups.
Recall that a group G is called fully residually free (or freely discriminated [1], or
ω-residually free [18]) if for any finitely many non-trivial elements g1, . . . , gn ∈ G
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there exists a homomorphism φ of G into a free group F , such that φ(gi) 6= 1 for
i = 1, . . . , n.

Studying equations in free groups Lyndon introduced in [12] the notion of a
group with parametric exponents in an associative unitary ring. In particular, he
described free exponential groups FZ[t] over the ring of integer polynomials Z[t] and
showed that these groups are fully residually free. In [18] Remeslennikov established
a connection between residual properties of groups and their universal theories,
namely, he proved that a finitely generated group H is fully residually free if and
only if H has exactly the same universal theory as F . It follows then immediately
from the Lyndon’s result, that all finitely generated subgroups of FZ[t] have the
same universal theory as F . This once more emphasized the role of Lyndon’s group
FZ[t] in the investigation of the elementary theory of F . A modern treatment
of exponential groups is contained in [13], where Myasnikov and Remeslennikov
proved that the group FZ[t] can be obtained from F by an infinite chain of HNN-
extensions of a very specific type, so-called extensions of centralizers. This implies
that finitely generated subgroups of FZ[t] are, in fact, subgroups of fundamental
groups of graphs of groups of a very particular type, hence one can apply Bass-
Serre theory to describe the structure of these subgroups. For instance, it is routine
now to show that all such subgroups are finitely presented [11] (see, also [17]
for another proof of this result). Exploiting relations between HNN-extensions
and length functions it has been shown in [14] that the group FZ[t] has a free
Lyndon’s length function with values in Z[t], thus finitely generated subgroups of
FZ[t] act freely on Zn-trees, hence on Rn-trees. Recently, Giurardel proved this
result independently using different techniques [7].

In [11] Kharlampovich and Myasnikov proved the converse of the Lyndon’s
result mentioned above, namely, they showed that every finitely generated fully
residually free group is embeddable into FZ[t]. This provides a complete description
of finitely generated fully residually free groups and gives a lot of information about
their algebraic structure. In particular, all these groups, except for abelian and
surface groups, have a non-trivial cyclic JSJ-decomposition.

A new technique to deal with FZ[t] became available recently when Myasnikov,
Remeslennikov, and Serbin showed that elements of this group can be viewed as
reduced infinite words in the generators of F [15]. It turned out that many algo-
rithmic problems for finitely generated fully residually free groups can be solved
by the same methods as in the standard free groups. Indeed, in [16] an analog of
the Stallings’ folding was introduced for an arbitrary finitely generated subgroup
of FZ[t], which allows one to solve effectively the membership problem in FZ[t], as
well as in an arbitrary finitely generated subgroup of it. Following [8] and [16] we
further develop this method here, focusing mostly on its algorithmic aspects.

In this paper we solve some principal algorithmic problems for subgroups of a
fully residually free group G. In Section 3 we show that G satisfies Howson prop-
erty: the intersection of two finitely generated subgroups H and K of G is finitely
generated. Moreover, we show that the Intersection Problem is algorithmically de-
cidable in G, i.e., for any finitely generated subgroups H and K of G (given by
finite generating sets) one can effectively find a finite generating set of H ∩K. Fur-
thermore, similar technique shows that one can find effectively the intersection of
cosets of finitely generated subgroups of G. In Section 6 we prove that the Conju-
gacy Problem is decidable in G. Notice that this result also follows from [6] and [5].
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Indeed, Dahmani showed in [6] that G is relatively hyperbolic and Bumagin proved
in [5] that the Conjugacy Problem is decidable in relatively hyperbolic groups. In
Section 4 we prove that for finitely generated subgroups H, K of G there are only
finitely many conjugacy classes of intersections Hg ∩ K in G. Moreover, one can
find a finite set of representatives of these classes effectively. This implies that one
can effectively decide whether two finitely generated subgroups of G are conjugate
or not, and check if a given finitely generated subgroup is malnormal in G. Observe,
that the malnormality problem is decidable in free groups [2], but is undecidable
in torsion-free hyperbolic groups - Bridson and Wise constructed corresponding ex-
amples in [4]. In Section 5 we provide an algorithm to find the centralizers of finite
sets of elements in finitely generated fully residually free groups and compute their
ranks. In particular, we prove that for a given finitely generated fully residually
free group G the centralizer spectrum Spec(G) = {rank(C) | C = CG(g), g ∈ G},
where rank(C) is the rank of a free abelian group C, is finite and one can find it
effectively.

2. Preliminaries

Here we introduce basic definitions and notations which are to be used through-
out the whole paper. For more details see [15, 16].

2.1. Lyndon’s free Z[t]-group and infinite words. Let F = F (X) be a
free non-abelian group with basis X and Z[t] be a ring of polynomials with integer
coefficients in a variable t. In [12] Lyndon introduced a Z[t]-completion FZ[t] of F ,
which is called now the Lyndon’s free Z[t]-group.

It turns out that FZ[t] can be described as a union of a sequence of extensions
of centralizers [13]

(1) F = G0 < G1 < · · · < Gn < · · · ,

where Gi+1 is obtained from Gi by extension of all cyclic centralizers in Gi by a
free abelian group of countable rank.

In [15] it was shown that elements of FZ[t] can be viewed as infinite words
defined in the following way. Let A be a discretely ordered abelian group. By 1A

we denote the minimal positive element of A. Recall that if a, b ∈ A then the closed
segment [a, b] is defined as

[a, b] = {x ∈ A | a ≤ x ≤ b}.
Let X = {xi | i ∈ I} be a set. An A-word is a function of the type

w : [1A, αw] → X±,

where αw ∈ A, αw > 0. The element αw is called the length |w| of w. By ε we
denote the empty word. We say that w is reduced if w(α) 6= w(α + 1)−1 for any
1 ≤ α < αw. Then, as in a free group, one can introduce a partial multiplication
∗, an inversion, a word reduction etc., on the set of all A-words (infinite words)
W (A,X). We write u ◦ v instead of uv if |uv| = |u|+ |v|. All these definitions make
it possible to develop infinite words techniques, which provide a very convenient
combinatorial tool (for all the details we refer to [15]).

It was proved in [15] that FZ[t] can be canonically embedded into the set of
reduced infinite words R(Z[t], X), where Z[t], an additive group of polynomials
with integer coefficients, is viewed as an ordered abelian group with respect to the
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standard lexicographic order 6 (that is, the order which compares the degrees of
polynomials first, and if the degrees are equal, compares the coefficients of cor-
responding terms starting with the terms of highest degree). More precisely, the
embedding of FZ[t] into R(Z[t], X) was constructed by induction, that is, all Gi

from the series (1) were embedded step by step in the following way. Suppose,
the embedding of Gi into R(Z[t], X) is already constructed. Then, one chooses a
Lyndon’s set Ui ⊂ Gi (see [15]) and the extension of cenralizers of all elements from
Ui produces Gi+1, which is now also naturally embedded into R(Z[t], X).

The existence of an embedding of FZ[t] into the set of infinite words implies
automatically the fact that all subgroups of FZ[t] are also subsets of R(Z[t], X),
that is, their elements can be viewed as infinite words. From now on we assume the
embedding ρ : FZ[t] −→ R(Z[t], X) to be fixed. Moreover, for simplicity we identify
FZ[t] with its image ρ(FZ[t]).

2.2. Reduced forms for elements of FZ[t]. Following [15] and [16] we
introduce various normal forms for elements in FZ[t] in the following way.

We may assume that the set

U =
⋃

i

Ui

is well-ordered. Let
Ui = {ui1 , ui2 , . . .} ⊂ Gi,

be enumeration of elements of Ui in increasing order. Denote by Ii the set of indices
i1, i2, . . . of elements from Ui. Now g ∈ Gn+1−Gn has the following representation
as a reduced infinite word:

(2) g = g1 ◦ uα1
n1
◦ g2 ◦ · · · ◦ uαl

nl
◦ gl+1,

where n1, n2, . . . , nl ∈ In, gk ∈ Gn, k ∈ [1, l + 1], [gk, unk
] 6= ε, [gk+1, unk

] 6=
ε, k ∈ [1, l], |αk| >> 0, k ∈ [1, l] (recall that α >> 0 if α ∈ Z[t]−Z). Representation
(2) is called Un-reduced if the ordered l-tuple {|α1|, |α2|, . . . , |αl|} is maximal with
respect to the right lexicographic order among all possible such representations of
g.

From (2) one can obtain another representation of g. Fix any u from the list
un1 , un2 , . . . , unl

. Then

(3) g = h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1,

where βj = αmj , mj ∈ [1, l], j ∈ [1, p], h1 = g1 ◦ uα1
n1
◦ · · · ◦ gm1 , hp+1 = gmp+1 ◦

· · · ◦ gl+1, hk = gmk+1 ◦ · · · ◦ gmk+1 , k ∈ [2, p]. Representation (3) is called a u-
representation or a u-form of g. In other words, to obtain a u-form one has to
”mark” in (2) only nonstandard exponents of u. Representation (3) is called u-
reduced if the ordered p-tuple {|β1|, |β2|, . . . , |βp|} is maximal with respect to the
right lexicographic order among all possible u-forms of g.

Observe that if (3) is a u-form for g and g is cyclically reduced then obviously

(4) (h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1) ◦ (h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1)

is a u-form for g2. So, we call (3) cyclically u-reduced if (4) is u-reduced.

Lemma 1. [16] For any given u-reduced form of g ∈ Gn+1 −Gn, u ∈ Un, there
exists a cyclic permutation of g such that its u-reduced form is cyclically u-reduced.



SUBGROUPS OF FULLY RESIDUALLY FREE GROUPS: ALGORITHMIC PROBLEMS 5

Let g ∈ Gn+1 −Gn have a Un-reduced form

g = g1 ◦ uα1
n1
◦ g2 ◦ · · · ◦ uαl

nl
◦ gl+1,

where un1 , un2 , . . . , unl
∈ Un, gk ∈ Gn, k ∈ [1, l+1], [gk, unk

] 6= ε, [gk+1, unk
] 6=

ε, |αk| >> 0, k ∈ [1, l]. Now, recursively one has a Un−1-reduced form for gi

gi = g(i)1 ◦ u
βm1
m1 ◦ g(i)2 ◦ · · · ◦ u

βms
ms ◦ g(i)s,

where um1 , . . . , ums
∈ Un−1, |βmk

| >> 0, k ∈ [1, s], g(i)k ∈ Gn−1, k ∈ [1, s+1] and
one can get down to the free group F with such a decomposition of g, where step
by step subwords between nonstandard powers of elements from Ui are presented
as Ui−1-forms, i ∈ [1, n]. Thus, from this decomposition one can form the following
series for g:

(5) F < H0,1 < H0,2 < · · · < H0,k(0) < H1,1 < · · · < H1,k(1) < . . .

. . . < Hn−1,k(n−1) < Hn,1 < . . . < Hn,k(n),

where Hj,1, . . . ,Hj,k(j) are subgroups of Gj+1, which do not belong to Gj and Hj,i

is obtained from Hj,i−1 by a centralizer extension of a single element uj,i−1 ∈
Hj,i−1 < Gj . Element g belongs to Hn,k(n) and does not belong to the previous
terms. Series (5) is called an extension series for g.

Using the extension series above we can decompose g in the following way:
g ∈ Hn,k(n) has a un,k(n)-reduced form

g = h1 ◦ uβ1
n,k(n) ◦ h2 ◦ · · · ◦ uβl

n,k(n) ◦ hl+1,

where all hj , j ∈ [1, l + 1] in their turn are un,k(n)−1-reduced forms representing
elements from Hn,k(n)−1. This gives one a decomposition of g related to its ex-
tension series. We call this decomposition a standard decomposition or a standard
representation of g.

Observe that for any g ∈ FZ[t], its standard decomposition can be viewed as a
finite product b1b2 · · · bm, where

bi ∈ B = {X ∪X−1} ∪ {uα | u ∈ U,α ∈ Z[t]− Z}.
We denote this product by π(g) so we have

π(g) = π(h1) uβ1
n,k(n) π(h2) · · · uβl

n,k(n) π(hl+1),

where π(hi) is a finite product in the alphabet B corresponding to hi, and from
now on, by a standard decomposition of an element g we understand not the rep-
resentation of g as a reduced infinite word but the finite product π(g).

By U(g) we denote a finite subset of U such that if π(g) contains a letter
bi ∈ B such that bi = uα then u ∈ U(g). Observe that U(g) is ordered with an
order induced from U , so we have

U(g) = {u1, . . . , um},
where ui < uj if i < j and um = un,k(n). By max{U(g)} we denote the maximal
element of U(g).

If u ∈ U(g) then by degu(g) we denote the maximal degree of infinite exponents
of u, which appear in π(g).

It is easy to see that in general π(g1 ◦ g2) 6= π(g1)π(g2) and π(g ◦ g) = π(g)π(g)
if and only if the u-reduced form of g is cyclically u-reduced, where u = max{U(g)}.
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From the definition of a Lyndon’s set and the results of [15] it follows that if
R ⊂ Gn is a Lyndon’s set then a set R′ obtained from R by cyclic decompositions of
its elements is also a Lyndon’s set. Thus, by Lemma 1 we can assume a w-reduced
form of any u ∈ Un to be cyclically w-reduced, where w = max{U(u)}. Hence, we
can assume

π(u ◦ u) = π(u)π(u)
for any u ∈ U .

2.3. Embedding theorems. There are three results which play an important
role in this paper. The first embedding theorem is due to Kharlampovich and
Myasnikov.

Theorem 1 (The first embedding theorem ([11])). Given a finite presentation
of a finitely generated fully residually free group G one can effectively construct an
embedding φ : G → FZ[t] (by specifying the images of the generators of G).

Combining Theorem 1 with the result on the representation of FZ[t] as a union
of a sequence of extensions of centralizers one can get the following theorem.

Theorem 2 (The second embedding theorem). Given a finite presentation of a
finitely generated fully residually free group G one can effectively construct a finite
sequence of extension of centralizers

F < G1 < . . . < Gn,

where Gi+1 is an extension of the centralizer of some element ui ∈ Gi by an infinite
cyclic group Z, and an embedding ψ∗ : G → Gn (by specifying the images of the
generators of G).

Combining Theorem 1 with the result on the effective embedding of FZ[t] into
R(Z[t], X) obtained in [15] one can get the following theorem.

Theorem 3 (The third embedding theorem). Given a finite presentation of
a finitely generated fully residually free group G one can effectively construct an
embedding ψ : G → R(Z[t], X) (by specifying the images of the generators of G).

2.4. Graphs labeled by infinite Z[t]-words. By an (Z[t], X)-labeled di-
rected graph ((Z[t], X)-graph) Γ we understand a combinatorial graph Γ where every
edge has a direction and is labeled either by a letter from X or by an infinite word
uα ∈ FZ[t], u ∈ U,α ∈ Z[t], α > 0, denoted µ(e).

For each edge e of Γ we denote the origin of e by o(e) and the terminus of e by
t(e).

For each edge e of (Z[t], X)-graph we can introduce a formal inverse e−1 of e
with the label µ(e)−1 and the endpoints defined as o(e−1) = t(e), t(e−1) = o(e),
that is, the direction of e−1 is reversed with respect to the direction of e. For the
new edges e−1 we set (e−1)−1 = e. The new graph, endowed with this additional
structure we denote by Γ̂. Usually we will abuse the notation by disregarding the
difference between Γ and Γ̂.

A path p in Γ is a sequence of edges p = e1 · · · ek, where each ei is an edge of Γ
and the origin of each ei is the terminus of ei−1. Observe that µ(p) = µ(e1) . . . µ(ek)
is a word in the alphabet {X ∪ X−1} ∪ {uα | u ∈ U,α ∈ Z[t]} and we denote by
µ(p) a reduced infinite word µ(e1) ∗ · · · ∗ µ(ek) (this product is always defined).

A path p = e1 · · · ek in Γ is called reduced if ei 6= e−1
i+1 for all i ∈ [1, k − 1].

A path p = e1 · · · ek in Γ is called label reduced if
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1) p is reduced;
2) if ek1 · · · ek2 , k1 ≤ k2 is a subpath of p such that µ(ei) = uαi , u ∈ U,αi ∈
Z[t], i ∈ [k1, k2] and µ(ek1−1) 6= uβ , µ(ek2+1) 6= uβ for any β ∈ Z[t],
provided k1−1, k2 +1 ∈ [1, k], then α = αk1 + · · ·+αk2 6= 0 and µ(ek1−1)∗
uα = µ(ek1−1) ◦ uα, uα ∗ µ(ek2+1) = uα ◦ µ(ek2+1).

A (Z[t], X)-graph Γ is called partially folded if there are no edges e1 and e2 in
Γ with µ(e1) = µ(e2) such that o(e1) = o(e2) or t(e1) = t(e2).

In [16] partial foldings on (Z[t], X)-graphs were introduced and the following
result was proved.

Proposition 1. [16] Let Γ be a (Z[t], X)-graph, which has only a finite num-
ber of edges. Then there exists a partially folded (Z[t], X)-graph ∆, which can be
obtained from Γ by a finite number of partial foldings.

Let Γ be a (Z[t], X)-graph and u ∈ U be fixed. Vertices v1, v2 ∈ V (Γ) are called
u-equivalent (denoted v1 ∼u v2) if there exists a path p = e1 · · · ek in Γ such that
o(e1) = v1, t(ek) = v2 and µ(ei) = uα

i , αi ∈ Z[t], i ∈ [1, k]. ∼u is an equivalence
relation on vertices of Γ, so if Γ is finite then all its vertices can be divided into
a finite number of pairwise disjoint equivalence classes. Suppose, v ∈ V (Γ) is
fixed. One can take the subgraph of Γ spanned by all the vertices which are u-
equivalent to v and remove from it all edges with labels not equal to uα, α ∈ Z[t].
We denote the resulting subgraph of Γ by Compu(v) and call a u-component of v.
If v ∈ V (Γ), v0 ∈ V (Compu(v)) then one can define a set

Hu(v0) = {µ(p) | p is a reduced path in Compu(v) from v0 to v0}.
Lemma 2. [16] Let Γ be a (Z[t], X)-graph and v ∈ V (Γ), v0 ∈ V (Compu(v)).

Then
(1) Hu(v0) is a subgroup of R(Z[t], X);
(2) Hu(v0) is isomorphic to a subgroup of Z[t];
(3) if Compu(v) is a finite graph, then Hu(v0) is finitely generated;
(4) if v1 ∈ V (Compu(v)) then Hu(v0) ' Hu(v1).

Following [16] one can introduce operations on u-components which are called
u-foldings. One of the most important properties of u-foldings is that they do not
change subgroups associated with u-components.

Lemma 3. [16] Let Γ be a (Z[t], X)-graph, v ∈ V (Γ) and C = Compu(v) be
finite. Then there exist a (Z[t], X)-graph ∆ obtained from Γ by finitely many u-
foldings such that v′ ∈ V (∆) corresponds to v and C ′ = Compu(v′) consists of a
simple positively oriented path PC′ , and some edges that are not in PC′ connecting
some pairs of vertices in PC′ .

C ′ in Lemma 3 is called a reduced u-component. Since PC′ is a simple path
there exists a vertex zC′ ∈ V (PC′) which is an origin of only one positive edge in
PC′ . zC′ is called a base-point of C ′.

It turns out that any finite reduced u-component C in a (Z[t], X)-graph is
characterized completely by the pair (PC ,Hu(zC)) in the following sense. For any
reduced path p in C there exists a unique reduced subpath q (denoted q = [p]) of PC

with the same endpoints as p, such that µ(p)∗µ(q)
−1 ∈ Hu(zC). Moreover, let PC =

f1 · · · fm, where o(f1) = zC , v0 = zC , vi = t(fi), i ∈ [1,m] and let p0, p1, . . . , pm be
reduced subpaths of PC such that o(pi) = zC , t(pi) = vi, i ∈ [0,m]. The set of paths
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p0, p1, . . . , pm is called a set of path representatives associated with C (denoted by
Rep(C)).

Lemma 4. [16] Let C be a finite reduced u-component in a (Z[t], X)-graph Γ,
v ∈ V (C) and let α ∈ Z[t]. If µ(pi)∗µ(pj)

−1
/∈ Hu(zC) for any pi, pj ∈ Rep(C), i 6=

j then either there exists a unique reduced path p in PC such that o(p) = v and
uα ∈ µ(p) ∗Hu(zC) or there exists no path q in C with this property.

If C is reduced and Rep(C) satisfies the condition from Lemma 4 then we call
C a u-folded u-component.

2.5. Languages associated with (Z[t], X)-graphs. Let Γ be a (Z[t], X)-
graph and let v be a vertex of Γ. We define the language of Γ with respect to v
as

L(Γ, v) = {µ(p)| p is a reduced path in Γ from v to v}.
Lemma 5. [16] Let Γ be a finite (Z[t], X)-graph and let v ∈ V (Γ). Then L(Γ, v)

is a subgroup of FZ[t].

Lemma 6. [16] Let Γ be a finite (Z[t], X)-graph and let v ∈ V (Γ). Let ∆1 be a
(Z[t], X)-graph obtained from Γ by a single partial folding and let ∆2 be a (Z[t], X)-
graph obtained from Γ by a single u-folding for some u ∈ U , so that v1 ∈ V (∆1)
and v2 ∈ V (∆2) correspond to v. Then

L(Γ, v) = L(∆1, v1) = L(∆2, v2).

Let Γ be a (Z[t], X)-graph and p = e1 · · · ek be a reduced path in Γ. Let
g ∈ Gn+1 −Gn and let

π(g) = π(h1)uβ1π(h2) · · ·uβlπ(hl+1),

be the standard decompostion of g, where u = max{U(g)}. We write

µ(p) = π(g)

if p can be subdivided into subpaths

p = p1d1p2 · · · dlpl+1,

where di is a path in some u-component of Γ and pi is a path in Γ which does not
contain edges labeled by uα, α ∈ Z[t], so that µ(di) = uβi , i ∈ [1, l] and µ(pi) =
π(hi), i ∈ [1, l + 1] is defined recursively in the same way. Observe that if g =
x1 · · ·xr ∈ F then µ(p) = π(g) if k = r and µ(ei) = xi for every i ∈ [1, k].

Let Γ be a finite (Z[t], X)-graph. Since Γ is finite, the set of elements u ∈ U
such that there exists an edge e in Γ labeled by uα, α ∈ Z[t] is finite and ordered
with the order induced from U . Thus one can associate with Γ an ordered set
U(Γ) = {u1, . . . , uN}, N > 0, ui ∈ U, ui < uj for i < j.

If u ∈ U(Γ) then by degu(Γ) we denote the maximal degree of infinite exponents
of u, which are labels of edges in Γ, that is,

degu(Γ) = max{deg(α) | µ(e) = uα for some e ∈ E(Γ)}.
It is easy to see that degu(Γ) is invariant under partial and U -foldings, and

degu(Γ) ≥ max
g∈L(Γ,v)

{degu(g)}

for any v ∈ V (Γ).
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Let ui ∈ U(Γ) be fixed and Γ(i) be a subgraph of Γ which consists only of edges
e ∈ E(Γ) such that either µ(e) = x ∈ X± or µ(e) = uα

j , α ∈ Z[t], j ≤ i. Γ(i) is
called an i-level graph of Γ (by 0-level graph we understand a subgraph of Γ which
consists only of edges with labels from X) and the level (denoted l(Γ)) of Γ is the
minimal n ∈ N such that Γ = Γ(n). Observe that Γ(i) may not be connected for
some i < l(Γ), but still one can apply to Γ(i) partial and u-foldings, u ∈ U(Γ).

A finite connected (Z[t], X)-graph ∆ is called U -folded if for any un ∈ U(∆)
the following conditions are satisfied:

(i) ∆ is partially folded;
(ii) all un-components of ∆ are un-folded and isolated, that is, there exists no

reduced path p with µ(p) = uk
n, k ∈ Z in ∆(n − 1) such that p connects

two different un-components of ∆;
(iii) if C is a un-component of ∆, e ∈ E(PC) and µ(e) = uk

n, k ∈ Z then
there exists a unique label reduced path p in ∆(n − 1) such that o(p) =
o(e), t(p) = t(e), µ(p) = π(un)k;

(iv) if C is a un-component of ∆ and v ∈ V (C) ∩ V (∆(n − 1)) then there
exists a unique label reduced path p in ∆(n− 1) such that o(p) = t(p) =
v, µ(p) = π(un)k, k ∈ Z and Hun(v) ∩ 〈un〉 = 〈uk

n〉;
(v) if C is a un-component of ∆ and v1, v2 ∈ V (C) are connected by a reduced

path p in PC then either p consists only of edges labeled by finite exponents
of un or there exists no number kp ∈ Z such that µ(p) ∗ u−kp ∈ Hun(v1);

(vi) for any un-component C of ∆ and two of its vertices v1, v2, v1 6= v2 which
are joined by some path p in PC with o(p) = v1, t(p) = v2 there exists no
reduced path r in ∆(n−1) such that o(r) = v1, t(r) = v2, µ(r) = uk

n, k ∈ Z
and µ(p) ∗ µ(r)

−1
/∈ Hun(v1);

(vii) for any un-component C of ∆, its vertex v and a reduced path p in ∆(n−1)
such that o(p) = v, µ(p) = uk

n, k ∈ Z it follows that t(p) ∈ V (C);
(viii) (a) for any un-component C of ∆, its vertex v and a label reduced path

p in ∆(n − 1) such that o(p) = v, µ(p) = w, w = uδ
n ◦ c, δ ∈ {1,−1},

there exists a label reduced path q = q1q2 in ∆(n − 1) such that
o(q) = v, t(q) = t(q2) = t(p), µ(q1) = π(un)δ, t(q1) ∈ V (C);

(b) for any un-component C of ∆, its vertex v and a label reduced path
p in ∆(n) such that p = z1z2, o(p) = v, z1 ∈ ∆(n − 1), µ(z1) =
w1, µ(z2) = w2 ◦ c = uγ

n ◦ c1, u
δ
n = w1 ◦ w2,, there exists a label

reduced path q = q1q2 in ∆(n− 1) such that o(q) = v, t(q) = t(q2) =
t(p), µ(q1) = π(un)δ, t(q1) ∈ V (C);

(c) for any un-component C of ∆, its vertex v and a path p in ∆(n− 1)
such that o(p) = v, µ(p) = w1, u

δ
n = w1 ◦ w2, w2 6= ε, δ ∈ {1,−1}, if

there exists an edge e′ in C such that o(e′) = v, µ(e′) = uγ , γδ > 0
then there exists a label reduced path p′ in ∆(n−1) such that o(p′) =
v, µ(p′) = uδ

n, t(p′) ∈ V (C) and p is an initial subpath of p′;
(ix) for any reduced path p in ∆ with µ(p) = w there exists a unique label

reduced path q such that o(q) = o(p), t(q) = t(p), µ(q) = π(w);
(x) for the standard decomposition π(g) of any g ∈ FZ[t] and any v ∈ V (∆)

either there exists a unique label reduced path p in ∆ starting at v such
that µ(p) = π(g) or for any path q in ∆ starting at v it follows that
µ(q) 6= g.
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Proposition 2. [16] Let Γ be a finite connected (Z[t], X)-graph. Then there
exists a U -folded (Z[t], X)-graph ∆, which is obtained from Γ by a finite sequence
of partial and u-foldings. Moreover ∆ can be found effectively.

Proposition 3. [16] Let H be a finitely generated subgroup of FZ[t]. Then
there exists a U -folded (Z[t], X)-graph Γ and a vertex v of Γ such that L(Γ, v) = H.

Proposition 4. [16] There is an algorithm which, given finitely many standard
decompositions of elements h1, . . . , hk from FZ[t], constructs a U -folded (Z[t], X)-
graph Γ, such that L(Γ, v) = 〈h1, . . . , hk〉.

The properties of U -folded graphs make it possible to solve the membership
problem in finitely generated subgroups of FZ[t].

Proposition 5. [16] Every finitely generated subgroup of FZ[t] has a solvable
membership problem. That is, there exists an algorithm which, given finitely many
standard decompositions of elements g, h1, . . . , hk from FZ[t], decides whether or
not g belongs to the subgroup H = 〈h1, . . . , hn〉 of FZ[t].

3. Intersection of two finitely generated subgroups of FZ[t]

In [8] a very convenient and simple way to compute an intersection of two
subgroups of a free group was shown, which used the notion of a product-graph.
Recall that if Θ1, Θ2 are graphs labeled by some alphabet A, then the product-
graph Θ1 ×Θ2 is defined as follows:

(1) the vertex set of Θ1 ×Θ2 is the set V (Θ1)× V (Θ2);
(2) for a pair of vertices (s, t), (s′, t′) ∈ V (Θ1 × Θ2) (so that s, s′ ∈

V (Θ1), t, t′ ∈ V (Θ2)) and a letter z ∈ A an edge labeled by z with
origin (s, t) and terminus (s′, t′) is introduced, provided there is an edge
labeled by z from s to s′ in Θ1 and there is an edge labeled by z from t
to t′ in Θ2.

In Subsection 3.1 we introduce a similar notion, adjusted to the case of U -folded
(Z[t], X)-graphs and then in Subsection 3.2 we show how to find an intersection of
two finitely generated subgroups of FZ[t] pretty much in the same way as in a free
group.

3.1. Product-graph of U-folded (Z[t], X)-graphs. Observe that any finite
(Z[t], X)-graph Γ is characterized by its u-components where u ∈ U(Γ), and any
u-component is associated with a free abelian group of a finite rank, its subgroup
and a finite set of coset representatives of this subgroup. Thus, in order to realize
the idea of a product-graph in the case of (Z[t], X)-graphs we have to show how to
construct the product-graph of two u-components and then introduce the notion in
general.

Notice that if H and K are subgroups of a group G and u, v ∈ G, then either
uH ∩ vK = w(H ∩ K) for some w ∈ G or the intersection of these two cosets is
empty. We frequently use this fact below.

Recall from [16] that if Θ is a finite U -folded (Z[t], X)-graph, v ∈ V (Θ) and
K = Compu(v), where u ∈ U(Θ) then K is finite and by Lemma 2, Hu(v) is
isomorphic to a subgroup H of Zn(K), where n(K) = degu(K)+1. Moreover, there
exist finitely many positive subpaths p0, p1, . . . , pn of PK , all starting at zK , which
form a set of path representatives Rep(K), such that any w ∈ V (K) is associated
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with pw ∈ Rep(K), where µ(pw) = uhw and hw is a coset representative of H in
Zn(K). Thus, any w ∈ V (K) can be associated with a coset representative of H

in Zn(K). On the other hand, let w ∈ V (K) be fixed and let µ(pi) ∗ µ(pw)
−1

=
uhi−hw , i ∈ [1, n]. Then by Lemma 4 it follows that h0−hw, h1−hw, . . . , hn−hw

are coset representatives in Zn(K) by H.

Definition 1. Let Θ1, Θ2 be finite U -folded (Z[t], X)-graphs. We define a
partial product-graph Θ1 ¦Θ2 as follows:

(1) the vertex set of Θ1 ¦Θ2 is the set V (Θ1)× V (Θ2);
(2) for a pair of vertices (s1, t1), (s2, t2) ∈ V (Θ1 ¦ Θ2) (so that s1, s2 ∈

V (Θ1), t1, t2 ∈ V (Θ2)) and a letter x ∈ X, we add an edge labeled by
x with origin (s1, t1) and terminus (s2, t2), provided there is an edge la-
beled by x from s1 to s2 in Θ1 and there is an edge labeled by x from t1
to t2 in Θ2;

(3) for a pair of vertices (s1, t1), (s2, t2) ∈ V (Θ1 ¦ Θ2) (so that s1, s2 ∈
V (Θ1), t1, t2 ∈ V (Θ2)) and u ∈ U(Θ1)∩U(Θ2), we add an edge labeled by
uf with origin (s1, t1) and terminus (s2, t2), provided

a) s1 ∼u s2, t1 ∼u t2 (denote K1 = Compu(s1),K2 = Compu(t1));
b) h1, h2 are coset representatives of Hu(s1) in Zn(K1) corresponding to

s1, s2;
c) g1, g2 are coset representatives of Hu(t1) in Zn(K2) corresponding to

t1, t2;
d) (h2 − h1 + Hu(s1)) ∩ (g2 − g1 + Hu(t1)) = f + Hu(s1) ∩ Hu(t1),

where f is a coset representative of Hu(s1) ∩ Hu(t1) in Zn for n =
max{n(K1), n(K2)}.

Observe that in general K1 ¦ K2 consists of several u-components of Θ1 ¦ Θ2

because K1 ¦K2 can be disconnected.

Lemma 7. Let Θ1, Θ2 be finite U -folded (Z[t], X)-graphs, u ∈ U(Θ1) ∩ U(Θ2)
and let K1,K2 be non-empty u-components of Θ1, Θ2 correspondingly. Denote Hi =
Hu(vi), where vi ∈ V (Ki), i = 1, 2 and H = Hu(v1) ∩Hu(v2). Then

a) if there exists an edge e1 ∈ E(K1 ¦K2) such that o(e1) = (s1, t1), t(e1) =
(s2, t2) and µ(e1) = up1 then there exists also an edge e2 ∈ E(K1 ¦ K2)
such that o(e2) = (s2, t2), t(e2) = (s1, t1) and µ(e2) = up2 ;

b) if p = e1 · · · ek is a loop in K1¦K2 such that µ(ei) = ufi then f1+· · ·+fk ∈
H;

c) if p = e1 · · · ek is a simple path in K1 ¦ K2 such that µ(ei) = ufi and
f1 + · · ·+ fk 6= 0 then f1 + · · ·+ fk /∈ H.

Proof. Let n = max{n(K1), n(K2)}.
a) The existence of e1 means that

(h2 − h1 + H1) ∩ (g2 − g1 + H2) = f + H,

where h1, h2 are coset representatives of H1 in Zn corresponding to s1, s2 , g1, g2

are coset representatives of H2 in Zn corresponding to t1, t2 and f is a coset repre-
sentative of H in Zn. Thus we have

h2 − h1 + a1 = g2 − g1 + a2 = f + c,
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where ai ∈ Hi, c ∈ H. So

h1 − h2 + b1 = g1 − g2 + b2 = −f − c = f ′ + c′

for bi ∈ Hi, c
′ ∈ H,−f ∈ f ′ + H, which means that

(h1 − h2 + H1) ∩ (g1 − g2 + H2)

is not empty, therefore there exists an edge e2 ∈ E(K1 × K2) with o(e2) =
(s2, t2), t(e2) = (s1, t1) and µ(e2) = uf ′ .

b) Suppose we have a cycle p = e1 · · · ek, µ(ei) = ufi in K1×K2. By a) we can
assume all fi to be positive. We have o(ei) = (si, ti), t(ei) = (si+1, ti+1), (s1, t1) =
(sk+1, tk+1), i ∈ [1, k]. By Definition 1, there exist a coset representative gi of H1

in Zn corresponding to si and a coset representative hi of H2 in Zn corresponding
to ti such that for an edge ei we have

(hi+1 − hi + H1) ∩ (gi+1 − gi + H2) = fi + H,

where i ∈ [1, k]. Thus,

hi+1 − hi + ai = gi+1 − gi + bi = fi + ci,

for some ai ∈ H1, bi ∈ H2, ci ∈ H. So, summing up the above equalities for all
i ∈ [1, k] we obtain

a1 + · · ·+ ak = b1 + · · ·+ bk = f1 + · · ·+ fk + c,

for c ∈ H and it follows f1 + · · ·+ fk ∈ H.
c) Suppose we have a simple path p = e1 · · · ek, µ(ei) = ufi in K1 × K2. We

have o(ei) = (si, ti), t(ei) = (si+1, ti+1), i ∈ [1, k]. By Definition 1, there exist a
coset representative gi of H1 in Zn corresponding to si and a coset representative
hi of H2 in Zn corresponding to ti such that for an edge ei we have

(hi+1 − hi + H1) ∩ (gi+1 − gi + H2) = fi + H,

where i ∈ [1, k]. That is,

hi+1 − hi + ai = gi+1 − gi + bi = fi + ci,

for some ai ∈ H1, bi ∈ H2, ci ∈ H. We sum up the above equalities for all i ∈ [1, k]
and we obtain

hk+1 − h1 + a = gk+1 − g1 + b = f1 + · · ·+ fk + c,

where a ∈ H1, b ∈ H1, c ∈ H. Hence,

(hk+1 − h1 + H1) ∩ (gk+1 − g1 + H2)

is not empty, so there exists an edge e ∈ E(K1 ×K2) from (s1, t1) to (sk+1, tk+1)
labeled by uα and α /∈ H. Since q = e1 · · · eke−1 is a cycle in K1 ×K2, it follows
from b) that f1 + · · ·+ fk − α ∈ H, so, f1 + · · ·+ fk+1 /∈ H.

¤

Definition 2. Let Θ1, Θ2 be finite U -folded (Z[t], X)-graphs. We define a
product-graph Θ1 ×Θ2 as follows:

(1) the vertex set of Θ1 ×Θ2 is V (Θ1 ¦Θ2);
(2) for any u-component K of Θ1 ¦ Θ2 choose a single vertex vK ∈ V (K)

and let V (u) be the set of all chosen vertices in Θ1 ¦ Θ2 for a fixed u ∈
U(Θ1) ∩ U(Θ2);
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(3) for any v = (v1, v2) ∈ V (u) let Hu(v1) ∩ Hu(v2) = 〈h1, . . . , hk〉 and let
E(v) be a bouquet of edge-loops e1, . . . , ek labeled by uhi , i ∈ [1, k];

(4) the edge set of Θ1×Θ2 is obtained from E(Θ1 ¦Θ2) by attaching to every
v ∈ V (u), u ∈ U(Θ1) ∩ U(Θ2) a graph E(v).

Lemma 8. Let Θ1, Θ2 be finite U -folded (Z[t], X)-graphs, u ∈ U(Θ1) ∩ U(Θ2)
and let Ki be a u-component of Θi, i = 1, 2. Then

a) if v = (v1, v2) ∈ V (K1 × K2) and Hi = Hu(vi), i = 1, 2 then Hu(v) '
Hu(v1) ∩Hu(v2);

b) if uh1 , . . . , uhk are reduced labels of all simple paths starting at v ∈ V (K1×
K2) in K then h1, . . . , hk is a system of coset representatives of Hu(v) in
Zn, where n = max{n(K1), n(K2)}.

Proof. a) Hu(v) is generated by all loops at v and from the definition of Θ1×Θ2

it follows that Hu(v1) ∩ Hu(v2) ⊆ Hu(v). On the other hand, in view of Lemma
7.b) we have Hu(v) ⊆ Hu(v1) ∩Hu(v2).

b) Follows from Lemma 7.c).
¤

Observe that Θ1×Θ2 is partially folded but not necessarily U -folded. However,
all u-components in Θ1 ×Θ2 are complete and u-folded.

Lemma 9. Let Θ1, Θ2 be finite U -folded (Z[t], X)-graphs and let g ∈ FZ[t]

be such that there exist label reduced paths p1, p2 in Θ1,Θ2 correspondingly with
µ(p1) = µ(p2) = π(g). Then there exists a path p in Θ1 × Θ2 such that o(p) =
(o(p1), o(p2)), t(p) = (t(p1), t(p2)) and µ(p) = π(g).

Proof. Let
π(g) = π(g1)wα1π(g2) · · ·wαkπ(gk+1).

and let li = min{m | zi ∈ Θi(m)}, i = 1, 2. Observe that l1 = l2 and we denote
L = n1.

We use the induction on L.
If L = 0, that is, g ∈ F (X) then the existence of p follows from the definition

of Θ1 ×Θ2.
Assume the statement to be true for L < n and let L = n.
Since Θ1, Θ2 are U -folded, there are unique paths y1 ∈ Θ1(L) and z1 ∈ Θ2(L)

such that o(y1) = o(p1), o(z1) = o(p2), µ(y1) = µ(z1) = π(g1) such that t(y1) ∈
V (K1), t(z1) ∈ V (K2) for some w-components K1, K2 in Θ1,Θ2 correspondingly.
By the induction hypothesis there exists a path q1 in Θ1 × Θ2 such that o(q1) =
(o(y1), o(z1)), t(q1) = (t(y1), t(z1)) and µ(q1) = π(g1). Observe that t(q1) belongs
to some connected w-component K1 ×K2 in Θ1 ×Θ2.

Since pi is a path in Θi, i = 1, 2, there are continuations of y1 in K1 and z1 in K2.
These continuations are paths y2 ∈ K1, z2 ∈ K2 (not unique) such that µ(y2) =
µ(z2) = wα1 with fixed terminal vertices t(y2) and t(z2) which are completely
determined by wα1 . Let n = max{n(K1), n(K2)} and H1,H2 be subgroups of Zn

such that H1 = Hw(o(y2)),H2 = Hw(o(z2)) and denote H = H1 ∩H2.
There exist coset representatives β1, γ1 of H1 in Zn which correspond to o(y2),

t(y2) respectively and coset representatives β2, γ2 of H2 in Zn which correspond to
o(z2), t(z2) respectively, such that

α1 ∈ (γ1 − β1 + H1) ∩ (γ2 − β2 + H2) 6= ∅.
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By definition of Θ1 × Θ2, there exists a coset representative δ1 of H in Zn and a
path q2, µ(q2) = uα1 from (o(y2), o(z2)) to (t(y2), t(z2)) such that

(γ1 − β1 + H1) ∩ (γ2 − β2 + H2) = δ1 + H = α1 + H.

Thus, we have a continuation q2 of q1 which has a fixed terminus in K1 × K2

determined by wα1 .
Now, the induction on k, the number of entries of infinite exponents of w,

produces the required path p
¤

Corollary 1. Let Θ1, Θ2 be finite U -folded (Z[t], X)-graphs and vi ∈ V (Θi)
for i = 1, 2. Then

L(Θ1 ×Θ2, (v1, v2)) = L(Θ1, v1) ∩ L(Θ2, v2).

Proof.
L(Θ1 ×Θ2, (v1, v2)) ⊆ L(Θ1, v1) ∩ L(Θ2, v2)

follows directly from the definition of Θ1 ×Θ2 and

L(Θ1, v1) ∩ L(Θ2, v2) ⊆ L(Θ1 ×Θ2, (v1, v2))

follows from Lemma 9.
¤

It is easy to see that in fact a more general result holds. Let Θ be a finite
U -folded (Z[t], X)-graph and v, w ∈ V (Θ). Then by

L(Θ, v, w) = {µ(p) | p is a path in Θ such that o(p) = v, t(p) = w}
we denote the language of Θ with respect to the initial vertex v and the terminal
vertex w. Observe that if v = w then L(Θ, v, w) coincides with L(Θ, v). The
following result is proved in the same way as Corollary 1.

Corollary 2. Let Θ1, Θ2 be finite U -folded (Z[t], X)-graphs and vi, wi ∈
V (Θi) for i = 1, 2. Then

L(Θ1 ×Θ2, (v1, v2), (w1, w2)) = L(Θ1, v1, w1) ∩ L(Θ2, v2, w2).

Finally, one can get further generalization defining the language of a finite
U -folded (Z[t], X)-graph taking instead of single initial and terminal vertices some
finite sets of vertices. In this case reformulation and proof of Corollary 2 is straight-
forward.

3.2. Finding intersection of two finitely generated subgroups of FZ[t].
Using the construction of a product-graph one can find effectively the intersection
of two finitely generated subgroups of FZ[t].

From the definition of a product-graph the following result follows immediately.

Lemma 10. Let Θ1,Θ2 be finite U -folded (Z[t], X)-graphs. Then Θ1 ×Θ2 can
be constructed effectively.

Theorem 4. There exists an algorithm which, given finitely many standard
decompositions of elements h1, . . . , hk, g1, . . . , gm from FZ[t], finds the generators of
H ∩K which is finitely generated, where H = 〈h1, . . . , hk〉,K = 〈g1, . . . , gm〉.
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Proof. By Proposition 4 there exists an algorithm which constructs U -folded
(Z[t], X)-graphs Γ1 and Γ2 such that L(Γ1, v1) = H, L(Γ2, v2) = K, vi ∈ V (Γi).
Then by Lemma 10 one can construct Γ1 × Γ2 effectively and by Proposition 2
there exists a U -folded (Z[t], X)-graph Γ3 such that

L(Γ3, (v1, v2)) = L(Γ1 × Γ2, (v1, v2))

and Γ3 can be found effectively. Finally, by Corollary 1 L(Γ3, (v1, v2)) = L(Γ1, v1)∩
L(Γ2, v2) = H ∩K. Since Γ3 is finite, one can find all simple loops at (v1, v2) and
their reduced labels generate L(Γ3, (v1, v2)) = H ∩K.

¤
The following result follows directly from Theorem 4.

Corollary 3. (Howson Property) The intersection of two finitely generated
subgroups of FZ[t] is finitely generated.

Corollary 2 makes it possible to find intersections of cosets by finitely generated
subgroups of FZ[t].

Theorem 5. There exists an algorithm which, given finitely many standard
decompositions of elements h1, . . . , hk, f1, . . . fm, w1, w2 from FZ[t], finds the in-
tersection

H ∩ (w1 ∗K ∗ w2),

where H = 〈h1, . . . , hk〉, K = 〈f1, . . . , fm〉.
Proof. Take a path p labeled by the standard decomposition of w1, a path

q labeled by the standard decomposition of w2 and Γ(H), Γ(K) such that H =
L(Γ(H), 1H),K = L(Γ(K), 1K). Identify t(p), o(q) and 1K . Denote the obtained
(Z[t], X)-graph by ∆′ and notice that

w1 ∗K ∗ w2 = {µ(r) | r is a path in ∆′ with o(r) = o(p), t(r) = t(q)}.
By Proposition 2, one can obtain effectively a U -folded (Z[t], X)-graph ∆ from ∆′

and with abuse of notation we call the vertices of ∆ corresponding to o(p), t(q) ∈ ∆′

again by o(p) and t(q).
By Lemma 10, one can construct effectively Γ(H)×∆ and we have

H ∩ (w1 ∗K ∗ w2) =
{

µ(r)
r is a path in Γ(H)×∆ such that
o(r) = (1H , o(p)), t(r) = (1H , t(q))

}
.

¤
Theorem 4 and Corollary 3 can be reformulated for finitely generated fully

residually free groups.

Theorem 6. Let H = 〈h1, . . . , hk〉, K = 〈g1, . . . , gm〉 be finitely generated sub-
groups of a finitely generated fully residually free group G. There exists an algorithm
which finds the generators of H ∩K, which is finitely generated.

Proof. By Theorem 3 one can effectively obtain generators of G,H and K
viewed as infinite words and by Proposition 8.3 [15] compute their standard de-
compositions.

By Proposition 4 one can effectively find finite U -folded (Z[t], X)-graphs Γ(G),
Γ(H) and Γ(K), such that G = L(Γ(G), 1G), H = L(Γ(H), 1H), K = L(Γ(K), 1K)
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for some 1G ∈ V (Γ(G)), 1H ∈ V (Γ(H)), 1K ∈ V (Γ(K)) and the result follows from
Theorem 4.

¤
Corollary 4. The intersection of two finitely generated subgroups of a finitely

generated fully residually free group G is finitely generated in G.

4. Properties of intersections of finitely generated subgroups of FZ[t]

In this section we investigate properties of U -folding graphs in the connection
with the malnormality problem. Recall that a subgroup H of a group G is called
malnormal if for any g ∈ G−H

gHg−1 ∩H = 1.

Correspondingly, the malnormality problem is decidable in G if there exists an
algorithm which, given finitely many elements h1, . . . , hn ∈ G decides if H =
〈h1, . . . , hn〉 is malnormal in G.

From now on if g ∈ FZ[t] then by C(g) we denote the centralizer of g in FZ[t],
that is,

C(g) = CF Z[t](g) '
∞⊕

n=0

〈gn〉.

The following two results are analogous to respectively Lemma 7.5 and Propo-
sition 9.8 from [8].

Lemma 11. Let Γ be a connected U -folded (Z[t], X)-graph and u, v ∈ V (Γ) be
connected by a reduced path q such that o(q) = v, t(q) = u, µ(q) = g. If H =
L(Γ, v), K = L(Γ, u) then H = g ∗K ∗ g−1.

Proof. Let p be a reduced loop at u in Γ. We have automatically µ(p) = k ∈ K.
Then the path p′ = qpq−1 is a loop at v such that µ(p′) = µ(q)µ(p)µ(q)−1. Thus we
have µ(p′) = µ(q) ∗ µ(p) ∗ (µ(q))

−1
= g ∗ k ∗ g−1. The path p′ may be not reduced,

so it can be transformed by finitely many path-reductions to a reduced path p′′

such that o(p′′) = o(p′) = t(p′′) = t(p′) = v, µ(p′′) = µ(p′). Hence µ(p′′) ∈ H and
µ(p′′) = g ∗ k ∗ g−1 ∈ H. That is, g ∗K ∗ g−1 ⊆ H. A symmetric argument shows
that g−1 ∗H ∗ g ⊆ K, thst is, H ⊆ g ∗K ∗ g−1 and therefore H = g ∗K ∗ g−1, as
required.

¤
Lemma 12. Let H, K ≤ FZ[t] be finitely generated and Γ(H), Γ(K) be U -folded

(Z[t], X)-graphs such that H = L(Γ(H), 1H), K = L(Γ(K), 1K) for some 1H ∈
V (Γ(H)), 1K ∈ V (Γ(K)). Then for any vertex (v, u) of Γ(H)× Γ(K) the subgroup
L(Γ(H)× Γ(K), (v, u)) is conjugate to a subgroup of the form g ∗H ∗ g−1 ∩K for
some g ∈ FZ[t]. Moreover, if (v, u) does not belong to the connected component of
(1H , 1K), then the element g can be chosen so that K ∗ g ∗H 6= K ∗H.

Proof. Let pv be a label reduced path in Γ(H) from 1H to v such that µ(pv) =
w1. Similarly, let pu be a label reduced path in Γ(K) from 1K to u such that µ(pu) =
w2. By Lemma 11, L(Γ(H), v) = w−1

1 ∗H ∗ w1 and L(Γ(K), u) = w−1
2 ∗K ∗ w2.

Therefore, by Corollary 1

L(Γ(H)× Γ(K), (v, u)) = w−1
1 ∗H ∗ w1 ∩ w−1

2 ∗K ∗ w2
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which is conjugate to

(w2 ∗ w−1
1 ) ∗H ∗ (w1 ∗ w−1

2 ) ∩K

and g = w2 ∗ w−1
1 satisfies the requirement of the proposition.

Suppose that (v, u) does not belong to the connected component of (1H , 1K) in
Γ(H)× Γ(K) but g = w2 ∗ w−1

1 ∈ K ∗H. Thus, w2 ∗ w−1
1 = k ∗ h for some k ∈ K,

h ∈ H and therefore
w = k−1 ∗ w2 = h ∗ w1.

Since k ∈ K, h ∈ H then there exists a loop p1 at 1K in Γ(K) such that µ(p1) = k

and a loop p2 at 1H in Γ(H) such that µ(p2) = h.
Then µ(p1pu) = w, µ(p2pv) = w and there are a unique label reduced path p′1

in Γ(K) from 1K to u with label π(w) and a unique label reduced path p′2 in Γ(H)
from 1H to v with label π(w).

Now by Lemma 9, there exists a path in Γ(H)× Γ(K) from (1H , 1K) to (v, u)
with the label π(w). However, this contradicts our assumption that (v, u) does not
belong to the connected component of (1H , 1K).

Thus, g /∈ K ∗H and K ∗ g ∗H 6= K ∗H, as required.
¤

At first we prove several auxiliary results which will be used in proofs of main
technical results of this section.

Lemma 13. Let H, K ≤ FZ[t] be finitely generated and Γ(H), Γ(K) be U -folded
(Z[t], X)-graphs such that H = L(Γ(H), 1H), K = L(Γ(K), 1K) for some 1H ∈
V (Γ(H)), 1K ∈ V (Γ(K)). Let g ∈ F (X), h ∈ H ∩F (X), f ∈ K ∩F (X) be such that
g ∗ h ∗ g−1 = f . Then g can be represented as a product g = y ∗ z, so that, there
exists a path p in Γ(H) starting at 1H with µ(p) = z−1 and there exists a path q in
Γ(K) starting at 1K with µ(q) = y.

Proof. Consider two cases.
1. h does not cancel completely in g ∗ h ∗ g−1.
Then, h = a ◦ h1 ◦ b, g = g1 ◦ a−1 = g2 ◦ b and f = g1 ◦ h1 ◦ g−1

2 . h ∈ H, so,
there exists a loop at 1H in Γ(H) which is labeled by h and since h ∈ F (X), this
loop has an initial subpath labeled by a. On the other hand, f ∈ K, so, there exists
a loop at 1K in Γ(H) which is labeled by f and since h ∈ F (X), this loop has an
initial subpath labeled by g1. So, g = g1 ◦ a−1 is the required representation of g.

2. h cancels completely in g ∗ h ∗ g−1.
We use the induction on |g|.
If |g| = 1, that is, g ∈ X then the statement is obviously true. Assume that the

statement is proved for any g such that |g| < m and any subgroups H, K ≤ FZ[t],
which satisfy the conditions of the lemma. Let |g| = m.

a) h cancels completely in g ∗ h (similarly in h ∗ g−1).
We have g = g1 ◦ h−1 so g ∗ h ∗ g−1 = g1 ∗ (h ◦ g−1

1 ) = f ∈ K. By the induction
hypothesis, since |g1| < |g|, g1 can be represented as a product g1 = y1 ∗ z1, so that
there exist a path p1 in Γ(H) starting at 1H and a path q1 in Γ(K) starting at 1K ,
such that µ(p1) = z−1

1 and µ(q1) = y1. Thus, g = g1 ◦ h−1 = (y1 ∗ z1) ◦ h−1 =
y1∗(z1∗h−1). Since h ∈ H, there exists a cycle p′ at 1H in Γ(H) such that µ(p′) = h

and for the concatenation p′p1 we have o(p′p1) = 1H , µ(p′p1) = h ∗ z−1
1 .

Thus, the required product decomposition for g is g = y1 ∗ (z1 ∗ h−1).
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b) h cancels completely in g ∗ h ∗ g−1 but not in g ∗ h or h ∗ g−1.
We have h = h1 ◦ h2, g = g1 ◦ h−1

1 = g2 ◦ h2. Observe that |g1| 6= |g2| and
without loss of generality we can assume |g1| > |g2|. Then |h1| < |h2|, h2 = c ◦ h−1

1

and h = h1 ◦ c ◦ h−1
1 . Thus we have

g ∗ h ∗ g−1 = (g1 ◦ h−1
1 ) ∗ (h1 ◦ c ◦ h−1

1 ) ∗ (h1 ◦ g−1
1 ) = g1 ∗ c ∗ g−1

1 ∈ K.

Since h = h1 ◦ c ◦ h−1
1 ∈ H, there exists a label reduced path p′ such that o(p′) =

1H , t(p′) = v1 ∈ V (Γ(H)) and µ(p′) = h1. If H1 = L(Γ(H), v1),H = L(Γ(H), 1H)
then by Lemma 11 we have H = h1 ∗H1 ∗ h−1

1 .
Now, let us consider the triple g1,H1,K. Observe that ε 6= c ∈ H1, g1 ∗ c ∗

g−1
1 ∈ K. Since |g1| < |g|, by the induction hypothesis g1 can be represented as

a product g1 = y1 ∗ z1 so that there exist a path p1 in Γ(H) starting at v1 and
a path q1 in Γ(K) starting at 1K such that µ(p1) = z−1

1 and µ(q1) = y1. Thus,
g = g1 ◦ h−1

1 = (y1 ∗ z1) ◦ h−1
1 = y1 ∗ (z1 ∗ h−1

1 ). We claim that this is the required
product decomposition for g. Indeed, q1 is a path in Γ(K) starting at 1K such that
µ(q1) = y1 and p′p1 is a path in Γ(H) starting at 1H such that µ(p′p1) = h1 ∗ z−1

1 .
¤

Lemma 14. Let H, K ≤ FZ[t] be finitely generated and Γ(H), Γ(K) be U -folded
(Z[t], X)-graphs such that H = L(Γ(H), 1H), K = L(Γ(K), 1K) for some 1H ∈
V (Γ(H)), 1K ∈ V (Γ(K)). Let g ∈ FZ[t], h ∈ H, f ∈ K be such that g ∗ h ∗ g−1 = f
and max{U(g)} < max{U(h)}. Then g can be represented as a product

g = y ∗ uα ∗ z, α ∈ Z,

where there exist paths p in Γ(H) and q in Γ(K), such that o(p) = 1H , o(q) = 1K

and µ(p) = z−1, µ(q) = y, and one of the following holds
(1) α = 0;
(2) α 6= 0, u ∈ U(Γ(H))∩U(Γ(K)) and either α = ±1 or t(p) and t(q) belong

to some u-components of Γ(H) and Γ(K) respectively, so that,

Hu(t(p)) ∩ 〈u〉 = Hu(t(q)) ∩ 〈u〉 = ε

and
C(u) ∩Hz ∩Ky−1 ⊆ uα ∗Hz ∗ u−α ∩Ky−1

.

Proof. Let u = max{U(g)}, w1 = max{U(h)}, w2 = max{U(f)}. Then we have
the u-reduced form for g

g = g1 ◦ uα1 ◦ g2 ◦ · · · ◦ uαm ◦ gm+1,

the w1-reduced form f or h

h = h1 ◦ wβ1
1 ◦ h2 ◦ · · · ◦ wβr

1 ◦ hr+1,

and the w2-reduced form for f

f = f1 ◦ wγ1
2 ◦ f2 ◦ · · · ◦ wγl

2 ◦ fl+1.

Since g ∗ h ∗ g−1 = f and u < w1, it follows that w1 = w2 and l = r. Denote
w = w1 = w2.

Consider the following cases.
1. r > 1.
In this case

g ∗ h ∗ g−1 = (g ∗ h1) ◦ wβ′1 ◦ h2 ◦ · · · ◦ wβ′r ◦ (hr+1 ∗ g−1)
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is the w-reduced form for g ∗ h ∗ g−1, where β1 − β′1, βr − β′r ∈ Z. Thus, it follows
from the uniqueness of w-reduced forms that g ∗ (h1 ◦ wβ1) = f1 ◦ wγ1 and

g = (f1 ◦ wγ1) ∗ (h1 ◦ wβ1)−1

is the required decomposition of g since there exist a path p in Γ(H) starting at 1H

and a path q in Γ(K) starting at 1K such that µ(p) = h1 ◦wβ1 and µ(q) = f1 ◦wγ1 .
2. r = 1.
In this case h = h1 ◦ wβ1 ◦ h2, f = f1 ◦ wγ1 ◦ f2.
By Lemma 6.9 [15], f−1

1 ∗ g ∗ h1 = wk for some k ∈ Z. Thus, g = f1 ∗wk ∗ h−1
1

and without loss of generality we can assume k > 0. Observe that there exist a
path p in Γ(H) starting at 1H with µ(p) = h1 and a path q in Γ(K) starting at 1K

with µ(q) = f1.
If Hw(t(p)) ∩ 〈w〉 6= ε (or Hw(t(p)) ∩ 〈w〉 6= ε) then by the property (iv) of

U -folded graphs there exists a loop z at t(p) labeled by wn, n ∈ Z, n > 0. By the
property of elements from U we have π(w2) = π(w)π(w), that is, for any 0 < n1 < n
there exists a subpath z1 of z such that µ(z1) = π(wn1) = π(w) · · ·π(w)︸ ︷︷ ︸

n1times

. Thus, the

existence of an initial path z′ with o(z′) = t(p), µ(z′) = π(wk) follows.
Now, assume Hw(t(p)) ∩ 〈w〉 = Hw(t(p)) ∩ 〈w〉 = ε.
We set

H1 = h−1
1 ∗H ∗ h1, K1 = f−1

1 ∗K ∗ f1

and
h′ = (wβ1 ◦ h2) ∗ h1 = wβ ◦ d1, f ′ = (wγ1 ◦ f2) ∗ f1 = wγ ◦ d2,

where β1 − β, γ1 − γ ∈ Z. Then h′ ∈ H1, f
′ ∈ K1 and

wk ∗ h′ ∗ w−k = f ′.

By Lemma 11,
H1 = L(Γ(H), t(p)), K1 = L(Γ(K), t(q))

and we can consider the triple wk,H1,K1 instead of g, H, K.
We have wk ∗ (wβ ◦ d1) ∗ w−k = wγ ◦ d2. Consider the following cases.
a) d1 = ε

It follows that d2 = ε and h2 ∗ h1 = wm. We have a loop ph = pp1p2 at 1H

in Γ(H) such that µ(p) = π(h1), µ(p1) = wβ1 , µ(p2) = π(h2). If m 6= 0 then in
Γ(H) we have a path p′1 such that o(p′1) = t(p1), t(p′1) = o(p1), µ(p′1) = wm. So,
either we have a contradiction with the fact that Γ(H) is U -folded (the property
(vi), minimality of a w-component containing t(p) breaks) or Hw(t(p)) ∩ 〈w〉 6= ε
and we have a contradiction with our assumption. Hence, m = 0 and we have
h1 = h−1

2 , f1 = f−1
2 from, which follows

C(w) ∩H1 ∩K1 ⊆ wk ∗H1 ∗ w−k ∩K1.

b) d1 6= ε

Suppose d1 does not cancel completely in (wβ ◦ d1) ∗ w−k then we have d1 =
c ◦ w2 ◦ wn, where w−1 = w−1

2 ◦ w−1
1 , n ≤ k and wk ∗ (wβ ◦ d1) ∗ w−k = wβ+k ◦

c ◦w−1
1 ◦w−k+n+1. Observe that in Γ(H) there exists a path p1 such that o(p1) =

t(p), µ(p1) = (c ◦ w2 ◦ wn)−1. Since o(p1) belongs to w-component, by the prop-
erty (viii.a) of U -folded graphs there exists a path p2 in Γ(H) such that o(p2) =
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t(p), µ(p2) = w−n. On the other hand, in Γ(K) there exists a path q1 such that
o(q1) = t(q), µ(q1) = (wβ+k ◦ c ◦w−1

1 ◦w−k+n+1)−1. By the property (viii.b) of U -
folded graphs there exists a path q2 in Γ(K) such that o(q2) = t(q), µ(q2) = wk−n−1.
Thus, we have

wk = wk−n−1 ∗ w ∗ wn,

which is the required product decomposition.
Now, assume d1 cancels completely in (wβ ◦ d1) ∗ w−k and without loss of

generality we can assume β > 0. We have wβ ◦ d1 = wβ−n1 ◦ wn1 ◦ d1 = wβ−n1 ◦
w1 ◦wn2 , where w = w1 ◦w2, n2 ≤ k so that f ′ = wk ∗ (wβ ◦d1)∗w−k = (wβ+k−n1 ◦
w1) ∗ w−k+n2 and the length of the cancellation is less than |w|, that is, f ′ has
w−k+n2+1 as a terminal segment. Hence we have a path p1 in Γ(H) such that
o(p1) = t(p), µ(p1) = (wβ−n1 ◦ w1 ◦ wn2)−1 and a path q1 in Γ(K) such that
o(q1) = t(q), µ(q1) = ((wβ+k−n1 ◦w1) ∗w−k+n2)−1, and by the property (viii.b) of
U -folded graphs there exist a path p2 in Γ(H) such that o(p2) = t(p), µ(p2) = w−n2

and a path q2 in Γ(K) such that o(q2) = t(q), µ(q2) = wk−n2−1. Thus, we have

wk = wk−n2−1 ∗ w ∗ wn2 ,

which is the required product decomposition.
¤

Lemma 15. Let H, K ≤ FZ[t] be finitely generated and Γ(H), Γ(K) be U -folded
(Z[t], X)-graphs such that H = L(Γ(H), 1H), K = L(Γ(K), 1K) for some 1H ∈
V (Γ(H)), 1K ∈ V (Γ(K)). Let g ∈ FZ[t], h ∈ H, f ∈ K be such that g ∗ h ∗ g−1 = f
and max{U(g)} = max{U(h)}. Then g can be represented as a product

g = y ∗ uα ∗ z, α ∈ Z[t],

where there exist paths p in Γ(H) and q in Γ(K), such that o(p) = 1H , o(q) = 1K

and µ(p) = z−1, µ(q) = y, and one of the following holds
(1) α = 0;
(2) α ∈ Z[t]− Z, u ∈ U(Γ(H)) ∩ U(Γ(K));
(3) 0 6= α ∈ Z, u ∈ U(Γ(H)) ∩ U(Γ(K)) and either α = ±1 or t(p) and t(q)

belong to some u-components of Γ(H) and Γ(K) respectively, so that,

Hu(t(p)) ∩ 〈u〉 = Hu(t(q)) ∩ 〈u〉 = ε

and
C(u) ∩Hz ∩Ky−1 ⊆ uα ∗Hz ∗ u−α ∩Ky−1

.

Proof. Let u = max{U(g)} = max{U(h)} and w = max{U(f)}. Then we have
the u-reduced forms for g

g = g1 ◦ uα1 ◦ g2 ◦ · · · ◦ uαm ◦ gm+1,

h = h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβr ◦ hr+1,

and the w-reduced form for f

f = f1 ◦ wγ1 ◦ f2 ◦ · · · ◦ wγl ◦ fl+1.

We prove the lemma by the induction on the number of syllables gi or uαi in g,
which is M = 2m + 1.
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If M = 1 then g = uα
1 , α1 ∈ Z[t] − Z (g = g1 is not possible because u =

max{U(g)}) and this is already the required product decomposition of g since
u ∈ U(Γ(H)) ∩ U(Γ(K)).

Suppose the statement is proved for M < N and let M = N .
Consider

g ∗ h ∗ g−1 = g ∗ (h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβr ◦ hr+1) ∗ g =

= f1 ◦ wγ1
1 ◦ f2 ◦ · · · ◦ wγl

1 ◦ fl+1 = f.

Depending on the cancellation in (uαm ◦ gm+1) ∗ h ∗ (g−1
m+1 ◦ u−αm) we have the

following cases.
Case I. uαm ∗ gm+1 ∗h1 ◦uβ1 ∈ 〈u〉 (similarly uβr ∗hr+1 ∗ g−1

m+1 ∗u−αm ∈ 〈u〉).
By Lemma 6.9 [15], gm+1 ∗ h1 = uk1 and αm + β1 ∈ Z. Without loss of

generality we can assume αm > 0, β1 < 0. Then we have

uαm = u−β1 ∗ uk2 , gm+1 = uk1 ∗ h−1
1

and
uαm ∗ gm+1 = u−β1 ∗ uk2 ∗ uk1 ∗ h−1

1 = uk1+k2 ∗ (u−β1 ∗ h−1
1 ).

Denote g′ = g1 ◦ uα1 ◦ g2 ◦ · · · ◦ gm, so,

g = g′ ◦ (uαm ◦ gm+1) = (g′ ∗ uk1+k2) ∗ (u−β1 ∗ h−1
1 ).

Observe that there exists a path p′ in Γ(H) such that o(p′) = 1H , t(p′) = v1 ∈
V (Γ(H)) and µ(p′) = h1 ◦ uβ1 . If H1 = L(Γ(H), v1),H = L(Γ(H), 1H) then by
Lemma 11 we have

H = (h1 ◦ uβ1) ∗H1 ∗ (h1 ◦ uβ1)−1

and we consider the triple g′′ = (g′ ∗ uk1+k2), H1, K instead of g, H, K. By the
induction hypothesis we have the product decomposition

g′′ = y1 ∗ uα
1 ∗ z1, u1 ∈ U(Γ(H)) ∩ U(Γ(K)),

so that there exist a path p1 in Γ(H) starting at v1 and a path q1 in Γ(K) starting
at 1K such that µ(p1) = z−1

1 and µ(q1) = y1, and if α is finite then the conditions
listed in the statement of the lemma hold. Thus we have the required product
decomposition

g = (y1 ∗ uα
1 ∗ z1) ∗ (u−β1 ∗ h−1

1 ) = y1 ∗ uα
1 ∗ (z1 ∗ u−β1 ∗ h−1

1 ),

where p′p1 starts at 1H and µ(p′p1) = h1 ∗ uβ1 ∗ z−1
1 .

Case II. uαm ∗ gm+1 ∗ h1 ◦ uβ1 , uβr ∗ hr+1 ∗ g−1
m+1 ∗ u−αm /∈ 〈u〉.

In this case w = u and from the uniqueness of u-reduced forms we have f1 = g1.
1. f1 6= ε

There exists a path q′ in Γ(K) such that o(q′) = 1K , t(q′) = v1 ∈ V (Γ(K)) and
µ(q′) = f1. If K1 = L(Γ(K), v1) then by Lemma 11 we have

K = f1 ∗K1 ∗ f−1
1

and we consider the triple g′, H, K1, where

g′ = uα1 ◦ g2 ◦ · · · ◦ uαm ◦ gm+1

instead of g, H, K. By the induction hypothesis we have the product decomposition

g′ = y1 ∗ uα
1 ∗ z1, u1 ∈ U(Γ(H)) ∩ U(Γ(K)),



22O. G. KHARLAMPOVICH, A. G. MYASNIKOV, V. N. REMESLENNIKOV, AND D. E. SERBIN

so that there exist a path p1 in Γ(H) starting at 1H and a path q1 in Γ(K) starting
at v1 such that µ(p1) = z−1

1 and µ(q1) = y1, and if α is finite then the conditions
listed in the statement of the lemma hold. Thus we have the required product
decomposition

g = g1 ◦ g′ = f1 ◦ g′ = (f1 ∗ y1) ∗ uα
1 ∗ z1,

where q′q1 starts at 1K and µ(q′q1) = f1 ∗ y1.
2. f1 = ε

it follows immediately that fl+1 = ε.
If m > 1 then from the uniqueness of u-forms it follows that uα1 = uγ1 and,

hence, exists a path q′ in Γ(K) such that o(q′) = 1K , t(q′) = v1 ∈ V (Γ(K)) and
µ(q′) = uα1 . Following the argument presented in 1. one can get the required
product decomposition for g.

Assume m = 1, so we have g = uα1 ◦ g2.
a) r > 1, that is, syllables uβ1 and uβr do not coincide in h.
If [g2 ∗ h1, u] 6= ε then by Lemma 6.9 [15] there exist k1, k2 ∈ Z such that

uα1 ∗ (g2 ∗ h1) ∗ uβ1 = uα1−k1 ◦ (uk1 ∗ g2 ∗ h1 ∗ uk2) ◦ uβ1−k2 .

From g ∗ h ∗ g−1 = f we have

uα1−k1◦(uk1∗g2∗h1∗uk2)◦uβ1−k2◦h2 · · ·◦(uβr∗(hr+1∗g−1
2 )∗u−α1) = uγ1◦f2◦· · ·◦uγl

and
uα1−k1 ◦ (uk1 ∗ g2 ∗ h1 ∗ uk2) ◦ uβ1−k2 = uγ1 ◦ f2 ◦ uγ2 .

Thus,
g = uα1 ◦ g2 = (uγ1 ◦ f2 ◦ uγ2) ∗ (h1 ◦ uβ1)−1,

which is the required product decomposition of g since there exist paths p in Γ(H)
and q in Γ(K), such that o(p) = 1H , o(q) = 1K and µ(p) = h1 ◦ uβ1 , µ(q) =
uγ1 ◦ f2 ◦ uγ2 .

If [g2 ∗ h1, u] = ε then g2 ∗ h1 = uk and uγ1 = uα1+β1+k. Thus, uα1 =
uγ1 ∗ u−β1 ∗ u−k, g2 = uk ∗ h−1

1 and

g = uα1 ◦ g2 = (uγ1 ∗ u−β1 ∗ u−k) ∗ (uk ∗ h−1
1 ) = uγ1 ∗ (u−β1 ∗ h−1

1 )

is the required product decomposition of g since there exist a path p in Γ(H)
starting at 1H and a path q in Γ(K) starting at 1K such that µ(p) = h1 ◦ uβ1 and
µ(q) = uγ1 .

b) r = 1, that is, h = h1 ◦ uβ1 ◦ h2.
b1) [g2 ∗ h1, u] 6= ε ([h2 ∗ g−1

2 , u] 6= ε).
By Lemma 6.9 [15] there exist k1, k2 ∈ Z such that

uα1 ∗ (g2 ∗ h1) ∗ uβ1 = uα1−k1 ◦ (uk1 ∗ g2 ∗ h1 ∗ uk2) ◦ uβ1−k2 .

Thus we have uγ1 = uα1−k1 , uα1 = uγ1 ∗ uk1 and g = uγ1 ∗ (uk1 ∗ g2). Observe
that there exists a path q′ in Γ(K) such that o(q′) = 1K , t(q′) = v1 ∈ V (Γ(K)) and
µ(q′) = uγ1 . If K1 = L(Γ(K), v1) then by Lemma 11 we have

K = uγ1 ∗K1 ∗ u−γ1

and we can consider the triple g′, H, K1, where g′ = uk1∗g2, instead of g, H, K be-
cause g′∗h∗g′−1 = f ′, where f ′ = u−γ1 ∗f ∗uγ1 . Since max{U(g′)} < max{U(h)} =
max{U(f ′)}, the required product decomposition of g follows from Lemma 14.
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b2) [g2 ∗ h1, u] = [h2 ∗ g−1
1 , u] = ε.

Then g2 ∗h1 = uk1 , h2 ∗ g−1
1 = uk2 and g ∗h ∗ g−1 = f = uβ1 ∗uk1+k2 . We have

g2 = uk1 ∗ h−1
1 and

g = (uα1 ∗ uk1) ∗ h−1
1

is the required product decomposition of g since there exists a path p′ in Γ(H) such
that o(p′) = 1H and µ(p′) = h1.

¤
Lemma 16. Let g ∈ FZ[t] and u ∈ U be such that g∗u = g◦u and max{U(g)} <

u. Then there exists n ∈ N such that π(g ◦ un+1) = π(g ◦ un)π(u).

Proof. We prove by the induction on |U(g)|.
Let |U(g)| = 0, that is, g ∈ F (X). If u ∈ F (X) then obviously π(g ◦ u) =

π(g)π(u), so, the lemma holds for n = 0. If u /∈ F (X) then let w = max{U(u)}
and

u = h1 ◦ wα1 ◦ h2 ◦ · · · ◦ wαr ◦ hr+1

be the w-reduced form for u. Observe that r ≥ 1 and

g ◦ u = h′1 ◦ wα′1 ◦ h2 ◦ · · · ◦ wαr ◦ hr+1

is the w-reduced form for g ◦ u, where g ◦ h1 = h′1 ◦ wk, k ∈ Z and α′1 = α1 + k.
Now, since π(u◦u) = π(u)π(u), we have π(g ◦u2) = π(g ◦u)π(u) and we can choose
n = 1.

Assume the lemma to hold for any g with |U(g)| < N and let |U(g)| = N .
Let w = max{U(u)}, z = max{U(g)} so that

u = h1 ◦ wα1 ◦ h2 ◦ · · · ◦ wαr ◦ hr+1

is the w-reduced form for u and

g = g1 ◦ zβ1 ◦ g2 ◦ · · · ◦ zβl ◦ gl+1

is the z-reduced form for g. By the assumption of the lemma we have z ≤ w.
1. If z < w then

g ◦ u = h′1 ◦ wα′1 ◦ h2 ◦ · · · ◦ wαr ◦ hr+1

is the w-reduced form for g ◦ u, where (g ◦ h1) = h′1 ◦ wk, k ∈ Z and α′1 = α1 + k.
Now, since π(u◦u) = π(u)π(u), we have π(g ◦u2) = π(g ◦u)π(u) and we can choose
n = 1.

2. Let z = w. Observe that the induction hypothesis holds for gl+1 since
|U(gl+1)| < N . So, there exists k ∈ N such that π(gl+1 ◦ uk+1) = π(gl+1 ◦ uk)π(u).
We have

π(g) = π(g1)wβ1π(g2) · · ·wβlπ(gl+1).
Observe that if gl+1 ◦uk+1 contains wγ , γ ∈ Z[t] as an initial segment then wγ is an
initial segment of gl+1 ◦u, which follows from Lemma 6.9 [15] and the definition of
w-reduced forms. Hence, we have

π(g ◦ uk+1) = π(g1)wβ1π(g2) · · ·wβlπ(gl+1 ◦ uk)π(u)

and so
π(g ◦ uk+1) = π(g ◦ uk)π(u).

¤
Combining Lemmas 13, 14, 15 and 16 we obtain the following result.



24O. G. KHARLAMPOVICH, A. G. MYASNIKOV, V. N. REMESLENNIKOV, AND D. E. SERBIN

Proposition 6. Let H, K ≤ FZ[t] be finitely generated and Γ(H), Γ(K) be U -
folded (Z[t], X)-graphs such that H = L(Γ(H), 1H), K = L(Γ(K), 1K) for some
1H ∈ V (Γ(H)), 1K ∈ V (Γ(K)). Let g ∈ FZ[t] be such that g ∗ H ∗ g−1 ∩ K 6= ε.
Then g can be represented as a product

g = y ∗ uα ∗ z, α ∈ Z[t],

so that there exist a path p in Γ(H) starting at 1H with µ(p) = z−1 and a path q

in Γ(K) starting at 1K with µ(q) = y, and one of the following holds:
(1) α = 0;
(2) α ∈ Z[t]− Z, u ∈ U(Γ(H)) ∩ U(Γ(K));
(3) 0 6= α ∈ Z, u ∈ U(Γ(H)) ∩ U(Γ(K)) and either α = ±1 or t(p) and t(q)

belong to some u-components of Γ(H) and Γ(K) respectively, so that,

Hu(t(p)) ∩ 〈u〉 = Hu(t(q)) ∩ 〈u〉 = ε

and
C(u) ∩Hz ∩Ky−1 ⊆ uα ∗Hz ∗ u−α ∩Ky−1

;
(4) α ∈ Z[t]− Z, u /∈ U(Γ(H)) ∩ U(Γ(K)) but u ∈ U(g) and

uα ∗Hz ∗ u−α ∩Ky−1
= 〈u〉 ∩Hz ∩Ky−1

Proof. Since g ∗H ∗ g−1 ∩K 6= ε, there exist h ∈ H, f ∈ K such that

g ∗ h ∗ g−1 = f 6= ε.

We prove the lemma by the induction on |U(g)|.
Suppose |U(g)| = 0, that is, g ∈ F (X). If h ∈ F (X) then f ∈ F (X) and

the required result follows from Lemma 13. If h /∈ F (X) then the required result
follows from Lemma 14.

Assume that the proposition holds for g with |U(g)| < n. Let |U(g)| = n, u =
max{U(g)} and

g = g1 ◦ uα1 ◦ g2 ◦ · · · ◦ uαm ◦ gm+1

be the u-reduced from for g. Let w1 = max{U(h)}, w2 = max{U(f)}, so that,

h = h1 ◦ w1
β1 ◦ h2 ◦ · · · ◦ w1

βr ◦ hr+1

is the w1-reduced from for h and

f = f1 ◦ w2
γ1 ◦ f2 ◦ · · · ◦ w2

γl ◦ fl+1

is the w2-reduced from for f . Without loss of generality we can assume w1 ≥ w2.
1. u < w1

Then w1 = w2, l = r and the required result follows from Lemma 14.
2. u = w1

The required result follows from Lemma 15
3. u > w1

In this case all exponents uαi , i ∈ [1,m] cancel in g ∗ h ∗ g−1. Thus, we have
gm+1 ∗h∗g−1

m+1 = uk1 where k1 ∈ Z. If m > 1 then gm ∗uk1 ∗g−1
m = uk2 , k2 ∈ Z and

since u is cyclically reduced we have either gm∗uk1 = gm◦uk1 or uk1∗g−1
m = uk1◦g−1

m .
In both cases we have a contradiction with the properties of u-reduced forms. Thus,
m = 1 and

g = g1 ◦ uα1 ◦ g2, h = g−1
2 ∗ uk1 ∗ g2, f = g1 ∗ uk1 ∗ g−1

1 .
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Observe that u ∈ U(g). Since u is cyclically reduced then either g−1
2 ∗uk1 = g−1

2 ◦uk1

or uk1 ∗ g2 = uk1 ◦ g2. Assume the former.
Notice that h = g−1

2 ∗uk1 ∗g2 = g−1
2 ◦uk1−1 ◦u1 ◦g′2, where u = u1 ◦u2, |u2| > 0

and g2 = u−1
2 ◦ g′2. Without loss of generality we can assume k1 > 0. By Lemma

16, there exists n1 ∈ Z such that

π(g−1
2 ◦ u2n1+1 ◦ u1 ◦ g′2) = π(g−1

2 ◦ un1)π(u)π(un1 ◦ u1 ◦ g′2).

Observe that we can always assume k1 > 2n1 +1 because we can consider the tuple
hk, fk for some appropriate integer k instead of h, f since g ∗hk ∗ g−1 = hk. Thus
we have

π(h) = π(g−1
2 ◦ uk1−1 ◦ u1 ◦ g′2) = π(g−1

2 ◦ un1)π(uk1−2n1−1)π(un1 ◦ u1 ◦ g′2).

Since h ∈ H, there exists a loop p at 1H in Γ(H) such that µ(p) = π(h), hence, from
the above equality it follows that p has a subpath p1 such that o(p1) = o(p), µ(p1) =
π(g−1

2 ◦ un1).

The same argument can be applied to f = g1 ∗ uk1 ∗ g−1
1 , that is, one can find

a path q1 starting at 1K such that µ(q1) = g1 ◦ un2 , n2 ∈ Z. Finally

g = g1 ◦ uα1 ◦ g2 = (g1 ◦ un2) ∗ uα1−n1−n2 ∗ (un1 ◦ g2),

where δ = α1 − n1 − n2 ∈ Z[t]− Z.
If u ∈ U(Γ(H)) ∪ U(Γ(K)) then it is easy to see that u ∈ U(Γ(H)) ∩ U(Γ(K))

and we are done. Suppose u /∈ U(Γ(H)) ∩ U(Γ(K)). Hence, t(p1) and t(q1) do not
belong to any u-components of Γ(H) and Γ(K) respectively and we prove

uδ ∗Hz ∗ u−δ ∩Ky−1
= 〈u〉 ∩Hz ∩Ky−1

.

Indeed, from the product decomposition of g it follows that

〈u〉 ∩Hz ∩Ky−1 ⊆ uδ ∗Hz ∗ u−δ ∩Ky−1
.

On the other hand, let a ∈ uδ ∗Hz ∗ u−δ ∩Ky−1
. Then

a = uδ ∗ (un1 ◦ g2) ∗ h′ ∗ (g−1
2 ◦ u−n1) ∗ u−δ = (g1 ◦ un2)−1 ∗ f ′ ∗ (g1 ◦ un2),

where h′ ∈ H, f ′ ∈ K. Conjugating both sides by g1 ◦ un2 we get

g ∗ h′ ∗ g−1 = f ′.

If h′ and f ′ fall into cases 1. or 2. then from Lemmas 14, 15 it follows that
u ∈ U(Γ(H))∩U(Γ(K)) and we have a contradiction with our assumption. Hence,
h′ and f ′ fall into the case 3. and by the same argument as for h and f we get

h′ = g−1
2 ∗ uk2 ∗ g2, f ′ = g1 ∗ uk2 ∗ g−1

1 ,

and a = uk2 ∈ 〈u〉 ∩Hz ∩Ky−1
. So,

uδ ∗Hz ∗ u−δ ∩Ky−1 ⊆ 〈u〉 ∩Hz ∩Ky−1
.

¤

Lemma 17. Let H, K ≤ FZ[t] be finitely generated and Γ(H), Γ(K) be U -folded
(Z[t], X)-graphs such that H = L(Γ(H), 1H), K = L(Γ(K), 1K) for some 1H ∈
V (Γ(H)), 1K ∈ V (Γ(K)). Let g = uα, u ∈ U(Γ(H)) ∩ U(Γ(K)), α ∈ Z[t] − Z be
such that g ∗H ∗ g−1 ∩K 6= ε. Then one of the following holds:
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(1) g can be represented as a product

g = y ∗ un ∗ z, n ∈ Z,

where there exist paths p in Γ(H) and q in Γ(K), such that o(p) =
1H , o(q) = 1K and µ(p) = z−1, µ(q) = y, and if n 6= 0 then t(p) and
t(q) belong to some u-components of Γ(H) and Γ(K) respectively, so that,

Hu(t(p)) ∩ 〈u〉 = Hu(t(q)) ∩ 〈u〉 = ε

and
C(u) ∩Hz ∩Ky−1 ⊆ un ∗Hz ∗ u−n ∩Ky−1

;
(2) g ∗H ∗ g−1 ∩K = C(u) ∩H ∩K.

Proof. Consider two cases.
1. 1H ∈ V (C), 1K ∈ V (D), where C and D are u-components of Γ(H) and

Γ(K) correspondingly.
Suppose there exist paths p and q in C and D correspondingly such that o(p) =

1H , o(q) = 1K , µ(p) = uβ , µ(q) = uγ and α = β + γ + n for some n ∈ Z . Without
loss of generality we can assume n to be minimal positive with the property above.
Thus we have a product decomposition

g = uγ ∗ un ∗ uβ .

Observe that if n 6= 0 then

Hu(t(p)) ∩ 〈u〉 = Hu(t(q)) ∩ 〈u〉 = ε.

Indeed, if Hw(t(p)) ∩ 〈w〉 6= ε (for Hw(t(p)) ∩ 〈w〉 6= ε the same argument) then
by the property (iv) of U -folded graphs there exists a loop z at t(p) labeled by
wr, r ∈ Z, r > 0. By the property of elements from U we have π(w2) = π(w)π(w),
that is, for any 0 < r1 < r there exists a subpath z1 of z such that µ(z1) = π(wr1) =
π(w) · · ·π(w)︸ ︷︷ ︸

r1times

. It follows that if Hw(t(p)) ∩ 〈w〉 6= ε then p can be continued in C

to a path p′ so that o(p′) = 1H , µ(p) = uβ+n and we have a contradiction with the
choice of n. Finally

C(u) ∩Hz ∩Ky−1 ⊆ un ∗Hz ∗ u−n ∩Ky−1

is obvious.
Now we assume that there exist no paths p and q with the above property.

It follows that there exists no path p in C such that o(p) = 1H , µ(p) = uβ and
α = β + k for any k ∈ Z.

Consider the graph ∆, which is obtained from Γ(H) by attaching a single edge
e labeled by uα in the following way.

V (∆) = V (Γ(H)) ∪ {v′}, E(∆) = E(Γ(H)) ∪ {e}
and o(e) = v, t(e) = 1H , µ(e) = uα. It is easy to see that L(∆, v) = H1, where
H1 = u−α ∗H ∗ uα.

Observe that ∆ is not U -folded because the u-component C ′ = C∪{e} is not u-
folded. Let Γ(H1) be (Z[t], X)-graph, which is obtained from ∆ by a sequence of u-
foldings of e with PC and let C ′′ be a u-folded u-component of Γ(H1) corresponding
to C ′. It is easy to see that Γ(H1) is U -folded. Indeed, from our assumption it
follows that Rep(C) ( Rep(C ′′) because after e is folded with PC , the vertex v
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defines a new point in PC , which corresponds to a new representative in the finite
set of coset representatives in Zn(C) by HC(1H) associated with C. Moreover,
let v′ ∈ V (Γ(H1)) be the vertex which corresponds to v ∈ V (∆), then v′ has no
outgoing edges which do not belong to C ′′. Thus the property (iv) of U -folded
holds for C ′′ and other conditions trivially follow since they hold for Γ(H).

Notice that for any path p′ in C ′′ such that o(p′) = v′ we have µ(p′) =
uγ , |γ| >> 0. It follows that if h ∈ H1 and [h, u] 6= ε then h has the following
form

h = uβ1 ◦ h′ ◦ uβ2 ,

where |β1|, |βm| >> 0 and π(h) = uβ1π(h′)uβ2 .
Now, suppose h ∈ g ∗H ∗ g−1 ∩K = H1 ∩K and [h, u] 6= ε. Then there exist a

label reduced loop p in Γ(H1) at v and a label reduced loop q in Γ(K) at 1K such
that µ(p) = µ(q) = π(h) = uβ1π(h′)uβ2 . Hence, there exist a path p1 in C ′′ starting
at v′ and a path q1 in D starting at 1K such that µ(p1) = µ(q1) = uβ1 . On the
other hand we have a path p′ in PC′′ such that o(p′) = v′, t(p′) = 1H , µ(p′) = uα

and a path p′′ in PC′′ such that o(p′′) = 1H , t(p′′) = t(p1), µ(p′′) = uγ . Thus,
uβ1 ∗u−γ ∗u−α = uδ ∈ HC′′(1H) = HC(1H) and we have the product decomposition

g = uα = uβ1 ∗ u−γ−δ,

where uβ1 is the label of the path q1 in Γ(K) starting at 1K and uγ+δ is the
label of a path in Γ(H) starting at 1H - a contradiction. Hence, it follows that
g ∗H ∗ g−1 ∩K ⊆ C(u). So

g ∗H ∗ g−1 ∩K ⊆ C(u) ∩H ∩K

and the inverse inclusion is obvious.
2. Either 1H or 1K , or both do not belong to any u-components.
If both 1H and 1K do not belong to any u-components then as above we easily

get a contradiction. Indeed, any element h ∈ H1 = u−α ∗H ∗uα such that [h, u] 6= ε
has the following form

h = uβ1 ◦ h′ ◦ uβ2 ,

where |β1|, |βm| >> 0 and π(h) = uβ1π(h′)uβ2 . On the other hand, since 1K does
not belong to any u-component then for any f ∈ K there can be no infinite exponent
of u as an initial letter in π(f). Hence H1 ∩K ⊆ C(u) ∩H1 ∩K = C(u) ∩H ∩K
and

g ∗H ∗ g−1 ∩K = C(u) ∩H ∩K

follows.
If 1H belongs to some u-component of Γ(H) but 1K does not belong to any

u-component of Γ(K) then using the same argument as in 1. one gets the required
result.

¤

Lemma 18. Let H, K ≤ FZ[t] be finitely generated. Let Γ(H), Γ(K) be U -
folded (Z[t], X)-graphs such that H = L(Γ(H), 1H), K = L(Γ(K), 1K) for some
1H ∈ V (Γ(H)), 1K ∈ V (Γ(K)) and

(1) 1H ∈ V (C), 1K ∈ V (D), where C and D are u-components of Γ(H) and
Γ(K) respectively;

(2) Hu(1H) ∩ 〈u〉 = Hu(1K) ∩ 〈u〉 = ε;
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(3) uk ∗H ∗ u−k ∩K 6= ε for k ∈ Z and

C(u) ∩H ∩K ⊆ uk ∗H ∗ u−k ∩K.

Then one of the following holds
(1) g can be represented as a product g = y ∗ z, where there exist paths p

in Γ(H) and q in Γ(K), such that o(p) = 1H , o(q) = 1K and µ(p) =
z−1, µ(q) = y;

(2) uk ∗H ∗ u−k ∩K = C(u) ∩H ∩K;
(3) |k| ≤ N(H, K), where N(H, K) depends only on H and K and can be

found effectively.

Proof. Without loss of generality we can assume k > 0.
Claim. There exists a finite set EH = {n1, . . . , ns} ⊂ Z, such that, for any

h ∈ H if h = uα ◦ h′, where α ∈ Z and h′ does not have u±1 as an initial segment
then α ∈ EH .

Indeed, suppose h = uα ◦ h′, where α ∈ Z and h′ does not have u±1 as an
initial segment. Since Γ(H) is U -folded, by the properties (vii) and (viii) of U -
folded graphs there exists a path ph in Γ(H) such that o(ph) = 1H , µ(ph) = uα

and t(ph) ∈ C. Hence uα = µ(pi) ∗ c, where pi ∈ Rep(C) and c ∈ Hu(1H), that is,
uα ∈ µ(pi) ∗Hu(1H). Finally, since Hu(1H)∩ 〈u〉 = ε then µ(pi) ∗Hu(1H) contains
not more than one finite exponent uni of u and finiteness of Rep(C) completes the
proof of the claim. From the proof it is easy to see that EH can be found effectively.

Denote
nH = max{|n| | n ∈ EH}.

Observe that Claim holds also for Γ(K) and D.
Suppose C(u) ∩H ∩K ( uk ∗H ∗ u−k ∩K, that is, there exist h ∈ H, f ∈ K

such that uk ∗ h ∗ u−k = f and [h, u] 6= ε, [f, u] 6= ε. Let w1 = max{U(h)}, w2 =
max{U(f)} and

h = h1 ◦ wβ1
1 ◦ h2 ◦ · · · ◦ wβr

1 ◦ hr+1

be the w1-reduced form for h,

f = f1 ◦ wγ1
2 ◦ f2 ◦ · · · ◦ wγl

2 ◦ fl+1,

be the w2-reduced form for f . Consider the following cases.
I. w1 < u

Since [h, u] 6= ε, by Lemma 6.9 [15] there exists Mh ∈ N (which can be found
effectively), such that

uMh+n ∗ h ∗ u−Mh−n = un ◦ (uMh ∗ h ∗ u−Mh) ◦ u−n

for any n > 0. Hence, if k > Mh + nK then

uk ∗ h ∗ u−k = uk−Mh ◦ (uMh ∗ h ∗ u−Mh) ◦ u−k+Mh

has uk−Mh , k − Mh > nK as an initial segment and, by Claim, can not be an
element of K - a contradiction. Thus,

k ≤ min{Mh + nK | h ∈ H}
and obviously this minimum exists and depends only on H and K.

II. w1 = u



SUBGROUPS OF FULLY RESIDUALLY FREE GROUPS: ALGORITHMIC PROBLEMS 29

It follows that w1 = w2. Consider

uk ∗ (h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβr ◦ hr+1) ∗ u−k.

a) Either h1 6= ε or hr+1 6= ε.
Without loss of generality we can assume h1 6= ε and β1 > 0. Since [h1, u] 6= ε,

by Lemma 6.9 [15] there exists Mh1 ∈ N (which can be found effectively), such that

uMh1+n1 ∗ h1 ∗ uMh1+n2 = un1 ◦ (uMh1 ∗ h1 ∗ uMh1 ) ◦ un2

for any n1, n2 > 0. Moreover, Mh1 can be chosen so that uMh1 ∗ (h1 ◦ wβ1
1 ) does

not have u as an initial segment. Hence, if k > Mh1 + nK then

uk ∗ (h1 ◦ uβ1) = uk−Mh1 ◦ (uMh1 ∗ h1 ∗ uMh1 ) ◦ uβ1−Mh1

and f has uk−Mh1 , k −Mh > nK as an initial segment - a contradiction because
in this case, by Claim, f can not be an element of K. Thus,

k ≤ min
{

Mh1 + nK
[h1, u] 6= ε and there exists a path p in Γ(H)
such that o(p) = 1H , µ(p) = h1

}
.

Clearly this minimum exists and depends only on H and K.
b) h1 = hr+1 = ε

It follows immediately that f1 = fl+1 = ε. If r = 0 then [h, u] = ε and we have
a contradiction. Thus, r > 0 and uγ1 = uβ1+k, that is,

uk = uγ1 ∗ u−β1 ,

where there exist paths p in Γ(H) and q in Γ(K), such that o(p) = 1H , o(q) = 1K

and µ(p) = uβ1 , µ(q) = uγ1 .
III. w1 > u

If h1 6= ε then without loss of generality we can assume that u = max{U(h1)}.
If

h1 = g1 ◦ uδ1 ◦ g2 ◦ · · · ◦ uδm ◦ gm+1

is the u-reduced form of h1 then considering

uk ∗ (g1 ◦ uδ1 ◦ g2 ◦ · · · ◦ uδm ◦ gm+1)

and applying the argument from II. one gets the required result.
Suppose h1 = ε. Since [u,w1] 6= ε then it follows that w2 = w1 and f1 6= ε, so,

considering u−k ∗ f ∗ uk and applying the argument from II. one gets the required
result.

Finally, if

N1 = min{Mh + nK | h ∈ H}, N2 = min{Mf + nH | f ∈ K},

N3 = min
{

Mh + nK
[h, u] 6= ε and there exists a path p in Γ(H)
such that o(p) = 1H , µ(p) = h

}
,

N4 = min
{

Mf + nH
[f, u] 6= ε and there exists a path q in Γ(K)
such that o(q) = 1K , µ(q) = f

}
,

then N3 ≥ N1, N4 ≥ N2 and we can set

N(H, K) = max{N3, N4}.
¤
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Definition 3. Let Γ be a finite (Z[t], X)-graph and v0 ∈ V (Γ). We denote by
SΓ,v0 a finite set of paths in Γ such that:

(1) for any p ∈ SΓ,v0 , o(p) = v0;
(2) for any v ∈ V (Γ) there exists p ∈ SΓ,v0 such that t(p) = v;
(3) for any p1, p2 ∈ SΓ we have t(p1) 6= t(p2).

Now, combining Proposition 6 with Lemmas 17 and 18 we prove the main
technical result about intersections of finitely generated subgroups of FZ[t].

Proposition 7. Let H, K ≤ FZ[t] be finitely generated and Γ(H), Γ(K) be U -
folded (Z[t], X)-graphs such that H = L(Γ(H), 1H), K = L(Γ(K), 1K) for some
1H ∈ V (Γ(H)), 1K ∈ V (Γ(K)). Let

SΓ(H),1H
= {p1, . . . , pn}, SΓ(K),1K

= {q1, . . . , qm}.
If g ∈ FZ[t] is such that g ∗H ∗ g−1 ∩K 6= ε. then one of the following holds:

1.
g ∗H ∗ g−1 ∩K = f ∗ (Hyj∗zi

−1 ∩K) ∗ f−1,

where zi, yj are labels of some pi, qj correspondingly, f ∈ K and g ∈
K ∗ (yj ∗ zi

−1) ∗H;
2.

g ∗H ∗ g−1 ∩K = f ∗ (C(u)yj ∩Hyj∗zi
−1 ∩K) ∗ f−1,

where u ∈ U(Γ(H)) ∩ U(Γ(K)), zi, yj are labels of some pi, qj corre-
spondingly, f ∈ K, g ∈ K ∗ (yj ∗ uk ∗ zi

−1) ∗ H, k ∈ Z, g /∈ KH and
C(u)yj ∩K 6= ε;

3.
g ∗H ∗ g−1 ∩K = f ∗ (Hyj∗uk∗zi

−1 ∩K) ∗ f−1,

where u ∈ U(Γ(H)) ∩ U(Γ(K)), |k| < N(H, K) (N(H, K) depends only
on H, K and can be found effectively), zi, yj are labels of some pi, qj

correspondingly, f ∈ K and g ∈ K ∗ (yj ∗ uk ∗ zi
−1) ∗H;

4.
g ∗H ∗ g−1 ∩K = f ∗ (〈u〉yj ∩Hyj∗zi

−1 ∩K) ∗ f−1,

where u ∈ U(g), zi, yj are labels of some pi, qj correspondingly, f ∈
K, g ∈ K∗(yj ∗uα∗zi

−1)∗H, deg(α) ≤ degu(g), g /∈ KH and 〈u〉yj∩K 6=
ε.

Proof. The claim below follows directly from the definition of SH = SΓ(H),1H

and SK = SΓ(K),1K
.

Claim. If p is a path in Γ(H), q is a path in Γ(K), such that o(p) = 1H , o(q) =
1K and µ(p) = z−1, µ(q) = y then there exist pi ∈ SH , qj ∈ SK such that

z = z−1
i ∗ h, y = f ∗ yj ,

where zi = µ(pi), yj = µ(qj) and h ∈ H, f ∈ K.

Now, we are ready to prove the proposition.
By Proposition 6, g can be represented as a product

g = y ∗ uα ∗ z, α ∈ Z[t],

so that there exist a path p in Γ(H) starting at 1H with µ(p) = z−1 and a path q

in Γ(K) starting at 1K with µ(q) = y, and one of the following four cases holds.
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Case 1. α = 0.
Since g = y ∗ z we have

g ∗H ∗ g−1 ∩K = (y ∗ z) ∗H ∗ (y ∗ z)−1 ∩K

and the required result follows from Claim.
Observe that in all the following cases we can assume g /∈ KH because otherwise

we get into Case 1.
Case 2. α ∈ Z[t]− Z, u ∈ U(Γ(H)) ∩ U(Γ(K)).
Let H1 = L(Γ(H), t(p)), K1 = L(Γ(K), t(q)), then by Lemma 11, we have

H1 = z ∗H ∗ z−1, K1 = y−1 ∗K ∗ y

and
uα ∗H1 ∗ u−α ∩K1 6= ε.

By Lemma 17 we have one of the following two cases.
a) uα can be represented as a product

uα = y′ ∗ wk ∗ z′, k ∈ Z,

where there exist paths p′ in Γ(H) and q′ in Γ(K), such that o(p′) = t(p), o(q′) =
t(q) and µ(p′) = z′−1

, µ(q′) = y′, and if k 6= 0 then t(p′) and t(q′) belong to some
w-components of Γ(H) and Γ(K) respectively, so that,

Hw(t(p′)) ∩ 〈w〉 = Hw(t(q′)) ∩ 〈w〉 = ε

and
C(w) ∩Hz′

1 ∩Ky′−1

1 ⊆ wk ∗Hz′
1 ∗ w−k ∩Ky′−1

1 .

If k = 0 then g = (y ∗ y′) ∗ (z′ ∗ z), where y ∗ y′ is the label of qq′ and z−1 ∗ z′−1

is the label of pp′, and this case reduces to Case 1.
Suppose k 6= 0. Let H2 = L(Γ(H), t(p′)), K2 = L(Γ(K), t(q′)). Then by

Lemma 11, we have

H2 = z′ ∗H1 ∗ z′−1
, K2 = y′−1 ∗K1 ∗ y′

and
wk ∗H2 ∗ w−k ∩K2 6= ε.

By Lemma 18 we have one of the following three possibilities.
a1) wk can be represented as a product wk = y′′ ∗ z′′, where there exist paths

p′′ in Γ(H) and q′′ in Γ(K), such that o(p′′) = t(p′), o(q′′) = t(q′), µ(p′′) =
z′′−1

, µ(q′′) = y′′ - in this case g = (y ∗y′ ∗y′′)∗(z′′ ∗z′ ∗z) and we have a reduction
to Case 1..

a2) wk ∗H2 ∗ w−k ∩K2 = C(w) ∩H2 ∩K2.
In this case we have

wk ∗ (z′ ∗ z ∗H ∗ z−1 ∗ z′−1) ∗ w−k ∩ y′−1 ∗ y−1 ∗K ∗ y ∗ y′ =

= C(w) ∩ (z′ ∗ z ∗H ∗ z−1 ∗ z′−1) ∩ (y′−1 ∗ y−1 ∗K ∗ y ∗ y′),
where g = y ∗ y′ ∗ wk ∗ z′ ∗ z, so

g ∗H ∗ g−1 ∩K = C(w)y∗y′ ∩Hy∗y′∗z′∗z ∩K,

where y ∗y′ is the label of qq′ and z−1 ∗ z′−1 is the label of pp′. Hence, the required
result follows from Claim.
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a3) |k| ≤ N(H,K), where N(H,K) depends only on H and K and can be
found effectively,

So g = y ∗ y′ ∗ wk ∗ z′ ∗ z and

g ∗H ∗ g−1 ∩K = Hy∗y′∗wk∗z′∗z ∩K,

where |k| ≤ N(H, K), and since y ∗ y′ is the label of qq′ and z−1 ∗ z′−1 is the label
of pp′, the required result follows from Claim.

b) uα ∗H1 ∗ u−α ∩K1 = C(u) ∩H1 ∩K1.

In this case we have

(uα ∗ z) ∗H ∗ (uα ∗ z)−1 ∩ y−1 ∗K ∗ y = C(u) ∩ z ∗H ∗ z−1 ∩ y−1 ∗K ∗ y,

and since g = y ∗ uα ∗ z then

g ∗H ∗ g−1 ∩K = C(u)y ∩Hy∗z ∩K,

and the required result follows from Claim.

Case 3. 0 6= α ∈ Z, u ∈ U(Γ(H)) ∩ U(Γ(K)) and either α = ±1 or t(p) and
t(q) belong to some u-components of Γ(H) and Γ(K) respectively, so that,

Hu(t(p)) ∩ 〈u〉 = Hu(t(q)) ∩ 〈u〉 = ε

and
C(u) ∩Hz ∩Ky−1 ⊆ uα ∗Hz ∗ u−α ∩Ky−1

.

If α = ±1 then
g ∗H ∗ g−1 ∩K = Hy∗uk∗z ∩K,

where |k| = 1 ≤ N(H, K), and since y is the label of q and z−1 is the label of p,
the required result follows from Claim.

If α 6= ±1 then the required result follows by the argument presented in Case
2.a).

Case 4. α ∈ Z[t]− Z, u /∈ U(Γ(H)) ∩ U(Γ(K)) but u ∈ U(g) and

uα ∗Hz ∗ u−α ∩Ky−1
= 〈u〉 ∩Hz ∩Ky−1

.

Observe that deg(α) ≤ degu(g). In this case it follows that

g ∗H ∗ g−1 ∩K = 〈u〉y ∩Hy∗z ∩K

and the required result follows from Claim.
¤

From Proposition 7 one can derive the following important corollaries.

Theorem 7. Let H, K be finitely generated subgroups of a finitely generated
fully residually free group G. Then one can effectively find a finite family JG(H, K)
of non-trivial finitely generated subgroups of G (given by finite generating sets), such
that

(1) every J ∈ JG(H, K) is of one of the following types

Hg1 ∩K, Hg1 ∩ CK(g2),

where g1 ∈ G−H, g2 ∈ K, moreover g1, g2 can be found effectively;
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(2) for any non-trivial intersection Hg ∩ K, g ∈ G − H there exists J ∈
JG(H,K) and f ∈ K such that

Hg ∩K = Jf ,

moreover J and f can be found effectively.

Proof. By Theorem 3 one can effectively obtain generators of G,H and K
viewed as infinite words and by Proposition 8.3 [15] compute their standard de-
compositions.

By Proposition 4 one can effectively find finite U -folded (Z[t], X)-graphs Γ(G),
Γ(H) and Γ(K), such that G = L(Γ(G), 1G), H = L(Γ(H), 1H), K = L(Γ(K), 1K)
for some 1G ∈ V (Γ(G)), 1H ∈ V (Γ(H)), 1K ∈ V (Γ(K)).

Let g ∈ G be such that Hg ∩ K 6= ε. From Proposition 7 it follows that
Hg ∩K = Jf where f ∈ K and one of the following holds.

1. J = Hy∗uk∗z−1 ∩ K, where u ∈ U(Γ(H)) ∩ U(Γ(K)), |k| < N(H, K)
(N(H, K) can be found effectively), z, y are labels of some p ∈ SΓ(H),1H

, q ∈
SΓ(K),1K

and y ∗ uk ∗ z−1 ∈ G.

2. J = C(u)y ∩ Hy∗z−1 ∩ K, where u ∈ U(Γ(H)) ∩ U(Γ(K)), z, y are labels
of some p ∈ SΓ(H),1H

, q ∈ SΓ(K),1K
. In this case g ∈ K ∗ (y ∗ uk ∗ z−1) ∗H, k ∈

Z, g /∈ KH and C(u)y ∩K 6= ε. We have

C(u)y ∩Hy∗z−1
= (C(u) ∩Hz−1

)y = (C(u) ∩Hz−1
)(y∗u

α) = C(u)y ∩Hy∗uα∗z−1

for any α ∈ Z[t], so

C(u)y ∩Hy∗z−1 ∩K = C(u)y ∩Hy∗uk∗z−1 ∩K,

where y ∗ uk ∗ z−1 ∈ G. Finally, since C(u)y ∩K 6= ε then

C(u)y ∩K = C(uα)y ∩K = CK(y ∗ uα ∗ y−1),

where y ∗ uα ∗ y−1 ∈ K.

3. J = 〈u〉y ∩ Hy∗z−1 ∩ K, where u ∈ U(Γ(G)), z, y are labels of some p ∈
SΓ(H),1H

, q ∈ SΓ(K),1K
. In this case g ∈ K ∗ (yj ∗ uβ ∗ zi

−1) ∗ H, deg(β) ≤
degu(g), g /∈ KH and 〈u〉yj ∩K 6= ε and we have

〈u〉y ∩Hy∗z−1
= (〈u〉 ∩Hz−1

)y = (〈u〉 ∩Hz−1
)(y∗u

α) = 〈u〉y ∩Hy∗uα∗z−1

for any α ∈ Z[t]. Thus,

〈u〉y ∩Hy∗z−1 ∩K = 〈u〉y ∩Hy∗uβ∗z−1 ∩K,

where y ∗ uβ ∗ z−1 ∈ G. Finally, since 〈u〉y ∩K 6= ε then

〈u〉y ∩K = 〈uy〉 ∩K = CK(y ∗ uk ∗ y−1),

where y ∗ uk ∗ y−1 ∈ K.
Let JG(H, K) be composed by all non-trivial J which have the conditions listed

in 1)-3) above. Observe that this is a finite family of subgroups of G, which has
the required properties listed in the statement of the theorem.

JG(H, K) can be found effectively. Indeed, U(Γ(H)), U(Γ(K)), SΓ(H),1H
,

SΓ(K),1K
are finite, moreover
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1) |k| < N(H, K), so there are only finitely many elements of the form y ∗ uk ∗
z−1, and we need only those of them which belong to G−H - this can be checked
effectively;

2) at first, observe that

CK(uy) = C(u)y ∩K = (
M⊕

n=0

〈un〉)y ∩K,

where M = degu(Γ(K)) + 1, and on the other hand for each triple y, u, z we have
to find y ∗ uk ∗ z−1, which belongs to G − H, this can be done effectively - the
required element exists if and only if

y ∗ 〈u〉 ∗ z−1 ∩G 6= ∅
and

(y ∗ 〈u〉 ∗ z−1 ∩G) ∩H 6= (y ∗ 〈u〉 ∗ z−1 ∩G),
where both can be checked effectively by Theorem 5 and if the answer is positive
the required element can be found checking step by step y ∗ uk ∗ z−1 for all k ∈ N.

3) at first, from g ∈ G it follows that U(g) ⊆ U(Γ(G)) and since G is finitely
generated then U(Γ(G)) is finite, and on the other hand for each triple y, u, z we
have to find y ∗ uβ ∗ z−1, deg(β) ≤ degu(g), which belongs to G −H, this can be
done effectively - the required element exists if and only if

y ∗ (
M⊕

n=0

〈un〉) ∗ z−1 ∩G 6= ∅,

for M = degu(Γ(G)) + 1 and

(y ∗ (
M⊕

n=0

〈un〉) ∗ z−1 ∩G) ∩H 6= y ∗ (
M⊕

n=0

〈un〉) ∗ z−1 ∩G,

both can be checked effectively by Theorem 5 and if the answer is positive the
required element can be found checking step by step y ∗ uβ ∗ z−1 for all M + 1-
tuples β.

Finally, suppose H, K and g are fixed and such that Hg ∩ K 6= 1. Compose
JG(H, K). It is finite and its elements can be enumerated. Enumerate effectively
elements of K taking formal products of generators. Thus, all Jf , where J ∈
JG(H, K), f ∈ K can be effectively enumerated. Since Hg ∩K 6= 1 it follows that
there exists J ∈ JG(H, K) and f ∈ K such that Hg ∩K = Jf , and comparing step
by step Hg ∩K with enumerated Jf eventually one obtains the required.

¤
Corollary 5. Let H,K be finitely generated subgroups of a finitely generated

fully residually free group G. Then up to conjugation by elements from K there are
only finitely many subgroups of G of the type Hg ∩K.

Corollary 6. Let H be a finitely generated subgroup of a finitely generated
fully residually free group G. Then there is an algorithm which decides if H is
malnormal in G or not.

Proof. Observe that H is malnormal in G if and only if for any g ∈ G−H,
Hg ∩H = 1. This is equivalent to JG(H, H) = ∅. By Theorem 7 one can compute
effectively JG(H, H) and check if it is empty. ¤
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Corollary 7. Let H,K be finitely generated subgroups of a finitely generated
fully residually free group G. Then one can effectively check if there exists g ∈ G
such that

(1) Hg = K,
(2) Hg ≤ K.

Moreover, g can be found effectively.

Proof. 1) Observe that Hh = K for some h ∈ H if and only if H = K. One
can verify this algorithmically since the membership problem in G is decidable
(Proposition 5).

Claim. H and K are conjugate in G by g ∈ G−H if and only if JG(H, K) 6= ∅
and there exists J ∈ JG(H, K) either of the form Hg1 ∩K or Hg1 ∩CK(g2), where
g1 ∈ G−H, g2 ∈ K, such that Hg1 = K.

Suppose there exists g ∈ G−H for which Hg = K. By Theorem 7 there exists
J ∈ JG(H,K) 6= ∅ such that Hg ∩ K = Jf , f ∈ K and by the construction of
JG(H, K) one of the following holds.

a) J = Hg1 ∩K, g1 ∈ G−H and g ∈ K ∗ g1 ∗H.
Thus, we have J = K and J = Hg = Hg1 , so J = Hg1 = K.
b) J = Hg1 ∩ CK(g2), g1 ∈ G−H, g2 ∈ K and Hg1 ∩ CK(g2) = Hg ∩ CK(g2).
Since J = K = Hg we have K = K ∩ CK(g2), so K = CK(g2) and Hg = J =

Hg1 ∩K. It follows that Hg ≤ Hg1 . But since K is free abelian of a finite rank, so
are Hg, Hg1 . We have Hg1g ≤ H. Observe that H is contained in some maximal
abelian subgroup H1 of G, which is malnormal. Thus g1g ∈ H1 and it follows that
[g1g, h] = 1 for all h ∈ H. Hence Hg1g = H, Hg = Hg1 and J = Hg1 = K.

Conversely, if JG(H, K) 6= ∅ and there exists J ∈ JG(H, K) either of the form
Hg1∩K or Hg1∩CK(g2), where g1 ∈ G−H, g2 ∈ K and Hg1 = K then immediately
H and K are conjugate in G. This completes the proof of the claim.

From Claim and Theorem 7 it follows that one can verify effectively if Hg =
G, g ∈ G−H and in case of positive answer effectively find such g.

2) If g ∈ H, then Hg ≤ K is equivalent to H ≤ K. This is algorithmically
decidable.

If g ∈ G − H and Hg ≤ K then Hg = Hg ∩ K and hence is a conjugate
of some J ∈ JG(H, K), or, equivalently, H is a conjugate of J . Observe, that the
converse is also true, i.e., if Hg = J for some J ∈ JG(H, K), then Hg ≤ K. Finally,
the conjugacy of H and elements of JG(H, K) can be verified algorithmically by
Theorem 7 and Statement 1) above.

¤
Corollary 8. Let H be a finitely generated subgroup of a finitely generated

fully residually free group G and h ∈ G. Then one can effectively check if there
exists g ∈ G such that hg ∈ H.

Proof. Let K = 〈h〉. By Theorem 7 one can compute effectively JG(H, K)
such that if Hg ∩K 6= 1 then there exists J ∈ JG(H,K) for which we have

Hg ∩K = Jf

for some f ∈ K.
It follows that

∃ g ∈ G : hg ∈ H ⇐⇒ 〈h〉 ∈ JG(H,K).
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¤

5. Centralizers in finitely generated fully residually free groups

Let G be a finitely generated fully residually free group. By Theorem 1, for a
given finite presentation of G one can effectively construct an embedding of G into
FZ[t]. Moreover, by Theorem 2 one can effectively find a finite series

F = G0 < G1 < G2 < · · · < Gn

for G, such that Gi+1 is obtained from Gi by a centralizer extension of a single
element ui ∈ Gi and G ≤ Gn, G � Gn−1.

Recall that if H is a group then the centralizers extension of a single element
u ∈ H is an HNN-extension of the form

H(u, s) = H ∗〈u〉 (〈u〉 × 〈s〉) = 〈H, s | us = u〉.
Every h ∈ H(u, s) can be represented (non-uniquely) as

h = h0s
n1h1 · · ·hk−1s

nkhk,

where k ≥ 1 and [hi, u] 6= 1, i ∈ [0, k− 1], ni 6= 0, i ∈ [1, k]. The syllable length of h
in this case is 2k + 1. h is called cyclically reduced if [hkh0, u] 6= 1. ‖h‖ denotes the
syllable length of a cyclically reduced element which is conjugate to h in H(u, s).

Lemma 19. [13] Let H be a CSA-group and G = H(u, s) a centralizer extension
of u ∈ H. If h ∈ G then one of the following holds:

1) if h ∈ Hg for some g ∈ G, then CG(h) = CH(h)g ≤ Hg;
2) if h ∈ (〈u〉 × 〈s〉)g for some g ∈ G, then CG(h) = (〈u〉 × 〈s〉)g;
3) if ‖h‖ ≥ 2 then CG(h) = 〈z〉, where h = zm for some m ∈ N.

Lemma 20. Let G be a finitely generated fully residually free group. Then:
1) each proper centralizer of G is a free abelian group of finite rank;
2) the set Spec(G) = {rank(CG(g)) | 1 6= g ∈ G} is finite.

Proof. Follows from Lemma 19.
¤

Lemma 19 provides a tool for computing centralizers in all Gn.

Lemma 21. Let
F = G0 < G1 < G2 < · · · < Gn

be a series of groups where every Gi+1 is obtained from Gi by a centralizer extension
of a single element ui ∈ Gi. Then for any h ∈ Gn one can effectively find a finite
set of generators of the centralizer CGn(h).

Proof. We use the induction on n. If n = 0 then Gn = F and for a non-trivial
h ∈ F the centralizer CF (h) is cyclic generated by the maximal root g of h. Notice,
that one can find the root g effectively (see, for example, [15]).

Assume that the centralizers of elements of Gn−1 can be found effectively and
let h ∈ Gn. By Lemma 19 there are three cases to consider:

Case 1. h ∈ Gg
n−1 for some g ∈ Gn.

Then h = zg for some z ∈ Gn−1 and CGn(h) = CGn−1(z)g. Observe that z and
g can be found effectively.

Case 2. h ∈ CGn(un)g for some g ∈ Gn.
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Observe, that such g can be found effectively. In this case CGn(h) = CGn(un)g.
Case 3. ‖h‖ ≥ 2.

Then CGn
(h) = 〈z〉, where z is the maximal root of h. As we have mentioned

above such z can be found effectively.
¤

Theorem 8. For any finitely generated fully residually free group G and a
finite non-empty subset M ⊂ G, one can effectively find a finite set of generators
of CG(M).

Proof. We may assume, as above, that G is a finitely generated subgroup of
a group G′, which is obtained from a free group F by finitely many centralizer
extensions. Observe that by Theorem 2 one can find G′ effectively.

Let M = {h} ⊂ G. Then CG(h) = CG′(h) ∩ G and in this case the required
result follows from Lemma 21 and Theorem 6.

Let M = {h1, . . . , hn}. Then

CG(M) =
n⋂

i=1

CG(hi)

and the result follows from the result above and Theorem 6. This proves the
theorem.

¤

Theorem 9. For any finitely generated fully residually free group G one can
find the set Spec(G) effectively.

Proof. By Theorem 2, G can be effectively embedded into a group G′ which is
obtained from a free group by finitely many centralizer extensions. We have

F = G0 < G1 < G2 < · · · < Gn = G′,

where every Gi+1 is obtained from Gi by a centralizer extension of a single element
ui ∈ Gi. Observe that any non-cyclic centralizer in G′ is a conjugate of CG′(ui) for
some i ∈ [1, n]. Thus, a non-cyclic centralizer of h ∈ G is of the form

CG(h) = CG′(ui)g ∩G

for some g ∈ G′.

We can view G and G′ as subgroups of FZ[t]. For each ui, i ∈ [1, n] com-
pose JG′(CG′(ui), G) which by definition consists of subgroups of G′ isomorphic to
abelian groups of finite ranks. Finally we have

Spec(G) =
n⋃

i=1

{rank(J) | J ∈ JG′(CG′(ui), G)}.

To finish the proof it suffices to show that for a finitely generated subgroup J of
G, given by a finite generating set, one can effectively find the rank of J . Indeed
by [9] we can find the presentation of J by generators and relations. Using this
presentation and the structure theorem for finitely generated abelian groups we can
find the rank of J . ¤
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6. Conjugacy problem in finitely generated subgroups of FZ[t]

Effectiveness of construction of the intersection of two finitely generated sub-
groups of FZ[t] makes it possible to solve the conjugacy problem for finitely gener-
ated subgroups of FZ[t] and hence, for finitely generated fully residually free groups.

Theorem 10. Any finitely generated subgroup of FZ[t] has a solvable conjugacy
problem. That is, there exists an algorithm which, given standard decompositions
of elements f, g ∈ H = 〈h1, . . . , hk〉, decides if f is conjugate to g in H, and if yes,
generates an element c ∈ H such that c−1fc = g.

Proof. H can be effectively embedded into a group G which is obtained from a
free group by finitely many centralizer extensions. We have

F = G0 < G1 < G2 < · · · < Gn = G,

where every Gi+1 is obtained from Gi by a centralizer extension of a single element
ui ∈ Gi and H ≤ Gn,H � Gn−1.

By Corollary 8.6 [15], one can find effectively cyclic decompositions

f = u−1
f ◦ f̄ ◦ uf , g = u−1

g ◦ ḡ ◦ ug,

where uf , f̄ , ug, ḡ ∈ G. Then by Lemma 8.9 [15], one can determine if x−1∗f̄ ∗x =
ḡ for some x ∈ FZ[t].

If there exists no such x ∈ FZ[t] then f is not conjugate to g in H and we are
done.

Suppose such x exists, then it follows from Lemmas 8.8 and 8.9 [15] that it can
be found effectively and x ∈ G. Moreover, by Lemma 8.7 [15] for any x1 such that
x−1

1 ∗ f̄ ∗ x1 = ḡ we have x1 ∈ C(f̄) ∗ x. Since x exists, it follows that there exists
y ∈ G such that y−1 ∗ f ∗ y = g and

(ug ∗ y−1 ∗ u−1
f ) ∗ f̄ ∗ (uf ∗ y ∗ u−1

g ) = ḡ.

Hence, uf ∗ y ∗ u−1
g ∈ C(f̄) ∗ x and y ∈ u−1

f ∗ C(f̄) ∗ x ∗ ug. Finally, we have

f is conjugate to g in H ⇐⇒ H ∩ (u−1
f ∗ C(f̄) ∗ x ∗ ug) 6= ∅

or equivalently

f is conjugate to g in H ⇐⇒ H ∩ (C(f) ∗ (u−1
f ∗ x ∗ ug)) 6= ∅.

In fact it is enough to take CG(f) instead of C(f) because we need only to check
elements of C(f) ∗ (u−1

f ∗ x ∗ ug), which belong to G. Thus,

f is conjugate to g in H ⇐⇒ H ∩ (CG(f) ∗ (u−1
f ∗ x ∗ ug)) 6= ∅.

By Theorem 5 one can effectively check if H
⋂

(CG(f)∗ (u−1
f ∗x∗ug)) is empty.

¤
Theorem 10 can be reformulated for finitely generated fully residually free

groups.

Theorem 11. Any finitely generated fully residually free group has solvable
conjugacy problem.
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