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ABSTRACT. In [16] we introduced graph-theoretic techniques for finitely gen-
erated subgroups of FZ! and solved effectively the membership problem in
finitely generated fully residually free groups. In the present paper we prove
that finitely generated fully residually free groups satisfy Howson property
and show how one can effectively find the intersection of two finitely generated
subgroups, we solve the conjugacy problem, the malnormality problem, and
provide an algorithm to compute ranks of centralizers.
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1. Introduction

Finitely generated fully residually free groups play a crucial role in the theory
of equations and first-order formulas over a free group. It is remarkable that these
groups, which have been widely studied before, turn out to be the basic objects
in newly developing areas of algebraic geometry and model theory of free groups.
Recall that a group G is called fully residually free (or freely discriminated [1], or
w-residually free [18]) if for any finitely many non-trivial elements ¢1,...,9, € G
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there exists a homomorphism ¢ of G into a free group F', such that ¢(g;) # 1 for
1=1,...,n.

Studying equations in free groups Lyndon introduced in [12] the notion of a
group with parametric exponents in an associative unitary ring. In particular, he
described free exponential groups FZ! over the ring of integer polynomials Z[t] and
showed that these groups are fully residually free. In [18] Remeslennikov established
a connection between residual properties of groups and their universal theories,
namely, he proved that a finitely generated group H is fully residually free if and
only if H has exactly the same universal theory as F. It follows then immediately
from the Lyndon’s result, that all finitely generated subgroups of FZl have the
same universal theory as F'. This once more emphasized the role of Lyndon’s group
FZIf! in the investigation of the elementary theory of F. A modern treatment
of exponential groups is contained in [13], where Myasnikov and Remeslennikov
proved that the group FZM! can be obtained from F by an infinite chain of HNN-
extensions of a very specific type, so-called extensions of centralizers. This implies
that finitely generated subgroups of FZI are, in fact, subgroups of fundamental
groups of graphs of groups of a very particular type, hence one can apply Bass-
Serre theory to describe the structure of these subgroups. For instance, it is routine
now to show that all such subgroups are finitely presented [11] (see, also [17]
for another proof of this result). Exploiting relations between HNN-extensions
and length functions it has been shown in [14] that the group FZ has a free
Lyndon’s length function with values in Z[t], thus finitely generated subgroups of
F2I1 act freely on Z™-trees, hence on R"-trees. Recently, Giurardel proved this
result independently using different techniques [7].

In [11] Kharlampovich and Myasnikov proved the converse of the Lyndon’s
result mentioned above, namely, they showed that every finitely generated fully
residually free group is embeddable into FZ[. This provides a complete description
of finitely generated fully residually free groups and gives a lot of information about
their algebraic structure. In particular, all these groups, except for abelian and
surface groups, have a non-trivial cyclic JSJ-decomposition.

A new technique to deal with FZt] became available recently when Myasnikov,
Remeslennikov, and Serbin showed that elements of this group can be viewed as
reduced infinite words in the generators of F' [15]. It turned out that many algo-
rithmic problems for finitely generated fully residually free groups can be solved
by the same methods as in the standard free groups. Indeed, in [16] an analog of
the Stallings’ folding was introduced for an arbitrary finitely generated subgroup
of FZI!l which allows one to solve effectively the membership problem in FZ[H | as
well as in an arbitrary finitely generated subgroup of it. Following [8] and [16] we
further develop this method here, focusing mostly on its algorithmic aspects.

In this paper we solve some principal algorithmic problems for subgroups of a
fully residually free group G. In Section 3 we show that G satisfies Howson prop-
erty: the intersection of two finitely generated subgroups H and K of G is finitely
generated. Moreover, we show that the Intersection Problem is algorithmically de-
cidable in G, i.e., for any finitely generated subgroups H and K of G (given by
finite generating sets) one can effectively find a finite generating set of H N K. Fur-
thermore, similar technique shows that one can find effectively the intersection of
cosets of finitely generated subgroups of G. In Section 6 we prove that the Conju-
gacy Problem is decidable in G. Notice that this result also follows from [6] and [5].
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Indeed, Dahmani showed in [6] that G is relatively hyperbolic and Bumagin proved
in [5] that the Conjugacy Problem is decidable in relatively hyperbolic groups. In
Section 4 we prove that for finitely generated subgroups H, K of G there are only
finitely many conjugacy classes of intersections HY N K in G. Moreover, one can
find a finite set of representatives of these classes effectively. This implies that one
can effectively decide whether two finitely generated subgroups of G are conjugate
or not, and check if a given finitely generated subgroup is malnormal in G. Observe,
that the malnormality problem is decidable in free groups [2], but is undecidable
in torsion-free hyperbolic groups - Bridson and Wise constructed corresponding ex-
amples in [4]. In Section 5 we provide an algorithm to find the centralizers of finite
sets of elements in finitely generated fully residually free groups and compute their
ranks. In particular, we prove that for a given finitely generated fully residually
free group G the centralizer spectrum Spec(G) = {rank(C) | C = Cgs(g),9 € G},
where rank(C) is the rank of a free abelian group C, is finite and one can find it
effectively.

2. Preliminaries

Here we introduce basic definitions and notations which are to be used through-
out the whole paper. For more details see [15, 16].

2.1. Lyndon’s free Z[t]-group and infinite words. Let F = F(X) be a
free non-abelian group with basis X and Z[t] be a ring of polynomials with integer
coefficients in a variable . In [12] Lyndon introduced a Z[t]-completion FZ of F,
which is called now the Lyndon’s free Z[t]-group.

It turns out that FZ[ can be described as a union of a sequence of extensions
of centralizers [13]

(1) F=Gy<Gi < - <Gp<--+,

where G;11 is obtained from G; by extension of all cyclic centralizers in G; by a
free abelian group of countable rank.

In [15] it was shown that elements of FZ! can be viewed as infinite words
defined in the following way. Let A be a discretely ordered abelian group. By 14
we denote the minimal positive element of A. Recall that if a,b € A then the closed
segment [a,b] is defined as

[a,b) ={z € A|a < x < b}
Let X = {x; | i € I} be a set. An A-word is a function of the type
w: [1a, ] — X,

where a,, € A, a,, = 0. The element «, is called the length |w| of w. By ¢ we
denote the empty word. We say that w is reduced if w(a) # w(a + 1)~ for any
1 < @ < ay. Then, as in a free group, one can introduce a partial multiplication
*, an inversion, a word reduction etc., on the set of all A-words (infinite words)
W (A, X). We write uov instead of wv if |uv| = |u| 4+ |v|. All these definitions make
it possible to develop infinite words techniques, which provide a very convenient
combinatorial tool (for all the details we refer to [15]).

It was proved in [15] that FZ! can be canonically embedded into the set of
reduced infinite words R(Z[t], X), where Z[t], an additive group of polynomials
with integer coefficients, is viewed as an ordered abelian group with respect to the
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standard lexicographic order < (that is, the order which compares the degrees of
polynomials first, and if the degrees are equal, compares the coefficients of cor-
responding terms starting with the terms of highest degree). More precisely, the
embedding of FZ! into R(Z[t], X) was constructed by induction, that is, all G;
from the series (1) were embedded step by step in the following way. Suppose,
the embedding of G; into R(Z[t], X) is already constructed. Then, one chooses a
Lyndon’s set U; C G; (see [15]) and the extension of cenralizers of all elements from
U; produces Gjt1, which is now also naturally embedded into R(Z[t], X).

The existence of an embedding of FZ! into the set of infinite words implies
automatically the fact that all subgroups of FZ! are also subsets of R(Z[t], X),
that is, their elements can be viewed as infinite words. From now on we assume the
embedding p : FZ! — R(Z[t], X) to be fixed. Moreover, for simplicity we identify
FZIt with its image p(FZH).

2.2. Reduced forms for elements of FZ[. Following [15] and [16] we
introduce various normal forms for elements in FZM! in the following way.
We may assume that the set
v=Ju

is well-ordered. Let
U, = {uil,uiz, .. } C Gi;
be enumeration of elements of U; in increasing order. Denote by I; the set of indices

11,13, ... of elements from U;. Now g € G,,+1 — G}, has the following representation
as a reduced infinite word:

(2) g =10 Up; ©ga0-- 0 Uy O Gry,

where ni,ng,...,n € I, gr € G, k € [L,1+1], [gkstUn,] # € [Ght1sUn,] #
e, ke [1,1], |ag] >> 0, k € [1,1] (recall that o >> 0if o € Z[t]—Z). Representation
(2) is called U, -reduced if the ordered I-tuple {|a1|, |azl, ..., |a;|} is maximal with
respect to the right lexicographic order among all possible such representations of
g.

From (2) one can obtain another representation of g. Fix any u from the list
Up,, Upg, - - - 5 Up,. Then

(3) g:hlouﬁlOhQO"'OUﬁpohp+17

where ﬂj = Qm;,mj € [17”7] € [Lp]a hy = g1 o u%i O 00gmy, h;DJrl = 9m,+1 ©
0 G141, Mk = Gmu+1 00 gm, 1,k € [2,p]. Representation (3) is called a u-
representation or a u-form of g. In other words, to obtain a u-form one has to
"mark” in (2) only nonstandard exponents of u. Representation (3) is called u-
reduced if the ordered p-tuple {|51],|082],...,|0p|} is maximal with respect to the
right lexicographic order among all possible u-forms of g.
Observe that if (3) is a u-form for g and g is cyclically reduced then obviously

(4) (hyouProhgo---oul 0 hpt1) o (hy ou ohgo-oul o hpt1)
is a u-form for g2. So, we call (3) cyclically u-reduced if (4) is u-reduced.

LEMMA 1. [16] For any given u-reduced form of g € Gpi1 — Gn,u € U, there
exists a cyclic permutation of g such that its u-reduced form is cyclically u-reduced.
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Let g € G,,+1 — G, have a U,-reduced form

a o
g = 910U, ©G20 0 Uy ©git1,

Where un1>un27~ .. ,Unl e Un? gk e G’I’Lﬂ k 6 [17l+1]7 [glﬁunk} # 87 [gk+17unk] 7é
g, lag| >> 0, k € [1,1]. Now, recursively one has a U,_j-reduced form for g;

gi = g(i)1 0 Uit © g(i)2 0+ 0 uh 0 g(i)s,
where U, , ..., Um, € Un—1, |Bm,| >> 0,k € [1,s], g(i)x € Gpn-1,k € [1,s+1] and
one can get down to the free group F with such a decomposition of g, where step
by step subwords between nonstandard powers of elements from U; are presented
as U;_1-forms, i € [1,n]. Thus, from this decomposition one can form the following
series for g:

(5) F < HO,l < H072 < < H07k(0) < H171 <0< Hl,k(l) <...

< anl,k:(nfl) < Hn,l <. < Hn,k(n),
where Hj1,..., Hj ;) are subgroups of Gj;1, which do not belong to G; and Hj ;
is obtained from Hj;; 1 by a centralizer extension of a single element u;;_1 €
Hj;, 1 < Gj. Element g belongs to H, r(,) and does not belong to the previous
terms. Series (5) is called an extension series for g.
Using the extension series above we can decompose g in the following way:
g € H, k(n) has a u, yn)-reduced form

B B

g = hl ou’!‘:k‘(n) Oh2 O ¢ Ounl,k(n) Ohl+17

where all hj,j € [1,1 4 1] in their turn are wu,, j(n)—1-reduced forms representing
elements from H, (,)—1. This gives one a decomposition of g related to its ex-
tension series. We call this decomposition a standard decomposition or a standard
representation of g.

Observe that for any g € FZ[U  its standard decomposition can be viewed as a
finite product b1bs - - - b,,,, where
bye B={XUX N u{u*|uecUacZt -7}
We denote this product by 7(g) so we have
m(g) = m(ha) )y wha) - uly o w (i),

where m(h;) is a finite product in the alphabet B corresponding to h;, and from
now on, by a standard decomposition of an element g we understand not the rep-
resentation of g as a reduced infinite word but the finite product 7(g).

By U(g) we denote a finite subset of U such that if 7(g) contains a letter
b; € B such that b; = u® then u € U(g). Observe that U(g) is ordered with an
order induced from U, so we have

U(g) ={u1, ..., um}t,
where u; < wuj if i < j and Uy, = Uy g(n). By max{U(g)} we denote the maximal
element of U(g).
If u € U(g) then by deg, (g) we denote the maximal degree of infinite exponents
of u, which appear in 7(g).
It is easy to see that in general 7(g1 0 g2) # 7(g1)7(g2) and w(gog) = w(g)7(g)
if and only if the u-reduced form of g is cyclically u-reduced, where v = max{U(g)}.
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From the definition of a Lyndon’s set and the results of [15] it follows that if
R C G, is a Lyndon’s set then a set R’ obtained from R by cyclic decompositions of
its elements is also a Lyndon’s set. Thus, by Lemma 1 we can assume a w-reduced
form of any u € U, to be cyclically w-reduced, where w = max{U (u)}. Hence, we
can assume
m(uowu) =m(u)m(u)

for any u € U.

2.3. Embedding theorems. There are three results which play an important
role in this paper. The first embedding theorem is due to Kharlampovich and
Myasnikov.

THEOREM 1 (The first embedding theorem ([11])). Given a finite presentation
of a finitely generated fully residually free group G one can effectively construct an
embedding ¢ : G — F* (by specifying the images of the generators of G ).

Combining Theorem 1 with the result on the representation of FZ* as a union
of a sequence of extensions of centralizers one can get the following theorem.

THEOREM 2 (The second embedding theorem). Given a finite presentation of a
finitely generated fully residually free group G one can effectively construct a finite
sequence of extension of centralizers

F<Gy<...<Gy,

where Giy1 is an extension of the centralizer of some element u; € G; by an infinite
cyclic group Z, and an embedding v* : G — G, (by specifying the images of the
generators of G ).

Combining Theorem 1 with the result on the effective embedding of FZ into
R(Z][t], X') obtained in [15] one can get the following theorem.

THEOREM 3 (The third embedding theorem). Given a finite presentation of
a finitely generated fully residually free group G one can effectively construct an
embedding ¢ : G — R(Z[t], X) (by specifying the images of the generators of G).

2.4. Graphs labeled by infinite Z[t]-words. By an (Z[t], X)-labeled di-
rected graph ((Z[t], X)-graph) T' we understand a combinatorial graph I" where every
edge has a direction and is labeled either by a letter from X or by an infinite word
u® € FPUU v € U a € Z[t],a > 0, denoted p(e).

For each edge e of I' we denote the origin of e by o(e) and the terminus of e by
t(e).

For each edge e of (Z[t], X )-graph we can introduce a formal inverse e~! of e
with the label pu(e)~! and the endpoints defined as o(e™!) = t(e),t(e™!) = ofe),
that is, the direction of e~! is reversed with respect to the direction of e. For the
new edges e~ ! we set (e71)~! = e. The new graph, endowed with this additional
structure we denote by T Usually we will abuse the notation by disregarding the
difference between I' and T'.

A path p in T is a sequence of edges p = e; - - - ex, where each e; is an edge of T’
and the origin of each e; is the terminus of e;_;. Observe that pu(p) = p(e1) ... uler)
is a word in the alphabet {X U X'} U {u® | u € U,a € Z[t]} and we denote by
1(p) a reduced infinite word p(eq) * - - - % u(ex) (this product is always defined).

A path p=-e;---¢e in I is called reduced if e; # e;_ll for alli e [1,k —1].

A path p=-ey---e; in I is called label reduced if
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1) p is reduced;
2) if ex, -+ ex,, k1 < ko is a subpath of p such that u(e;) = u*,u e U, a; €
Zt), i € [k, ko] and pler,—1) # u?, pler, 1) # w for any § € Z[t],
provided k1 — 1, ko +1 € [1, k], then o = e, +- - -+, # 0 and p(eg, —1)*
0% = ek, 1) 0 U, u® % plekyar) = U 0 ey 1)
A (Z]t], X)-graph T is called partially folded if there are no edges e; and eg in
T with pu(e1) = p(e2) such that o(e;) = o(ea) or t(er) = t(ez).
In [16] partial foldings on (Z[t], X )-graphs were introduced and the following
result was proved.

PROPOSITION 1. [16] Let I" be a (Z[t], X )-graph, which has only a finite num-
ber of edges. Then there exists a partially folded (Z[t], X)-graph A, which can be
obtained from I' by a finite number of partial foldings.

Let T' be a (Z[t], X)-graph and u € U be fixed. Vertices vy, ve € V(I') are called
u-equivalent (denoted vy ~,, vq) if there exists a path p = e;---ex in I' such that
o(er) = v1,t(ex) = v and p(e;) = uf, oy € Zlt],i € [1,k]. ~, is an equivalence
relation on vertices of I', so if T" is finite then all its vertices can be divided into
a finite number of pairwise disjoint equivalence classes. Suppose, v € V(T') is
fixed. One can take the subgraph of I" spanned by all the vertices which are u-
equivalent to v and remove from it all edges with labels not equal to u®, o € Z][t].
We denote the resulting subgraph of I by Comp, (v) and call a u-component of v.
If v e V(T'),v9 € V(Comp,(v)) then one can define a set

Hy,(vo) = {p(p) | p is a reduced path in Comp,(v) from vy to vg}.

LEMMA 2. [16] Let I" be a (Z[t], X)-graph and v € V(T'),vg € V(Comp,(v)).
Then
(1) Hyu(vp) is a subgroup of R(Z[t], X);
(2) Hyu(vo) is isomorphic to a subgroup of Z[t;
(3) if Comp,,(v) is a finite graph, then H,(vo) is finitely generated;
(4) if v € V(Compy(v)) then Ho(vg) = Hy(vr).

Following [16] one can introduce operations on u-components which are called
u-foldings. One of the most important properties of u-foldings is that they do not
change subgroups associated with u-components.

LEMMA 3. [16] Let T' be a (Z[t], X)-graph, v € V(I') and C = Comp,(v) be
finite. Then there exist a (Z[t], X)-graph A obtained from T' by finitely many u-
foldings such that v' € V(A) corresponds to v and C' = Comp, (v') consists of a
simple positively oriented path Po:, and some edges that are not in Pcr connecting
some pairs of vertices in Pcr.

C’ in Lemma 3 is called a reduced u-component. Since Pg: is a simple path
there exists a vertex z¢r € V(Pgr) which is an origin of only one positive edge in
Poi. z¢r is called a base-point of C”.

It turns out that any finite reduced u-component C in a (Z[t], X)-graph is
characterized completely by the pair (Pc, H,(2¢)) in the following sense. For any
reduced path p in C there exists a unique reduced subpath ¢ (denoted ¢ = [p]) of Pc

with the same endpoints as p, such that u(p)*u(q)il € H,(z¢). Moreover, let Po =
fi-++ fm, where o(f1) = zc,v0 = zc,v; = t(fi),i € [1,m] and let po, p1,...,pm be
reduced subpaths of Pc such that o(p;) = z¢, t(p;) = v;, ¢ € [0, m]. The set of paths
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D0, D1, - - - s Pm 18 called a set of path representatives associated with C' (denoted by
Rep(C)).
LEMMA 4. [16] Let C be a finite reduced u-component in a (Z[t], X)-graph T,

-1
ve V(C) and let o € Z[t). If pu(p;) *p(p;) ¢ Hu(zc) for any pi,p; € Rep(C),i #
J then either there exists a unique reduced path p in Po such that o(p) = v and

u® € u(p) x Hy,(z¢) or there exists no path q in C' with this property.

If C is reduced and Rep(C') satisfies the condition from Lemma 4 then we call
C a u-folded u-component.

2.5. Languages associated with (Z[t], X)-graphs. Let I" be a (Z[t], X)-
graph and let v be a vertex of I'. We define the language of I' with respect to v
as

L(T,v) = {u(p)| p is a reduced path in T from v to v}.

LEMMA 5. [16] Let T be a finite (Z[t], X)-graph and let v € V(T"). Then L(T',v)
is a subgroup of FZ1H,

LEMMA 6. [16] Let T be a finite (Z[t], X)-graph and let v € V(T'). Let Ay be a
(Z[t], X)-graph obtained from T by a single partial folding and let Ay be a (Z[t], X)-
graph obtained from T' by a single u-folding for some uw € U, so that v1 € V(Ay)
and v € V(Agz) correspond to v. Then

L(T',v) = L(Ay1,v1) = L(Az, v2).

Let T be a (Z[t], X)-graph and p = e;---e; be a reduced path in T'. Let
g € Gpy1 — G, and let

7(g) = w(ha)u? w(ha) - - uPir(hus),
be the standard decompostion of g, where © = max{U(g)}. We write

p(p) = =(g)
if p can be subdivided into subpaths

p=pidipz - - dipiya,
where d; is a path in some u-component of I' and p; is a path in I' which does not
contain edges labeled by u®,a € Z[t], so that u(d;) = w”,i € [1,1] and u(p;) =
w(h;),i € [1,1 + 1] is defined recursively in the same way. Observe that if g =
x1 @, € F then u(p) = n(g) if k =r and u(e;) = x; for every i € [1,k].

Let ' be a finite (Z[t], X)-graph. Since I' is finite, the set of elements u € U
such that there exists an edge e in I' labeled by u®, o € Z[t] is finite and ordered
with the order induced from U. Thus one can associate with I' an ordered set
Ul) ={u,...,un}, N >0,u; € Uyu; <, fori < j.

If u € U(T") then by deg, (I") we denote the maximal degree of infinite exponents
of u, which are labels of edges in I', that is,

deg, (T') = max{deg(a) | u(e) = u® for some e € E(T)}.
It is easy to see that deg, (I") is invariant under partial and U-foldings, and

deg, (T') > deg,
egu( )_gergggfv){ egu(9)}

for any v € V(T).
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Let u; € U(T) be fixed and I'(2) be a subgraph of I" which consists only of edges
e € E(T) such that either p(e) = 2 € X* or pu(e) = uf,a € Z[t],j < i. (i) is
called an i-level graph of T' (by 0-level graph we understand a subgraph of T" which
consists only of edges with labels from X) and the level (denoted I(T')) of T is the
minimal n € N such that I' = I'(n). Observe that I'(¢) may not be connected for
some i < [(T'), but still one can apply to I'(¢) partial and u-foldings, u € U(T).

A finite connected (Z[t], X)-graph A is called U-folded if for any u, € U(A)
the following conditions are satisfied:
(i) A is partially folded;

(ii) all u,-components of A are u,-folded and isolated, that is, there exists no
reduced path p with u(p) = uf,k € Z in A(n — 1) such that p connects
two different u,,-components of A;

(iii) if C is a u,-component of A, e € E(Pc) and u(e) = uf,k € Z then
there exists a unique label reduced path p in A(n — 1) such that o(p) =
o(e), t(p) = t(e), u(p) = m(un)";

(iv) if C is a uy,-component of A and v € V(C) N V(A(n — 1)) then there
exists a unique label reduced path p in A(n — 1) such that o(p) = t(p) =
v, u(p) = 7(un)*, k € Z and H,, (v) N {u,) = (uk);

(v) if C'is a u,-component of A and vy, ve € V(C') are connected by a reduced
path p in Pc then either p consists only of edges labeled by finite exponents
of u,, or there exists no number k, € Z such that u(p) xu=r € Hy, (v1);

(vi) for any u,-component C' of A and two of its vertices vy, v2,v1 # vo which
are joined by some path p in Po with o(p) = v1,t(p) = v there exists no

reduced path r in A(n—1) such that o(r) = vy, t(r) = vo, u(r) = vk, k € Z

and (p) * u(r) ¢ Hy, (01);
(vii) for any u,-component C of A, its vertex v and a reduced path p in A(n—1)
such that o(p) = v, u(p) = uk, k € Z it follows that t(p) € V(C);

(viii) (a) for any u,-component C' of A, its vertex v and a label reduced path
pin A(n — 1) such that o(p) = v, u(p) = w,w = ul o¢,§ € {1, -1},
there exists a label reduced path ¢ = ¢1¢g2 in A(n — 1) such that
o(g) = v, t(q) = t(a2) = t(p), p(qr) = ™(un)’, t(qr) € V(C);

(b) for any u,-component C of A, its vertex v and a label reduced path
p in A(n) such that p = z129,0(p) = v,21 € A(n — 1), u(21) =
wy, ((z2) = wyoc = u) ocy,ud = w; ows,, there exists a label
reduced path ¢ = g1¢2 in A(n — 1) such that o(q) = v,t(q) = t(¢g2) =
t(p), la1) = 7(un)’, t(q1) € V(CO);
(c) for any u,-component C of A, its vertex v and a path p in A(n — 1)
such that o(p) = v, u(p) = wi,ud = wy 0wy, wy # £, € {1,—1}, if
there exists an edge ¢’ in C such that o(e’) = v, u(e’) = u7,v6 > 0
then there exists a label reduced path p’ in A(n—1) such that o(p’) =
v, u(p’) = ul,t(p') € V(C) and p is an initial subpath of p';
(ix) for any reduced path p in A with u(p) = w there exists a unique label
reduced path ¢ such that o(q) = o(p), t(q) = t(p), u(q) = 7(w);
(x) for the standard decomposition 7(g) of any g € FZ* and any v € V(A)
either there exists a unique label reduced path p in A starting at v such

that u(p) = mw(g) or for any path ¢ in A starting at v it follows that
1(q) # g-
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PROPOSITION 2. [16] Let I' be a finite connected (Z[t], X)-graph. Then there
exists a U-folded (Z[t], X)-graph A, which is obtained from T by a finite sequence
of partial and u-foldings. Moreover A can be found effectively.

PROPOSITION 3. [16] Let H be a finitely generated subgroup of FZU. Then
there exists a U-folded (Z[t], X)-graph T and a vertex v of T such that L(T',v) = H.

PROPOSITION 4. [16] There is an algorithm which, given finitely many standard
decompositions of elements hy, ... hy from FPM constructs a U-folded (Z[t], X)-
graph T, such that L(T,v) = (hy,..., hg).

The properties of U-folded graphs make it possible to solve the membership
problem in finitely generated subgroups of FZ[,

PROPOSITION 5. [16] Every finitely generated subgroup of FZ has a solvable
membership problem. That is, there exists an algorithm which, given finitely many
standard decompositions of elements g, h1, ..., hy from FZU decides whether or
not g belongs to the subgroup H = (hy,..., hy,) of FZH.

3. Intersection of two finitely generated subgroups of FZ!!]

In [8] a very convenient and simple way to compute an intersection of two
subgroups of a free group was shown, which used the notion of a product-graph.
Recall that if ©1,0, are graphs labeled by some alphabet A, then the product-
graph ©1 X O is defined as follows:

(1) the vertex set of ©1 x O is the set V(01) x V(0O3);

(2) for a pair of vertices (s,t), (s',t') € V(O x ©3) (so that s, s €
V(©1), t, t' € V(O2)) and a letter z € A an edge labeled by z with
origin (s,t) and terminus (s',¢') is introduced, provided there is an edge
labeled by z from s to s’ in ©; and there is an edge labeled by z from ¢
to t/ in @2.

In Subsection 3.1 we introduce a similar notion, adjusted to the case of U-folded
(Z[t], X )-graphs and then in Subsection 3.2 we show how to find an intersection of
two finitely generated subgroups of FZ[ pretty much in the same way as in a free

group.

3.1. Product-graph of U-folded (Z[t], X )-graphs. Observe that any finite
(Z[t], X )-graph T is characterized by its u-components where v € U(T"), and any
u-component is associated with a free abelian group of a finite rank, its subgroup
and a finite set of coset representatives of this subgroup. Thus, in order to realize
the idea of a product-graph in the case of (Z[t], X)-graphs we have to show how to
construct the product-graph of two u-components and then introduce the notion in
general.

Notice that if H and K are subgroups of a group G and u,v € G, then either
uH NoK = w(H N K) for some w € G or the intersection of these two cosets is
empty. We frequently use this fact below.

Recall from [16] that if © is a finite U-folded (Z]t], X)-graph, v € V(0) and
K = Compy,(v), where v € U(O) then K is finite and by Lemma 2, H,(v) is
isomorphic to a subgroup H of Z™¥) where n(K) = deg,(K)+ 1. Moreover, there
exist finitely many positive subpaths pg, p1, ..., pn of Pk, all starting at zx, which
form a set of path representatives Rep(K), such that any w € V(K) is associated
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with p, € Rep(K), where u(p,) = u™ and h,, is a coset representative of H in

7K) . Thus, any w € V(K) can be associated with a coset representative of H

in Z"5). On the other hand, let w € V(K) be fixed and let u(p;) * u(pw)_l =

uli=hw i € [1,n]. Then by Lemma 4 it follows that hg — hu, A1 — P, -+, By — he
are coset representatives in Z"(5) by H.

h

DEFINITION 1. Let ©1,02 be finite U-folded (Z[t], X)-graphs. We define a
partial product-graph ©7 ¢ ©3 as follows:

(1) the vertex set of ©1 ¢ Og is the set V(01) x V(0s);

(2) for a pair of vertices (si,t1),(s2,t2) € V(01 ¢ O3) (so that s1,s2 €
V(©1),t1,t2 € V(O2)) and a letter x € X, we add an edge labeled by
x with origin (s1,t1) and terminus (s2,ts), provided there is an edge la-
beled by x from s1 to so in ©1 and there is an edge labeled by x from ty
to ty in Oy,

(3) for a pair of vertices (s1,t1),(s2,t2) € V(01 ¢ O3) (so that s1,s2 €
V(©1),t1,t2 € V(02)) and u € U(©1) NU(O2), we add an edge labeled by
ul with origin (s1,t1) and terminus (sq,t2), provided

a) 81~y S2, t1 ~y to (denote K1 = Compy(s1), Ko = Compy(t1));

b) hi, ho are coset representatives of Hy(s1) in Z™ 5V corresponding to
81,825

¢) g1,g2 are coset representatives of H,(t1) in Z"52) corresponding to
tl,tg,’

d) (ha — h1 + Hy(s1)) N (92 — g1 + Hu(t1)) = f + Hu(s1) N Hy(t),
where f is a coset representative of Hy(s1) N Hy(t1) in Z™ for n =
max{n(Ki),n(Ks3)}.

Observe that in general K; ¢ K5 consists of several u-components of 01 ¢ O5
because K1 ¢ K5 can be disconnected.

LEMMA 7. Let ©1,049 be finite U-folded (Z[t], X)-graphs, u € U(O1) N U(O4
and let Ky, Ko be non-empty u-components of ©1, ©2 correspondingly. Denote H; =
H,(v;), where v; € V(K;),i =1,2 and H = Hy(v1) N Hy(ve). Then

a) if there exists an edge ey € E(Ky ¢ K3) such that o(e1) = (s1,t1),t(e1) =
(s2,t2) and p(er) = uP' then there exists also an edge e; € E(K; ¢ K3)
such that o(ea) = (s2,t2),t(e2) = (s1,t1) and p(ez) = uP?;

b) ifp = ey ---ex is aloop in KoKy such that p(e;) = uli then fi+---+fi €
H:

c) if p = er---ep is a simple path in Ki o Ky such that p(e;) = ufi and
fit--+fr#Othen fi +---+ fr ¢ H.

Proof. Let n = max{n(K;),n(Ks)}.
a) The existence of e; means that
(hg —h1+Hi)N (g2 —g1 + H2) = f+ H,

where hi, ho are coset representatives of Hy in Z" corresponding to si,82 , g1, 92
are coset representatives of Hs in Z™ corresponding to t1,ts and f is a coset repre-
sentative of H in Z". Thus we have

hy —hy+a1=g2—g1+ax= f +c,
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where a; € H;,c € H. So
hi —ho+bi=g1—go+bo=—f—c=f+¢
for b; € H;,c € H,—f € f' + H, which means that
(h1 —he + H1) N (g1 — g2 + H2)

is not empty, therefore there exists an edge es € F(K; x Ks) with o(e3) =
(s2,t2), t(ez) = (s1,t1) and p(es) = uf .

b) Suppose we have a cycle p = e - - - ey, u(e;) = ult in Ky x K,. By a) we can
assume all f; to be positive. We have o(e;) = (s;,1;),t(e;) = (Sit1,tit+1), (s1,81) =
(Sk+1,tk+1),t € [1,k]. By Definition 1, there exist a coset representative g; of Hy

in Z™ corresponding to s; and a coset representative h; of Hs in Z™ corresponding
to t; such that for an edge e; we have

(hit1 —hi + Hi) N (gi+1 — gi + H2) = f; + H,
where ¢ € [1,k]. Thus,
hit1 = hi + ai = giv1 — i + b = fi + ¢,
for some a; € Hy,b; € Ho,c; € H. So, summing up the above equalities for all
i € [1, k] we obtain
ai+-tap=bi 4 +b=fit+ frto

for ¢ € H and it follows f; +---+ fr € H.

¢) Suppose we have a simple path p = e; ---eg, pu(e;) = ufi in Ky x Ky. We
have o(e;) = (84, ti),t(e;) = (Sit1,ti+1),% € [1,k]. By Definition 1, there exist a
coset representative g; of Hy in Z™ corresponding to s; and a coset representative
h; of Hy in Z™ corresponding to t; such that for an edge e; we have

(hit1 = hi + H1) N (giv1 — gi + Ha) = fi + H,
where i € [1,k]. That is,
hivi —hi +ai = giy1 — gi + bi = fi + ¢,

for some a; € Hy,b; € Ho,c; € H. We sum up the above equalities for all ¢ € [1, k]
and we obtain

hgr1 —hi+a=gk1—g1+b=fi++ fu+o¢
where a € H{,b € Hy,c € H. Hence,

(hkt1 —h1 + H1) N (ge+1 — g1 + Ho)

is not empty, so there exists an edge e € E(K; x K3) from (s1,t1) to (Sk+1,tk+1)
labeled by u® and o ¢ H. Since ¢ = e;---epe! is a cycle in K x Ko, it follows
from b) that f1+---+ fr —a€ H,s0, f1+--+ fry1 ¢ H.

U

DEFINITION 2. Let ©1,09 be finite U-folded (Z[t], X)-graphs. We define a
product-graph ©1 x ©2 as follows:
(1) the vertex set of ©1 x Oy is V(01 0 05);
(2) for any u-component K of ©1 ¢ Oy choose a single vertex v € V(K)
and let V(u) be the set of all chosen vertices in ©1 ¢ Os for a fixred u €
U(@l) N U(@Q),
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(3) for any v = (v1,v2) € V(u) let Hy(vy) N Hy(ve) = (ha,...,hg) and let
E(v) be a bouquet of edge-loops ey, . .., e, labeled by u"i i € [1,k];

(4) the edge set of ©1 X Oz is obtained from E(O1¢O2) by attaching to every
veV(u),u e U(O)NU(O2) a graph E(v).

LEMMA 8. Let ©1,02 be finite U-folded (Z[t], X)-graphs, u € U(©1) NU(O2)
and let K; be a u-component of ©;,9=1,2. Then
a) if v = (v1,v2) € V(K1 x K3) and H; = Hy(v;),i = 1,2 then Hy(v) ~
Hu(’l}l) n Hu(’Ug),’
b) iful .. ul are reduced labels of all simple paths starting at v € V(K7 x

K>5) in K then hy,..., hg is a system of coset representatives of Hy,(v) in
7", where n = max{n(K;),n(Ks)}.

Proof. a) H,(v) is generated by all loops at v and from the definition of ©; X O
it follows that H,(v1) N Hy(v2) € Hy,(v). On the other hand, in view of Lemma
7.b) we have H,(v) C Hy(v1) N Hy(ve).

b) Follows from Lemma 7.c).

O

Observe that ©1 x © is partially folded but not necessarily U-folded. However,
all u-components in ©1 x G5 are complete and u-folded.

LEMMA 9. Let ©1,0, be finite U-folded (Z[t], X)-graphs and let g € FI
be such that there exist label reduced paths pi,p2 in ©1,04 correspondingly with
w(p1) = u(p2) = w(g). Then there exists a path p in ©1 X Oy such that o(p) =

(0(p1),0(p2)). t(p) = (t(p1), t(p2)) and u(p) = (g).
Proof. Let
m(g) = m(gr)w* m(g2) - - - W T(Gh11)-

and let I; = min{m | z; € ©;(m)},i = 1,2. Observe that I; = ls and we denote
L= n.

We use the induction on L.

If L =0, that is, g € F(X) then the existence of p follows from the definition
of @1 X @2.

Assume the statement to be true for L < n and let L = n.

Since ©1, ©y are U-folded, there are unique paths y; € ©1(L) and z; € O5(L)
such that o(y1) = o(p1),0(21) = o(p2), u(y1) = p(21) = w(g1) such that t(y1) €
V(K1),t(z1) € V(K3) for some w-components K1, K5 in 01,05 correspondingly.
By the induction hypothesis there exists a path ¢; in ©1 x ©9 such that o(¢q1) =
(o(y1),0(z1)),t(q1) = (t(y1),t(z1)) and p(q1) = m(g1). Observe that t(q1) belongs
to some connected w-component K; x Ky in ©1 x Os.

Since p; is a path in ©,;,7 = 1, 2, there are continuations of y; in K7 and 21 in Ks.
These continuations are paths yo € Kj,22 € Ko (not unique) such that p(y2) =
u(ze) = w* with fixed terminal vertices t(y2) and t(z2) which are completely
determined by w*'. Let n = max{n(K;),n(K2)} and Hy, Hs be subgroups of Z"
such that Hy = H,(0(y2)), Ho = Hy(0(22)) and denote H = Hy N Ho.

There exist coset representatives (31,71 of Hy in Z™ which correspond to o(ys),
t(y2) respectively and coset representatives fa,v2 of Ha in Z™ which correspond to
0(22),t(22) respectively, such that

a1 € (1 — B+ Hi) N (y2 — P2+ Ha) # 0.
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By definition of ©; x O,, there exists a coset representative 6; of H in Z™ and a
path go, pu(g2) = u®* from (o(y2), 0(22)) to (t(y2),t(22)) such that

(Mm=F+H)N(v2—=Po+Hy) =0 +H=o1+H.

Thus, we have a continuation gs of ¢; which has a fixed terminus in K; x Ky
determined by w!.
Now, the induction on k, the number of entries of infinite exponents of w,
produces the required path p
O

COROLLARY 1. Let O1,02 be finite U-folded (Z[t], X )-graphs and v; € V(0;)
fori=1,2. Then

L(@l X @2, (’Ul,’l)g)) = L(@l,vl) N L(@Q,Ug).
Proof.
L(©1 x O2, (v1,v2)) € L(O1,v1) N L(O2, v2)
follows directly from the definition of ©; x ©5 and
L(@l,vl) n L(@Q, ’Ug) Q L(@l X @27 (’Ul,’Ug))

follows from Lemma 9.
O
It is easy to see that in fact a more general result holds. Let © be a finite
U-folded (Z][t], X )-graph and v, w € V(©). Then by

L(©,v,w) = {u(p) | p is a path in © such that o(p) = v, t(p) = w}

we denote the language of © with respect to the initial vertex v and the terminal
vertex w. Observe that if v = w then L(©,v,w) coincides with L(©,v). The
following result is proved in the same way as Corollary 1.

COROLLARY 2. Let ©1,09 be finite U-folded (Z[t], X)-graphs and wv;,w; €
V(0;) fori=1,2. Then

L((—)l X 927 (UI7U2)7 (wlan)) = L(@l,'Ul,U)l) N L(®27v27w2)-

Finally, one can get further generalization defining the language of a finite
U-folded (Z][t], X )-graph taking instead of single initial and terminal vertices some
finite sets of vertices. In this case reformulation and proof of Corollary 2 is straight-
forward.

3.2. Finding intersection of two finitely generated subgroups of FZ[,
Using the construction of a product-graph one can find effectively the intersection
of two finitely generated subgroups of FZI.

From the definition of a product-graph the following result follows immediately.

LEMMA 10. Let ©1,04 be finite U-folded (Z[t], X )-graphs. Then ©1 x O3 can
be constructed effectively.

THEOREM 4. There exists an algorithm which, given finitely many standard
decompositions of elements h1, ..., Ry, g1, ..., Gm from FZU finds the generators of
H N K which is finitely generated, where H = (hy,..., ht), K ={g1,...,gm)-
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Proof. By Proposition 4 there exists an algorithm which constructs U-folded
(Z[t], X)-graphs T’y and 'y such that L(T'1,v1) = H,L(T2,v2) = K,v; € V(I[y).
Then by Lemma 10 one can construct I'y x I's effectively and by Proposition 2
there exists a U-folded (Z[t], X )-graph I's such that

L(Fg, (1)1,1)2)) = L(Fl X F27 (Ul,’Ug))

and I's can be found effectively. Finally, by Corollary 1 L(T's, (v1,v2)) = L(I'1,v1)N
L(T2,v9) = HN K. Since T3 is finite, one can find all simple loops at (v1,v2) and
their reduced labels generate L(T's, (v1,v2)) = HN K.
[l
The following result follows directly from Theorem 4.

COROLLARY 3. (Howson Property) The intersection of two finitely generated
subgroups of FZI!! is finitely generated.

Corollary 2 makes it possible to find intersections of cosets by finitely generated
subgroups of FZ[!,

THEOREM 5. There exists an algorithm which, given finitely many standard
decompositions of elements hi,...,hi, fi,-..fm, w1, ws from FX  finds the in-
tersection

H N (wy * K * wa),

where H = (hy,...,hg), K= {f1,..., fm).

Proof. Take a path p labeled by the standard decomposition of w;, a path
g labeled by the standard decomposition of ws and I'(H),T'(K) such that H =
LT (H),1g), K = L(I'(K),1k). Identify ¢(p),o(q) and 1x. Denote the obtained
(Z[t], X)-graph by A’ and notice that

wy * K xwy = {u(r) | ris a path in A’ with o(r) = o(p),t(r) = t(q)}.

By Proposition 2, one can obtain effectively a U-folded (Z][t], X)-graph A from A’
and with abuse of notation we call the vertices of A corresponding to o(p),t(q) € A’
again by o(p) and t(q).

By Lemma 10, one can construct effectively I'(H) x A and we have

[ —— | risapathin I'(H) x A such that
Ol Kosun) = { o I i W g }

O
Theorem 4 and Corollary 3 can be reformulated for finitely generated fully
residually free groups.

THEOREM 6. Let H = (hy,..., hig), K = (g1,...,9m) be finitely generated sub-
groups of a finitely generated fully residually free group G. There exists an algorithm
which finds the generators of H N K, which is finitely generated.

Proof. By Theorem 3 one can effectively obtain generators of G, H and K
viewed as infinite words and by Proposition 8.3 [15] compute their standard de-
compositions.

By Proposition 4 one can effectively find finite U-folded (Z[t], X)-graphs I'(G),
I'(H) and T'(K), such that G = L(T'(G), 1¢), H = L(T(H),1x), K = L(T(K), 1K)
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for some 1¢ € V(I'(G)),1g € V(I'(H)),1x € V(I'(K)) and the result follows from
Theorem 4.
[

COROLLARY 4. The intersection of two finitely generated subgroups of a finitely
generated fully residually free group G is finitely generated in G.

4. Properties of intersections of finitely generated subgroups of FZl!]

In this section we investigate properties of U-folding graphs in the connection
with the malnormality problem. Recall that a subgroup H of a group G is called
malnormal if for any g € G — H

gHg 'NH=1.
Correspondingly, the malnormality problem is decidable in G if there exists an
algorithm which, given finitely many elements hi,...,h, € G decides if H =
(h1,...,hy) is malnormal in G.

From now on if g € FZ! then by C(g) we denote the centralizer of g in FZH
that is,

C(g) = Cpan(9) ~ Pla™).
n=0
The following two results are analogous to respectively Lemma 7.5 and Propo-
sition 9.8 from [8].

LEMMA 11. Let I" be a connected U-folded (Z[t], X )-graph and u,v € V(I') be
connected by a reduced path q such that o(q) = v,t(q) = w,ulq) = g. If H =
L(T,v), K = L(T',u) then H=g* K xg~*.

Proof. Let p be a reduced loop at v in I'. We have automatically pu(p) = k € K.
Then the path p’ = gpq~! is a loop at v such that u(p’) = u(q)u(p)u(q)~t. Thus we

have u(p') = p(q) * pu(p) * (u(q)) - g *k*g~t. The path p’ may be not reduced,
so it can be transformed by finitely many path-reductions to a reduced path p”
such that o(p”) = o(p’) = t(p") = t(p') = v, u(p”) = p(p'). Hence u(p”) € H and
u(p’) =gxk*g~t € H. Thatis, g+ K xg~! C H. A symmetric argument shows
that ¢7'+ H* g C K, thstis, H C g% K * g—' and therefore H = g * K * ¢~!, as
required.

O

LEMMA 12. Let H, K < FZ! be finitely generated and T'(H),T(K) be U-folded
(Z[t], X)-graphs such that H = L(I'(H),1y), K = L(T'(K),1k) for some 1y €
V(I'(H)),1x € V(I'(K)). Then for any vertex (v,u) of I'(H) x I'(K) the subgroup
L(T(H) x T'(K), (v,u)) is conjugate to a subgroup of the form g H x g~ N K for
some g € F 1. Moreover, if (v,u) does not belong to the connected component of
(1g, 1K), then the element g can be chosen so that K x g« H # K « H.

Proof. Let p, be a label reduced path in I'(H) from 1y to v such that u(p,)

ws. Similarly, let p, be a label reduced path in I'(K) from 1, to u such that u(p,,)
wy. By Lemma 11, L(T'(H),v) = w; ' * H *w; and L(T(K),u) = wy * % K * ws.
Therefore, by Corollary 1

L(D(H) x T(K), (v,u)) = wi ' * H*w; Nwy ' * K *wsy
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which is conjugate to
(wy xwi )« H* (w1 xwy )N K
and g = wy * w; ' satisfies the requirement of the proposition.

Suppose that (v, u) does not belong to the connected component of (1, 1) in
I'(H) x T(K) but g = wy xw; ' € K % H. Thus, wy  w; ' = k % h for some k € K,
h € H and therefore

w=k"'xwy = h*w.
Since k € K, h € H then there exists a loop p; at 1x in T'(K) such that u(p) = k
and a loop ps at 1y in I'(H) such that u(ps) = h.

Then u(p1py) = w, u(papy) = w and there are a unique label reduced path pj
in T'(K) from 1x to w with label w(w) and a unique label reduced path p}, in T'(H)
from 1y to v with label m(w).

Now by Lemma 9, there exists a path in I'(H) x I'(K) from (1g,1k) to (v,u)
with the label 7(w). However, this contradicts our assumption that (v, u) does not

belong to the connected component of (1g,1xk).
Thus, g ¢ K« H and K * g+ H # K x H, as required.

O
At first we prove several auxiliary results which will be used in proofs of main
technical results of this section.

LEMMA 13. Let H, K < FZI! be finitely generated and T'(H),T(K) be U-folded
(Z[t], X)-graphs such that H = L(I'(H),1y), K = L(I'(K),1k) for some 1y €
V(I'(H)),1xk e V(I'(K)). Let g € F(X),h € HNF(X), f € KNF(X) be such that
g*hxg~t = f. Then g can be represented as a product g = y * z, so that, there

exists a path p in T'(H) starting at 1y with u(p) = 2= and there exists a path q in
I(K) starting at 1x with p(q) =y.

Proof. Consider two cases.

1. h does not cancel completely in g * h * g~ 1.

Then, h=aohjob, g=gioa"! :gQObandf:glohloggl. h € H, so,
there exists a loop at 1y in I'(H) which is labeled by h and since h € F(X), this
loop has an initial subpath labeled by a. On the other hand, f € K, so, there exists
a loop at 1k in I'(H) which is labeled by f and since h € F(X), this loop has an

initial subpath labeled by g;. So, g = g1 0o ™! is the required representation of g.
1

2. h cancels completely in g * h* g~".

We use the induction on |g|.

If |g| = 1, that is, g € X then the statement is obviously true. Assume that the
statement is proved for any g such that |g| < m and any subgroups H, K < F [t
which satisfy the conditions of the lemma. Let |g| = m.

a) h cancels completely in g * h (similarly in b * g~1).

We have g = gioh™'sogxhxg ' =g *(hogfl) = f € K. By the induction
hypothesis, since |g1]| < |g|, g1 can be represented as a product g; = y; * 21, so that
there exist a path p; in T'(H) starting at 15 and a path ¢; in T'(K) starting at 1x,
such that p(p1) = zl_l and u(q1) = yi. Thus, g = gioh™t = (y1x21)oh™ ! =
y1+(21xh~1). Since h € H, there exists a cycle p at 1y in T'(H) such that u(p’) = h
and for the concatenation p’p; we have o(p'py) = 1y, u(p'p1) = h* 2y .

Thus, the required product decomposition for g is g = y; * (21 * h™1).
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b) h cancels completely in g * h* g~ but not in g* h or hx g~1.

We have h = hy o hg,g = g1 © h;l = g2 0 hy. Observe that |g1| # |g2| and
without loss of generality we can assume |g1| > |g2|. Then |hi| < |hg|,he = co hy!
and h = hy o cohy'. Thus we have

grhxg ' =(grohi")x(hiocohi")x(hiogi')=gixcxg;' €K.

Since h = hy o co hy' € H, there exists a label reduced path p’ such that o(p’) =
L, () = 1 € V(T(H)) and u(p)) = hy. 1t Hy = LC(H),v1), H = LD(H), 1
then by Lemma 11 we have H = hy x Hy * hl_l.

Now, let us consider the triple g1, Hy, K. Observe that ¢ # ¢ € Hy, g1 * ¢ *
gi' € K. Since |g1]| < |g|, by the induction hypothesis g; can be represented as
a product g1 = y; * z1 so that there exist a path p; in I'(H) starting at v; and
a path ¢, in T(K) starting at 1x such that u(p)) = 27! and u(q1) = y1. Thus,
g=g10 hl_l = (y1*21)0 hl_l =y * (21 * hl_l). We claim that this is the required
product decomposition for g. Indeed, ¢; is a path in I'(K) starting at 1x such that
w(q1) = y1 and p'p; is a path in T'(H) starting at 1 such that u(p/p;) = hy % 2"

O

LEMMA 14. Let H, K < FZl! be finitely generated and T'(H),T'(K) be U-folded
(Z[t], X )-graphs such that H = L(I'(H),1y), K = L(I'(K),1k) for some 1y €
V(T'(H)),1x € V(T(K)). Let g€ FH h € H, f € K be such that g« hxg~' = f
and max{U(g)} < max{U(h)}. Then g can be represented as a product

g=yxu“xz, a €7,
where there emst paths p in T'(H) and q in T'(K), such that o(p) = 1g,0(q) = 1k
and p(p) = 271, u(q) =y, and one of the following holds
(1) a=0;
(2) a#0, ue UT(H))NU(I'(K)) and either o« = £1 or t(p) and t(q) belong
to some u-components of T'(H) and T'(K) respectively, so that,
Hu(t(p)) N (u) = Hu(t(g)) N (u) =€

and
—1

C(u)nH? NKY Cu®x H? xu=®NKY
Proof. Let u = max{U(g)}, w1 = max{U(h)}, ws = max{U(f)}. Then we have
the u-reduced form for g
g=giou*ogyo---outm ognui1,
the wi-reduced form f or h
h=h owf1 ohgo-~-owlﬂroh,.+1,
and the wo-reduced form for f
f=f10w710f20 Ow;lofury

L' = f and v < wy, it follows that w; = wy and I = r. Denote

Since g x h x g~

w = w; = wa.
Consider the following cases.
1. r>1.

In this case

g*h*g_l:(g*hl)owﬁiohgo---owﬁi'o(hﬂrl*g_l)



SUBGROUPS OF FULLY RESIDUALLY FREE GROUPS: ALGORITHMIC PROBLEMS 19

is the w-reduced form for g x h* g~1, where 8, — 3}, 3. — 3. € Z. Thus, it follows
from the uniqueness of w-reduced forms that g * (hy o w®) = f; o w” and

9= (frow™)* (b ow™)™!
is the required decomposition of g since there exist a path p in I'(H) starting at 1x
and a path ¢ in T'(K) starting at 1x such that u(p) = hy ow® and u(q) = frow™.

2. r=1.

In this case h = hy owP o hy, f= frow™ o fy.

By Lemma 6.9 [15], fi ' % g* hy = w” for some k € Z. Thus, g = f1 *w" * hy*
and without loss of generality we can assume k > 0. Observe that there exist a
path p in T'(H) starting at 1 with u(p) = h; and a path ¢ in I'(K) starting at 1x
with u(q) = fi.

If Hy,(t(p)) N {w) # € (or Hy(t(p)) N (w) # €) then by the property (iv) of
U-folded graphs there exists a loop z at t(p) labeled by w™,n € Z,n > 0. By the
™

property of elements from U we have 7 (w?) (w)m(w), that is, forany 0 < n; < n
there exists a subpath z1 of z such that u(z1) = 7(w™) = w(w) - - - w(w). Thus, the
—_——

nitimes
existence of an initial path 2z’ with 0( " =t(p), u(2') = m(w") follows.
Now, assume H, (t(p)) N (w) = Hy(t(p)) N (w) = e.
We set

Hi=hi'«sHxh), Ki=f'«Kxf

and
W= (w’ ohy)xhy=w’ody, f =(w"ofo)xfi=uwods,
where 81 — 8, 11 —v € Z. Then I/ € Hy, f' € K1 and
wh s b xwF = f

By Lemma 11,

Hy, = L(F(H),t(p)), K, = L(F<K)?t(Q))
and we can consider the triple w”*, Hy, K, instead of ¢, H, K.

We have w® * (w? ody) xw™" = w” o dy. Consider the following cases.

a) d1 =&

It follows that do = ¢ and hg * hy = w™. We have a loop pr, = pp1p2 at 1y
in T'(H) such that p(p) = m(h1), u(p1) = w?, u(pa) = w(he). If m # 0 then in
I'(H) we have a path p) such that o(p]) = t(p1),t(p}) = o(p1), u(p}) = w™. So,
either we have a contradiction with the fact that I'(H) is U-folded (the property
(vi), minimality of a w-component containing t(p) breaks) or H, (t(p)) N (w) # ¢

and we have a contradiction with our assumption. Hence, m = 0 and we have
hi =hy', fi = f5* from, which follows

C(w)ﬁHlﬂKlgwk*Hl*wfkﬂKl.

b) d1 7£ 3

Suppose d; does not cancel completely in (w” o d;) * w™* then we have d; =
cowyow”™, where w™! = wyt owyt,n < k and wk * (0’ o dy) xwF = wltk o
cow;t ow FH1 Observe that in T'(H) there exists a path p; such that o(p;) =
t(p), u(p1) = (c owq o w™)~'. Since o(p;) belongs to w-component, by the prop-
erty (viii.a) of U-folded graphs there exists a path py in I'(H) such that o(py) =
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t(p), p(p2) = w~™. On the other hand, in I'(K) there exists a path ¢; such that
o(q1) = t(q), u(q1) = (WPt  ocowyt ow *+7+1)=1 By the property (viii.b) of U-
folded graphs there exists a path ¢ in I'(K) such that o(q2) = t(q), u(g2) = wF="71.
Thus, we have

wh = wh T w x w™,

which is the required product decomposition.

Now, assume d; cancels completely in (w?® o dy) * w™" and without loss of
generality we can assume 3 > 0. We have w” od; = w® ™ ow™ od; = wl™™ o
wy ow™, where w = w; owsa, N < k so that f/ = wh* (wfody)*xw™" = (wltk—"1o
wy) * w™**t"2 and the length of the cancellation is less than |w|, that is, f’ has
w~F+n2+l a5 a terminal segment. Hence we have a path p; in I'(H) such that
o(p1) = t(p),pu(p1) = (WP o w; ow™)! and a path ¢; in I'(K) such that
olq1) = t(q), u(q1) = (wPT*="1 0wy ) x w=F+"2)~1 and by the property (viii.b) of
U-folded graphs there exist a path py in I'(H) such that o(p2) = t(p), u(p2) = w2
and a path gy in I'(K) such that o(g2) = t(q), u(g2) = w*~"2~1. Thus, we have

k — wk—ng—l

w *wx w2,

which is the required product decomposition.
O

LEMMA 15. Let H, K < F*I! be finitely generated and T(H),T'(K) be U-folded
(Z[t], X )-graphs such that H = L(T'(H),1g), K = L(T'(K),1k) for some 1y €
V(L(H)),1x € V(I(K)). Let g € F* h € H, f € K be such that g« hxg~' = f
and max{U(g)} = max{U(h)}. Then g can be represented as a product

g=y*xu*z, ac L,

where there exist paths p in T'(H) and q in T(K), such that o(p) = 1g,0(q) = 1k
and p(p) = 271, u(q) =y, and one of the following holds
(1) a=0;
(2) a€Zt]-Z, we UI(H)NUI(K));
B)0#aecZ, weUT(H)NUT(K)) and either o = £1 or t(p) and t(q)
belong to some u-components of T'(H) and T'(K) respectively, so that,

Hy(t(p)) N (u) = Hu(t(g)) N (u) =€

and
1

C’(u)I’WHZﬁKZf1 Cu*«H xu *NKY .

Proof. Let u=max{U(g)} = max{U(h)} and w = max{U(f)}. Then we have
the u-reduced forms for g

g=giou*ogao---0u*ogmii,

hZhlouﬁlOh20-~-ouﬁroh7.+1,

and the w-reduced form for f

f=fiow™ofro---owo fiig.

We prove the lemma by the induction on the number of syllables g; or u®¢ in g,
which is M = 2m + 1.
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If M =1 then g = uf, a1 € Z[t] —Z (g = g1 is not possible because u =
max{U(g)}) and this is already the required product decomposition of g since
uwe UT(H))NUT(K)).

Suppose the statement is proved for M < N and let M = N.

Consider

g*h*g_lzg*(hlouﬂlOhQO"'OUgTOhrH)*g:

= fiow]' o fao--owl o fip1 = f.

Depending on the cancellation in (u®" o gn,41) * b * (g, o u™") we have the
following cases.
Case L. u® % g, 1% hyou € (u) (similarly u® b, 1% g, L xu™ € (u)).
By Lemma 6.9 [15], gmi1 * b1 = u® and a,, + B € Z. Without loss of
generality we can assume «a,, > 0,8; < 0. Then we have

ko

_ -1
u®m = u P w2 gm_H:ukl*hl

and
u™ % g1 = u*ﬁl * uk:z " ukl " h;l — uk1+/€2 * (ufﬁl * h;l)
Denote ¢’ = g1 ou* 0 gg o+ 0 gy, SO,
g=g o U ogmi1) = (¢' xu" ) x (P AT
Observe that there exists a path p’ in I'(H) such that o(p’) = 1g,t(p') = vy €
) 1H

V(T'(H)) and u(p’) = hyoufr. If Hy = L(I'(H),v1),H = L(T'(H),1g) then by
Lemma 11 we have

H = (hy o uP") % Hy % (hy ouP1) ™1
and we consider the triple g” = (¢’ * u****2), H,, K instead of g, H, K. By the
induction hypothesis we have the product decomposition
g =y1xu x21, u € U(H))NU(K)),

so that there exist a path p; in I'(H) starting at v; and a path ¢; in T'(K) starting
at 1 such that u(py) = 27! and u(qy) = yi1, and if « is finite then the conditions
listed in the statement of the lemma hold. Thus we have the required product
decomposition

g = (yp *u§ * 21) % (u P « hit) = y1 % u$ % (21 % u P x ht),
where p/p; starts at 1z and pu(p'pr) = hy * uP % 27t
Case II. u® % g, 41 % hy o uPt, uPr x h,yq * g;ﬁrl xu”Ym & (u).
In this case w = u and from the uniqueness of u-reduced forms we have f; = g;.

1. fi#e
There exists a path ¢ in T'(K) such that o(¢') = 1k, t(¢) = v1 € V(I'(K)) and
w(q') = f1. If K1 = L(I'(K),v1) then by Lemma 11 we have

K=fi*Ky«f!
and we consider the triple ¢’, H, K7, where
g =urogro-outogy
instead of g, H, K. By the induction hypothesis we have the product decomposition
g =y xuf 21, w € UL(H))NU((K)),
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so that there exist a path p; in I'(H) starting at 1y and a path ¢; in I'(K) starting
at v1 such that u(p;) = z; ' and u(q1) = y1, and if a is finite then the conditions
listed in the statement of the lemma hold. Thus we have the required product

decomposition

g=g109 =fiog = (fr*y)*uf x 2z,

where ¢'q; starts at 1 and pu(q’q1) = f1 * y1.

2. fl =&

it follows immediately that f;11 = e.

If m > 1 then from the uniqueness of u-forms it follows that u* = u” and,
hence, exists a path ¢’ in I'(K) such that o(¢’) = 1k,t(¢") = v1 € V(I'(K)) and
u(g") = u®. Following the argument presented in 1. one can get the required
product decomposition for g.

Assume m = 1, so we have g = u®! o gs.
a) r > 1, that is, syllables «”* and ©®" do not coincide in h.
If [g2 * h1,u] # € then by Lemma 6.9 [15] there exist ki, ko € Z such that

U (g x hy) # u” = u M o (UM x go k by % uF?) o TR,

From g * h* g~' = f we have
ual—k‘lO(ukl*QQ*hl*ukz)ouﬁl—k2oh2 .. .O(uﬁr*(h’r—‘rl*g;l)*u—al) =u"ofyo---ou
and
u® T o (U gy hy xu?) 0w TR = w0 fy o2,
Thus,

g=uogy=(u"o faou)x(hyo uﬁl)fl,

which is the required product decomposition of g since there exist paths p in T'(H)
and ¢ in T'(K), such that o(p) = 1g,0(q) = 1lx and u(p) = hy o u®, u(q) =
uTt o fo ou)2,

If [go * hi,u] = € then gy * by = u* and v = u Ttk Thus, v =
u kP xR go = uF hfl and

g=u"ogy = (u xu P xuTF) x (WP x A7) = w7 x (uTP x ATY)

is the required product decomposition of g since there exist a path p in T'(H)
starting at 1z and a path ¢ in I'(K) starting at 1x such that u(p) = hy o u”' and
pn(q) = u.

b) r =1, that is, h = hy o u®* o hy.

b1) [go* hyu) # & ([h2* g5 " u] # €).

By Lemma 6.9 [15] there exist k1, k2 € Z such that

u® % (92 " hl) xuP = gk o (uk1 % go % hy * ukz) o uPr—k2
Thus we have u" = u® 5 ¢ = " %y and g = u™ * (uF x go). Observe
that there exists a path ¢’ in I'(K) such that o(¢') = 1x,t(¢') = v1 € V(I'(K)) and
w(g) =u". If K3 = L(I'(K),v1) then by Lemma 11 we have
K=u"*xKy*xu "

and we can consider the triple ¢/, H, K, where ¢’ = u*'*gs, instead of g, H, K be-
cause ¢’ xhxg' "' = f’, where f/ = u=V % fxu?". Since max{U(¢')} < max{U(h)} =
max{U(f")}, the required product decomposition of g follows from Lemma 14.
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b2) g2 * hy,u] = [he % g7 ' u] = €.
Then go ¥ b1 = u*', hy *gfl =uP and gxhx g~ ! = f = uf xuF1 12 We have
g2 = uF x b7t and
g = (u* xuf)«hyt
is the required product decomposition of g since there exists a path p’ in I'(H) such
that o(p’) = 1y and p(p’) = hy.

O

LEMMA 16. Let g € FZY and uw € U be such that gxu = gou and max{U(g)} <
u. Then there exists n € N such that w(g o u™*!) = m(g o u™)m(u).

Proof. We prove by the induction on |U(g)|.

Let |U(g)| = 0, that is, g € F(X). If u € F(X) then obviously m(g o u) =
7(g)m(u), so, the lemma holds for n = 0. If u ¢ F(X) then let w = max{U(u)}
and

u=hiow* ohgo- 0w oh,y
be the w-reduced form for u. Observe that r > 1 and
gou=hjow ohyo - 0w ohy
is the w-reduced form for g o u, where go hy = b} ow* k € Z and o = a; + k.
Now, since 7(uou) = m(u)w(u), we have m(gou?) = 7w(gou)m(u) and we can choose
n=1.
Assume the lemma to hold for any g with |U(g)| < N and let |[U(g)| = N.
Let w = max{U(u)}, z = max{U(g)} so that

u=hiow* ohgo- 0w ohyy
is the w-reduced form for v and
g=goz"ogro---0Mogy,
is the z-reduced form for g. By the assumption of the lemma we have z < w.
1. If z < w then

’
gou="hjow*tohgo---ow* oh.yq

is the w-reduced form for g o u, where (gohy) = b ow* k € Z and o} = oy + k.
Now, since (uou) = m(u)w(u), we have m(gou?) = m(gou)n(u) and we can choose
n=1.

2. Let z = w. Observe that the induction hypothesis holds for g;;1 since
|U(g141)] < N. So, there exists k € N such that 7(g;41 0 u**1) = 7(g1 0 uF)w(u).
We have

(g) = m(g1)w” 7 (g2) - - W m(gisr).
Observe that if g;,; ou**! contains w?, vy € Z[t] as an initial segment then w? is an
initial segment of ;41 o u, which follows from Lemma 6.9 [15] and the definition of
w-reduced forms. Hence, we have

m(g 0wt ) = w(g)w n(ga) - w (g1 o u)m(u)

and so

k+1)

(g out*h) =m(gout)m(u).

Combining Lemmas 13, 14, 15 and 16 we obtain the following result.
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PROPOSITION 6. Let H, K < FZ! be finitely generated and T'(H),T(K) be U-
folded (Zt], X)-graphs such that H = L(I'(H),1y), K = L(I'(K),1k) for some
1y € V(I'(H)),1x € V(T(K)). Let g € FXU be such that g« H+ g ' N K # ¢.
Then g can be represented as a product

g=y*xu®xz, «a€cZt,

so that there exist a path p in T'(H) starting at 1 with p(p) = 2% and a path q

in D(K) starting at 1 with p(q) =y, and one of the following holds:
(1) a=0;
(2) a€Zt]—-Z, ue UT(H))NU(K));
3)0#aecZ, ueUT(H)NUT(K)) and either a = £1 or t(p) and t(q)

belong to some u-components of T'(H) and T'(K) respectively, so that,
Hy(t(p)) N (u) = Hyu(t(q)) N (u) =€

and
1

Clu)NH*NKY  Cu®«H xu *NKY ;
(4) a € Z[t] = Z, u ¢ UT(H)) NU(T(K)) but u € U(g) and

w sk H xu N KY = <u>ﬁHZ|’WK7f1
Proof. Since g« H x g~' N K # ¢, there exist h € H, f € K such that

g*h*g_l =f#e.
We prove the lemma by the induction on |U(g)|.
Suppose |U(g)] = 0, that is, g € F(X). If h € F(X) then f € F(X) and
the required result follows from Lemma 13. If h ¢ F(X) then the required result
follows from Lemma 14.

Assume that the proposition holds for g with |U(g)| < n. Let |U(g)| =n, u =
max{U(g)} and

g=giou*toggo---ou* ogmny
be the u-reduced from for g. Let w; = max{U(h)}, we = max{U(f)}, so that,
h=hiow” ohyo--ouw” oh,yy

is the wi-reduced from for A and

f=fiow o fao---owy™o fryg
is the ws-reduced from for f. Without loss of generality we can assume w; > ws.
1. u < wy
Then wy = ws, | = r and the required result follows from Lemma 14.
2. u=un
The required result follows from Lemma 15
3. u>w

In this case all exponents u®i,i € [1,m] cancel in g * h* g~1. Thus, we have

Imt1 *h*g;ﬂ_l = u*t where ky € Z. If m > 1 then g, xu* x g;t = u*2 ko € Z and
since u is cyclically reduced we have either g,,*u*t = g,,ou* or uF1xg, 1 = ukiog 1.
In both cases we have a contradiction with the properties of u-reduced forms. Thus,
m =1 and

g=giou*ogs, h=gy'xuf xgo, f=gixu™ xg; .



SUBGROUPS OF FULLY RESIDUALLY FREE GROUPS: ALGORITHMIC PROBLEMS 25
Observe that u € U(g). Since u is cyclically reduced then either g2_1 wufl = g;lou’“1
or uF x gy = u¥1 0 go. Assume the former.

Notice that h = g5 ' % uFt % gy = g5 " ou? ~Louy ogh, where u = uy ouy, |ug| > 0
and g = uy Lo g5. Without loss of generality we can assume k; > 0. By Lemma
16, there exists ny € Z such that

m(gy 0wt ougogy) =m(gy" ou™)m(u)m(u ous 0 gy).

Observe that we can always assume k1 > 2n1 + 1 because we can consider the tuple
h¥, f* for some appropriate integer k instead of h, f since g*h* % g~! = hF. Thus
we have

w(h) = 71'(92_1 ouFr oy o g5) = 7r(92_1 o u"l)ﬂ'(uklf%rl)ﬂ'(u”l o U O gh).

Since h € H, there exists a loop p at 1y in I'(H) such that u(p) = w(h), hence, from

the above equality it follows that p has a subpath p; such that o(p1) = o(p), p(p1) =
-1

(g ou™).

The same argument can be applied to f = g1 * u®* = gfl, that is, one can find
a path ¢ starting at 1x such that u(q1) = g1 o u™2,ny € Z. Finally

x1—MN1—N2 * (unl 092)
)

g=gioutogy=(griou)xu
where § = ay —ny —ng € Z[t] — Z.

Ifue UT(H))UU((K)) then it is easy to see that u € U(I'(H)) NU(T'(K))
and we are done. Suppose u ¢ U(I'(H)) NU(T'(K)). Hence, t(p1) and ¢(g1) do not
belong to any u-components of I'(H) and I'(K) respectively and we prove

W H xu N KY = (uy N H? NKY
Indeed, from the product decomposition of g it follows that
(uy M H? NKY Cul«H xuNKY .
On the other hand, let a € u® * H* x u=° N KY"'. Then
s s

a=u *(u”logz)*h'*(gglou_ Dxu™® = (g ou"2)_1*f’*(gl ou"?),

where ' € H, f' € K. Conjugating both sides by g; o u™* we get
gxh' xg t=f.
If B/ and f’ fall into cases 1. or 2. then from Lemmas 14, 15 it follows that

uwe U(T(H))NU(I(K)) and we have a contradiction with our assumption. Hence,
h' and f’ fall into the case 3. and by the same argument as for h and f we get

W =gyt xuf gy, f=gixu gt
and a = u*> € (uyNH*NKY . So,
W H xuNKY  CuynH NEKY .
O

LEMMA 17. Let H, K < FZ! be finitely generated and T'(H),T(K) be U-folded
(Z[t], X)-graphs such that H = L(I'(H),1y), K = L(T'(K),1k) for some 1y €
V(T'(H)),1x € V(I'(K)). Let g =u®, uwe U[T(H))NUIT(K)), o € Z[t] — Z be
such that g« Hx g ' N K # . Then one of the following holds:
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(1) g can be represented as a product
g=yxu"xz, n€Z,
where there exist paths p in I'(H) and q in I'(K), such that o(p) =
ly,0(q) = 1 and p(p) = 271, u(q) =y, and if n # 0 then t(p) and
t(q) belong to some u-components of T'(H) and T'(K) respectively, so that,
Hy(t(p)) N (u) = Hy(t(q)) N (u) =€

and
1

C(u)ﬁH’zﬂKy_1 Cu"«H*xu "NKY ;
(2) gxHxg 'NK=Clu)NHNK.
Proof. Consider two cases.

1. 1y € V(C), 1k € V(D), where C and D are u-components of I'(H) and
I'(K) correspondingly.
Suppose there exist paths p and ¢ in C' and D correspondingly such that o(p) =

11,0(q) = 1, u(p) = v”, u(q) = u” and a = B+~ + n for some n € Z . Without
loss of generality we can assume n to be minimal positive with the property above.
Thus we have a product decomposition

g=u" xu" xu’.
Observe that if n # 0 then
Hy(t(p)) N (u) = Hy(t(q)) N (u) = &.
Indeed, if H,(t(p)) N (w) # e (for H,(t(p)) N (w) # & the same argument) then
by the property (iv) of U-folded graphs there exists a loop z at ¢(p) labeled by
w”,r € Z,r > 0. By the property of elements from U we have 7(w?) = 7(w)n(w),

that is, for any 0 < r; < r there exists a subpath z; of z such that p(z1) = 7(w™) =
w(w)---m(w). It follows that if H, (t(p)) N (w) # € then p can be continued in C
—_——

r1times

to a path p’ so that o(p’) = 1, u(p) = u?*" and we have a contradiction with the
choice of n. Finally

C(u)NH? NKY Cu"«H xu"NKY

1

is obvious.

Now we assume that there exist no paths p and ¢ with the above property.
It follows that there exists no path p in C such that o(p) = 1g,u(p) = v and
a =+ k for any k € Z.

Consider the graph A, which is obtained from I'(H) by attaching a single edge
e labeled by u® in the following way.

V(A)=V(I(H))U{v'}, E(A) = E(T(H))U{e}

and o(e) = v,t(e) = 1y, ule) = u®. It is easy to see that L(A,v) = H;, where
Hy =u“* H *xu®.

Observe that A is not U-folded because the u-component C’ = C'U{e} is not u-
folded. Let I'(H;) be (Z][t], X )-graph, which is obtained from A by a sequence of u-
foldings of e with P and let C” be a u-folded u-component of I'(H; ) corresponding
to C’. It is easy to see that I'(H;) is U-folded. Indeed, from our assumption it
follows that Rep(C) C Rep(C”) because after e is folded with Pg, the vertex v
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defines a new point in Pg, which corresponds to a new representative in the finite
set of coset representatives in Z"(¢) by Hc(1y) associated with C. Moreover,
let v" € V(T'(Hy)) be the vertex which corresponds to v € V(A), then v’ has no
outgoing edges which do not belong to C”. Thus the property (iv) of U-folded
holds for C” and other conditions trivially follow since they hold for I'(H).

Notice that for any path p’ in C” such that o(p’) = v’ we have u(p') =
u¥,|y] >> 0. It follows that if h € H; and [h,u] # € then h has the following
form

h = 4Pt oh'ouﬁz,
where |31, |Bm| >> 0 and 7(h) = u’rm(h/)u2.

Now, suppose h € g Hx g ' NK = H;y N K and [h,u] # . Then there exist a
label reduced loop p in T'(Hy) at v and a label reduced loop ¢ in T'(K) at 1x such
that u(p) = u(q) = n(h) = uPrm(h')u’2. Hence, there exist a path p; in C” starting
at v and a path g; in D starting at 1x such that u(p1) = p(q1) = v”'. On the
other hand we have a path p’ in Por such that o(p’) = v/, t(p') = 1g, u(p)) = u®
and a path p” in Pgv such that o(p”) = 1g,t(p") = t(p1), u(p”) = w?. Thus,
urxuTVxu" = u € Hon(lg) = Ho(1g) and we have the product decomposition

g=u®=uM xu70,

where u% is the label of the path ¢; in T'(K) starting at 1 and w " is the
label of a path in I'(H) starting at 1y - a contradiction. Hence, it follows that
gxHx+g 1 NK CC(u). So

gxHxg 'NKCCNHNK
and the inverse inclusion is obvious.

2. Either 1y or 1k, or both do not belong to any u-components.

If both 15 and 1k do not belong to any u-components then as above we easily
get a contradiction. Indeed, any element h € H; = u~%*x H xu® such that [h,u] # ¢
has the following form

h = Pt oh'ouﬁz,
where |B1],|Bm| >> 0 and 7(h) = u?'7(h')u”2. On the other hand, since 1x does
not belong to any u-component then for any f € K there can be no infinite exponent
of u as an initial letter in w(f). Hence HHNK CC(u)NH N K =Cu)NHNK
and
gxHxg 'NK=Clu)nNnHNK
follows.

If 15 belongs to some u-component of I'(H) but 1x does not belong to any

u-component of I'(K) then using the same argument as in 1. one gets the required

result.
O

LEMMA 18. Let H,K < F?M be finitely generated. Let T'(H),T(K) be U-
folded (Zt], X)-graphs such that H = L(I'(H),1y), K = L(I'(K),1x) for some
1y € V(F(H)), 1x € V(F(K)) and

(1) 1g € V(C), 1k € V(D), where C and D are u-components of I'(H) and
['(K) respectively;
(2) Hu(lr) N (u) = Hy(1x) N (u) =&
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(3) w*+« Hxu*NK #¢ fork €Z and
CuyNHNK CufF«Hxu*NK.
Then one of the following holds

(1) g can be represented as a product g = y * z, where there exist paths p

in D(H) and q in T'(K), such that o(p) = 1lg,0(q) = 1k and u(p) =

Zh ) =y;

(2) W*xHxu*NK=CunNHNK;

(3) |k| < N(H,K), where N(H,K) depends only on H and K and can be
found effectively.

Proof. Without loss of generality we can assume k > 0.

Claim. There exists a finite set By = {ni,...,ns} C Z, such that, for any
h € Hif h =u®oh/, where a € Z and I/ does not have u*! as an initial segment
then a € Ey.

Indeed, suppose h = u® o b/, where a@ € Z and h’ does not have u*' as an

initial segment. Since I'(H) is U-folded, by the properties (vii) and (viii) of U-
folded graphs there exists a path py in I'(H) such that o(py) = 1y, p(pn) = u®
and t(pp) € C. Hence u® = pu(p;) * ¢, where p; € Rep(C) and ¢ € H,(1g), that is,
u® € pu(pi)* Hy(1g). Finally, since H,(15) N (u) = ¢ then u(p;) * H, (1) contains
not more than one finite exponent u™ of u and finiteness of Rep(C') completes the
proof of the claim. From the proof it is easy to see that Eg can be found effectively.

Denote
nyg = max{|n| | n € Eg}.
Observe that Claim holds also for T'(K) and D.

Suppose C(u) N HN K C u® x H+u™" N K, that is, there exist h € H, f € K
such that u* « hxu™" = f and [h,u] # ¢, [f,u] # e. Let w; = max{U(h)}, wy =
max{U(f)} and

h=hy owf1 oh20~~owaohT+1
be the wi-reduced form for A,

f=fiowy ofao---owd o fiy,
be the wy-reduced form for f. Consider the following cases.

I w <u

Since [h,u] # €, by Lemma 6.9 [15] there exists M;, € N (which can be found
effectively), such that

uMrF s s M — g o (uMr sk bk um M) oy
for any n > 0. Hence, if £ > M} + ng then
ub s hoxu™F = uF Mo (uMrog poxogmMR) o gy TREMR
has uF~Mnr k — M) > ng as an initial segment and, by Claim, can not be an
element of K - a contradiction. Thus,
kE <min{M), +ng |h € H}
and obviously this minimum exists and depends only on H and K.

II. wy = u
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It follows that w; = wsy. Consider
uk*(hlou’g1 ohyo---oubr OhrH)*u_k
a) Either hy # € or hy41 # €.
Without loss of generality we can assume hq # ¢ and 31 > 0. Since [h1,u] # €,
by Lemma 6.9 [15] there exists M}, € N (which can be found effectively), such that

uMrit g py kMt = o (uMhl x hy * uMhl) ou™?

for any mi,n2 > 0. Moreover, Mj, can be chosen so that uMn1 % (hy owy") does
not have u as an initial segment. Hence, if £ > M}, + nx then

uF % (hy ouP?) = uF =M o (WM x by x uMm) o 1= Mm

and f has u*~Mri | k — M), > ng as an initial segment - a contradiction because
in this case, by Claim, f can not be an element of K. Thus,

. [h1,u] # € and there exists a path p in I'(H)
< —_— .
ks mm{ Mh, + 1 ‘ such that o(p) = 1y, u(p) = hy
Clearly this minimum exists and depends only on H and K.
b) hy =h,p1=¢
It follows immediately that fi = fi41 =e. If = 0 then [h, u] = € and we have
a contradiction. Thus, 7 > 0 and " = u#1 1% that is,

ub = P

where there exist paths p in I'(H) and ¢ in I'(K), such that o(p) = 1g,0(q) = 1k
and p(p) = u™, p(g) =u.
III. wy > u

If hy # € then without loss of generality we can assume that v = max{U(h)}.
If

hi=giou’ogyo--oul™ ogmi
is the u-reduced form of hy then considering
uF s (grou’ ogyo-ou’mogmy)
and applying the argument from II. one gets the required result.

Suppose h; = . Since [u, w;] # ¢ then it follows that wy = w; and f1 # €, so,
considering u~* * f * u* and applying the argument from II. one gets the required
result.

Finally, if

Ny = min{Mh +ng | h e H}, Ny = min{Mf +ng ‘ fe K},
[h,u] # € and there exists a path p in I'(H)
such that o(p) = 1p,u(p) =h ’
[f,u] # € and there exists a path ¢ in T'(K)
such that o(q) = 1x,pu(q) = f ’
then N3 > Ny, Ny > Ny and we can set

N(H,K) = max{N3, Ny}

N3=min{ My, + ng ‘

N4—min{ My +ng ‘
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DEFINITION 3. Let I' be a finite (Z[t], X)-graph and vg € V(I'). We denote by
St @ finite set of paths in I' such that:

(1) for any p € Sr,u,, o(p) = vo;
(2) for any v € V(T') there exists p € Sr,y, such that t(p) = v;
(3) for any p1,p2 € Sr we have t(p1) # t(p2).

Now, combining Proposition 6 with Lemmas 17 and 18 we prove the main
technical result about intersections of finitely generated subgroups of FZ[H,

PROPOSITION 7. Let H, K < FZ! be finitely generated and T'(H),T(K) be U-
folded (Zt], X)-graphs such that H = L(I'(H),1y), K = L(I'(K),1k) for some
1g e V(I(H)),1x € V(I'(K)). Let

SF(H),lH = {plv"'7pn}a SF(K),1K = {q1a-~-an}-

If g € FZIM s such that g« H « g~ N K # . then one of the following holds:
1.
gxHxg 'NK = f=x (Hyj*zf1 NK)x*f,
where z;,y; are labels of some p;,q; correspondingly, f € K and g €
Kx(yjxzY)*«H;

g Hxg 'NK=f*(Cu nHY NK)x [
where v € U(T(H)) N U(T'(K)), zz,y] are labels of some p;,q; corre-
spondingly, f € K, g€ Kx* (yj«ufxz"Y)«H, k€ Z, g¢ KH and
Cu)¥% NK #¢;

gxHxg ' NEK = fx (HY» 5 nK)xf!
where u € U(T'(H)) NU(INK)), |k| < N(H,K) (N(H,K) depends only
on H, K and can be found effectively), z;,y; are labels of some p;,q;
correspondingly, f € K and g € K * (y; xu* x 2,7 1)« H;

g Hxg 'NEK = f ()% NHY  AK)*f,
where u € U(g), z;,y; are labels of some p;,q; correspondingly, f €
K, g € Kx(yj*xu®sz; ')« H, deg(a) < degu(g), g ¢ KH and (u)¥% NK #
€.
Proof. The claim below follows directly from the definition of Sy = Sp(m),1,
and SK = SF(K),1K~
Claim. If p is a path in T'(H), ¢ is a path in T'(K), such that o(p) = 1g, o(q) =
1x and p(p) = 2~ 1, u(q) = y then there exist p; € Sy, g; € Sk such that

z=z;1*h, y =[xy,
where 2z, = u(p;), y; = p(g;) and he H, f € K.

Now, we are ready to prove the proposition.
By Proposition 6, g can be represented as a product

g=y*xu®xz, acZ[t],

so that there exist a path p in I'(H) starting at 1y with u(p) = and a path ¢
in I'(K) starting at 1x with (g) = y, and one of the following four cases holds.
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Case 1. a =0.
Since g = y * z we have

g Hxg 'NK=(y*x2)«Hx*(y*x2)'NK

and the required result follows from Claim.

Observe that in all the following cases we can assume g ¢ K H because otherwise
we get into Case 1.

Case 2. a € Z[t| - Z, w e U(I'(H)) NU(T'(K)).

Let Hy = L(T'(H),t(p)), K1 = L(I'(K),t(q)), then by Lemma 11, we have

Hi=z+«Hxz', Ki=y '+«Kxy
and
u*x Hyxu *NKy #e.

By Lemma 17 we have one of the following two cases.

a) u® can be represented as a product

w =y xwh sz, kel

where there exist paths p’ in I'(H) and ¢’ in T'(K), such that o(p') = t(p),0(q') =
t(q) and p(p') = 2/, p(¢’) =4/, and if k # 0 then £(p') and t(¢’) belong to some
w-components of I'(H) and T'(K) respectively, so that,
Hy(t(p') N (w) = Hu(t(q") N (w) =¢
and , o ) L
Clw)NHi NKY  Cw'*Hf xw "nKY .

If k =0 then g = (y *y') * (2/ % 2), where y 3/ is the label of q¢’ and 21 * 27!
is the label of pp’, and this case reduces to Case 1.

Suppose k # 0. Let Hy = L(I'(H),t(p')), Ko = L(I'(K),t(q")). Then by
Lemma 11, we have

Hy=2«Hy %2 ", Ko=y "% K %9
and
wk s« Hy x w™F N Ky Ze.

By Lemma 18 we have one of the following three possibilities.

al) w* can be represented as a product w* = y” % 2", where there exist paths
p” in T'(H) and ¢’ in T'(K), such that o(p”) = t(p'), o(¢") = t(¢"), u(p") =
2 p(q") = y" - in this case g = (y*y'*y" ) * (2" 2’ * z) and we have a reduction
to Case 1..

a2) wk x Hyx w™* N Ky = C(w) N Hy N K.

In this case we have

Wk (o zx Hez Ve sw ™y T ay tx Kaysy =

=Cw)N(Z*zxHxz sz "0y vy« Kxyxy),

ks 2 2z, s0

where g =y * vy’ * w
gxHxg 'NK=Cw)?Y nH*"*nK,

where y 1/’ is the label of g¢’ and z=! 2’ " is the label of pp’. Hence, the required

result follows from Claim.
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a3) |k| < N(H,K), where N(H, K) depends only on H and K and can be
found effectively,

ks 2 %z and

Sog=yxy *xw
gx Hxg 'NK = qvv'=w'="*> 0 |
where |k| < N(H, K), and since y * ' is the label of q¢’ and 271 % 2! is the label
of pp’, the required result follows from Claim.

b) u*+« Hy xu " *NK;, =C(u)NH NK;.
In this case we have
(s 2)*Hx(u*2) "Ny '« Kxy=Cu)NzxHxz "Ny '« K *y,
and since g = y * u® * z then
g Hxg 'NK=CuYNH"NK,
and the required result follows from Claim.
Case 3. 0 £ a€Z, ue UT(H)) NU(I'(K)) and either & = +1 or ¢(p) and
t(q) belong to some u-components of I'(H) and I'(K) respectively, so that,
Hy(t(p)) N (u) = Hu(t(q)) N {u) = ¢

and
1

C’(lL)FWHZI’WI('7f1 Cu*«xHxu “NKY .
If @ = £1 then
gxHxg 'NK =H""*NK,

where |k| = 1 < N(H, K), and since y is the label of ¢ and 2~! is the label of p,
the required result follows from Claim.

If a # £1 then the required result follows by the argument presented in Case
2.a).

Case 4. a € Z[t]| - Z, w ¢ U(T'(H)) NU(I'(K)) but u € U(g) and
sk H su N KY = (uy N H? NKY .
Observe that deg(a) < degy,(g). In this case it follows that
gxHxg 'NK=mNH"*NK

and the required result follows from Claim.
O
From Proposition 7 one can derive the following important corollaries.

THEOREM 7. Let H, K be finitely generated subgroups of a finitely generated
fully residually free group G. Then one can effectively find a finite family Jo(H, K)
of non-trivial finitely generated subgroups of G (given by finite generating sets), such
that

(1) every J € Ja(H, K) is of one of the following types
H'"NK, HglﬁCK(gg),

where g1 € G — H, go € K, moreover g1, g can be found effectively;
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(2) for any non-trivial intersection HI N K, g € G — H there exists J €
Jo(H,K) and f € K such that
HINK = J7,
moreover J and f can be found effectively.
Proof. By Theorem 3 one can effectively obtain generators of G, H and K

viewed as infinite words and by Proposition 8.3 [15] compute their standard de-
compositions.

By Proposition 4 one can effectively find finite U-folded (Z][t], X)-graphs I'(G),
I'(H) and T'(K), such that G = L(T'(G), 1g), H = L(I'(H),1x), K = L(T'(K), 1k)
for some 1¢ € V(I'(G)), 1y € V(I'(H)),1x € V(I'(K)).

Let g € G be such that H N K # e. From Proposition 7 it follows that
HINK = J/ where f € K and one of the following holds.

1. J = Hv'="' 0K, where u € UT(H)) N UI(K)), |k| < N(H,K)
(N(H,K) can be found effectively), z,y are labels of some p € Srmy1,, ¢ €
St(r),1 and y * ubx 271 € G,

2. J =C(u)¥NHY  NK, where u € U(T'(H)) N U(I'(K)), 2,y are labels
of some p € Sp(m)1,, 4 € Sr(k),1x- In this case g € K x (yxuF x 27« H, k €
Z, g¢ KH and C(u)Y N K # . We have

C(w)! NHY ' = (Clu)NH* ) = (Clu) N H* )@ = Clu)? 0 HY*" 27
for any a € Z[t], so
Cw?NHY""  NK =C)!NH"" " NK,
where y x u* * 271 € G. Finally, since C(u)? N K # & then
Cuw)NK=Cu*)!NK =Cg(y*u®xy ),
where y x u® xy~! € K.

3. J=(w¥n HY* ' N K, where u € UI'(G)), z,y are labels of some p €
Sty 4 € Sr(k),ix- In this case g € K * (y; * ul % 2,71 * H, deg(B) <
deg.(g9), g ¢ KH and (u)¥ N K # ¢ and we have

(W M HY = ()N H” )Y = ((u) N H? )W) = (u)y o goee»=""
for any « € Z[t]. Thus,
W N H" ' AK = (wYnH"* T 0K,
where 3 * u® * 27! € G. Finally, since (u)¥ N K # ¢ then
WYNK = @w)NK = Cg(y*u®*y 1),
where y xu* xy~ ! € K.

Let Jo(H, K) be composed by all non-trivial J which have the conditions listed
in 1)-3) above. Observe that this is a finite family of subgroups of G, which has
the required properties listed in the statement of the theorem.

Jo(H,K) can be found effectively. Indeed, U(I'(H)), U(T(K)), Sr(m)i,-
ST(K),15 are finite, moreover
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k

1) |k| < N(H, K), so there are only finitely many elements of the form y * u
27!, and we need only those of them which belong to G — H - this can be checked
effectively;

2) at first, observe that

M
Cr(w’) = C(w’ N K = (") N K,
n=0
where M = deg, (I'(K)) + 1, and on the other hand for each triple y, u, z we have
to find y * u* * =1, which belongs to G — H, this can be done effectively - the
required element exists if and only if

yr{u)x2 ' NG A0
and
(y*(u)* 21 NG)NH # (y* (u)* 271 NG),
where both can be checked effectively by Theorem 5 and if the answer is positive
the required element can be found checking step by step y * u* * z~1 for all k € N.

3) at first, from g € G it follows that U(g) C U(I'(G)) and since G is finitely
generated then U(I'(G)) is finite, and on the other hand for each triple y, u, z we
have to find y * u® x 271, deg(B) < deg,(g), which belongs to G — H, this can be
done effectively - the required element exists if and only if

M
yx (@)« NG #0,
n=0
for M = deg,(I'(G)) + 1 and
M M
@) x= NN H £y» (@)« 06,
n=0 n=0
both can be checked effectively by Theorem 5 and if the answer is positive the
required element can be found checking step by step y * u® x z=1 for all M + 1-
tuples (.

Finally, suppose H, K and g are fixed and such that H9 N K # 1. Compose
Jo(H,K). Tt is finite and its elements can be enumerated. Enumerate effectively
elements of K taking formal products of generators. Thus, all J/, where J €
Ja(H,K), f € K can be effectively enumerated. Since H9 N K # 1 it follows that
there exists J € Jg(H, K) and f € K such that HYN K = Jf, and comparing step
by step H9 N K with enumerated J7/ eventually one obtains the required.

O

COROLLARY 5. Let H, K be finitely generated subgroups of a finitely generated
fully residually free group G. Then up to conjugation by elements from K there are
only finitely many subgroups of G of the type HI N K.

COROLLARY 6. Let H be a finitely generated subgroup of a finitely generated
fully residually free group G. Then there is an algorithm which decides if H is
malnormal in G or not.

Proof. Observe that H is malnormal in G if and only if for any g € G — H,
H9N H = 1. This is equivalent to Jg(H, H) = (). By Theorem 7 one can compute
effectively Jo(H, H) and check if it is empty. O
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COROLLARY 7. Let H, K be finitely generated subgroups of a finitely generated
fully residually free group G. Then one can effectively check if there exists g € G
such that

(1) HY = K,
(2) HY < K.
Moreover, g can be found effectively.

Proof. 1) Observe that H" = K for some h € H if and only if H = K. One
can verify this algorithmically since the membership problem in G is decidable
(Proposition 5).

Claim. H and K are conjugate in G by g € G— H if and only if J(H, K) # 0
and there exists J € Jg(H, K) either of the form H9* N K or H9* N Ck(g2), where
g1 € G—H, g» € K, such that H9* = K.

Suppose there exists g € G — H for which H9 = K. By Theorem 7 there exists
J € Jo(H,K) # 0 such that HY N K = J/, f € K and by the construction of
Ja(H, K) one of the following holds.

a) J=H"NK, g €G—Handge K *gy « H.

Thus, we have J = K and J = HY = H9',s0o J = H9* = K.

b) J = H%" QCK(QQ), g € G—H,g, € K and H® ﬂCK(gg) = H9 ﬂCK(gg).

Since J = K = HY9 we have K = K N Ck(g2), so K = Ck(g2) and HY = J =
H9% N K. It follows that H9 < H9'. But since K is free abelian of a finite rank, so
are H9, H9. We have H9'9 < H. Observe that H is contained in some maximal
abelian subgroup H; of G, which is malnormal. Thus ¢g1¢g € H; and it follows that
[g19,h] =1 for all h € H. Hence H9'9 = H, HY = H9 and J = H9' = K.

Conversely, if Jg(H, K) # 0 and there exists J € Jg(H, K) either of the form
H%NK or H*'NCk(gs), where g1 € G—H, g5 € K and H9 = K then immediately
H and K are conjugate in G. This completes the proof of the claim.

From Claim and Theorem 7 it follows that one can verify effectively if H9 =
G, g € G — H and in case of positive answer effectively find such g.

2) If g € H, then HY < K is equivalent to H < K. This is algorithmically
decidable.

If ge G— H and HY < K then HY = HY9 N K and hence is a conjugate
of some J € Jg(H, K), or, equivalently, H is a conjugate of J. Observe, that the
converse is also true, i.e., if H9 = J for some J € Jg(H, K), then H9 < K. Finally,
the conjugacy of H and elements of Js(H, K) can be verified algorithmically by
Theorem 7 and Statement 1) above.

|

COROLLARY 8. Let H be a finitely generated subgroup of a finitely generated
fully residually free group G and h € G. Then one can effectively check if there
ezists g € G such that h9 € H.

Proof. Let K = (h). By Theorem 7 one can compute effectively Jg(H, K)
such that if H9 N K # 1 then there exists J € Jg(H, K) for which we have

HINK=J'
for some f € K.
It follows that
dgeG: W e H<<(h) € Js(H,K).
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O

5. Centralizers in finitely generated fully residually free groups

Let G be a finitely generated fully residually free group. By Theorem 1, for a
given finite presentation of G one can effectively construct an embedding of G into
FZI Moreover, by Theorem 2 one can effectively find a finite series

F=Gy<G <Gy<--- <Gy

for G, such that G, is obtained from G; by a centralizer extension of a single
element u; € G; and G < G,,, G £ G,,_1.

Recall that if H is a group then the centralizers extension of a single element
u € H is an HNN-extension of the form

H(u,s) = H *py ((u) x (s)) = (H,s | u® = u).
Every h € H(u,s) can be represented (non-uniquely) as
h = hosnlhl e hkflsnkhk7

where k > 1 and [h;,u] # 1,7 € [0,k — 1], n; # 0,7 € [1,k]. The syllable length of h
in this case is 2k + 1. h is called cyclically reduced if [hyhg,u] # 1. ||| denotes the
syllable length of a cyclically reduced element which is conjugate to h in H (u, s).

LEMMA 19. [13] Let H be a CSA-group and G = H(u, s) a centralizer extension
ofue H. If h € G then one of the following holds:

1) if h € HY for some g € G, then Cg(h) = Cy(h)? < HY;
2) if h € ((u) x (s))9 for some g € G, then Cg(h) = ({(u) x (s))9;
3) if ||h|| > 2 then Cg(h) = (z), where h = 2™ for some m € N.
LEMMA 20. Let G be a finitely generated fully residually free group. Then:
1) each proper centralizer of G is a free abelian group of finite rank;
2) the set Spec(G) = {rank(Cg(g)) | 1 # g € G} is finite.

Proof. Follows from Lemma 19.

Lemma 19 provides a tool for computing centralizers in all G,.

LEMMA 21. Let
F=Gy<G1 <Gy<--- <Gy
be a series of groups where every G;y1 is obtained from G; by a centralizer extension
of a single element u; € G;. Then for any h € G,, one can effectively find a finite
set of generators of the centralizer Cg,, (h).

Proof. We use the induction on n. If n = 0 then G,, = F and for a non-trivial
h € F the centralizer Cr(h) is cyclic generated by the maximal root g of h. Notice,
that one can find the root g effectively (see, for example, [15]).

Assume that the centralizers of elements of G,,_1 can be found effectively and
let h € G,,. By Lemma 19 there are three cases to consider:

Case 1. h € GY_, for some g € G,,.

Then h = 29 for some z € G,,—1 and Cg, (h) = Cq,_,(2)9. Observe that z and
g can be found effectively.

Case 2. h € Cg, (uy,)? for some g € G,,.
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Observe, that such g can be found effectively. In this case Cq,, (h) = Cq,, (un)9.
Case 3. ||h] > 2.

Then Cg, (h) = (z), where z is the maximal root of h. As we have mentioned
above such z can be found effectively.
O

THEOREM 8. For any finitely generated fully residually free group G and a
finite non-empty subset M C G, one can effectively find a finite set of generators

Of CG(M)

Proof. We may assume, as above, that G is a finitely generated subgroup of
a group G’, which is obtained from a free group F by finitely many centralizer
extensions. Observe that by Theorem 2 one can find G’ effectively.

Let M = {h} C G. Then Cg(h) = Ce/(h) NG and in this case the required
result follows from Lemma 21 and Theorem 6.

Let M = {hy,...,h,}. Then

and the result follows from the result above and Theorem 6. This proves the

theorem.
O

THEOREM 9. For any finitely generated fully residually free group G one can
find the set Spec(G) effectively.

Proof. By Theorem 2, G can be effectively embedded into a group G’ which is
obtained from a free group by finitely many centralizer extensions. We have

F=Gy<G  <Gy<---<Gp=0G",

where every G;41 is obtained from G; by a centralizer extension of a single element
u; € G;. Observe that any non-cyclic centralizer in G’ is a conjugate of Cgr(u;) for
some 7 € [1,n]. Thus, a non-cyclic centralizer of h € G is of the form

Cg<h) = Cgr (ui)g NG

for some g € G'.

We can view G and G’ as subgroups of FZI. For each u;,i € [1,n] com-
pose Jo (Cer(ui), G) which by definition consists of subgroups of G’ isomorphic to
abelian groups of finite ranks. Finally we have

n

Spec(G) = U{r(mk‘(J) | J € Jo(Car(ui), G)}-

i=1

To finish the proof it suffices to show that for a finitely generated subgroup J of
G, given by a finite generating set, one can effectively find the rank of J. Indeed
by [9] we can find the presentation of J by generators and relations. Using this
presentation and the structure theorem for finitely generated abelian groups we can
find the rank of J. O
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6. Conjugacy problem in finitely generated subgroups of FZ[!]

Effectiveness of construction of the intersection of two finitely generated sub-
groups of FZItl makes it possible to solve the conjugacy problem for finitely gener-
ated subgroups of FZ*] and hence, for finitely generated fully residually free groups.

THEOREM 10. Any finitely generated subgroup of FZ!*) has a solvable conjugacy
problem. That is, there exists an algorithm which, given standard decompositions
of elements f,g € H = (hq,..., hg), decides if f is conjugate to g in H, and if yes,
generates an element ¢ € H such that ¢! fc = g.

Proof. H can be effectively embedded into a group G which is obtained from a
free group by finitely many centralizer extensions. We have

F=Gy<Gi<Gy<- <G, =G,

where every G;41 is obtained from G; by a centralizer extension of a single element
u; € G; and H < G, H ﬁ Gn_1.

By Corollary 8.6 [15], one can find effectively cyclic decompositions
fzuflofoufa gzug‘logoug,

where uy, f, uy, g € G. Then by Lemma 8.9 [15], one can determine if z =1 fxx =
g for some x € FZIU,

If there exists no such z € FZ then f is not conjugate to g in H and we are
done.

Suppose such x exists, then it follows from Lemmas 8.8 and 8.9 [15] that it can
be found effectively and = € G. Moreover, by Lemma 8.7 [15] for any x; such that
xfl % fxx1 = g we have 1 € C(f) * z. Since x exists, it follows that there exists
y € G such that y=!' % f xy = g and

1

(ug *y~ *u?l)*f*(uf*y*ugl)zg.

Hence, uy *y*uy ' € C(f)*randy € u;l * C(f) * x * ugy. Finally, we have
f is conjugate toginH<:>Hﬂ(u;1*C(_)*:c*ug) #0
or equivalently

f is conjugate to g in H <= H N (C(f) (uJ?1 * T xug)) # 0.

In fact it is enough to take C(f) instead of C(f) because we need only to check
elements of C(f) (u]?1 * & % Ug), which belong to G. Thus,

f is conjugate to g in H <= H N (Cq(f) * (u;l kT xug)) # 0.

By Theorem 5 one can effectively check if H((Ca(f) * (u;1 * X *Ug)) is empty.

O

Theorem 10 can be reformulated for finitely generated fully residually free
groups.

THEOREM 11. Any finitely generated fully residually free group has solvable
conjugacy problem.
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