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Algebraic Geometry over Free Groups:

Generic Points

Olga Kharlampovich and Alexei Myasnikov

ABSTRACT. In this paper we prove Implicit Function Theorems (IFT) for al-
gebraic varieties defined by regular quadratic equations and, more generally,
regular NTQ systems over free groups. In the model theoretic language these
results state the existence of very simple Skolem functions for particular V3-
formulas over free groups. We construct these functions effectively. In non-
effective form IFT first appeared in [18]. From algebraic geometry view-point
IFT can be described as lifting solutions of equations into generic points of
algebraic varieties.

Moreover, we show that the converse is also true, i.e., IFT holds only
for algebraic varieties defined by regular NTQ systems. This implies that if a
finitely generated group H is V3-equivalent to a free non-abelian group then
H is isomorphic to the coordinate group of a regular NTQ system.
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Introduction

The classical algebraic geometry is one of the main tools to deal with polyno-
mial equations over fields. To study solutions of equations in free groups one needs
a similar theory over groups. Recently basics of algebraic geometry over groups
were developed in a series of papers [2, 12, 13]. This provides the necessary topo-
logical machinery to transcribe geometric notions into the language of pure group
theory. In this paper, following [2] and [12], we freely use the standard algebraic
geometric notions such as algebraic sets, the Zariski topology, Noetherian domains,
irreducible varieties, radicals and coordinate groups to organize an approach to
finding a solution of Tarski’s problems in [17]. Our goal here is to prove several
variations of so-called implicit function theorem (IFT) for free groups. The basic
version of IFT was announced at the Model Theory conference at MSRI in 1998
[14, 21]. In [15] we used the basic version of implicit function theorem to solve
the genus problem for quadratic non-orientable equations, and showed also that the
abelianization of the cartesian power of infinitely many copies of a free non-abelian
group has 2-torsion. The preprint [18] contains proofs of several variations of IFT
in terms of liftings.

In a sense some formulations of IFT can be viewed as analogs of the corre-
sponding results from analysis, hence the name. To demonstrate this we start
with a very basic version of the implicit function theorem which holds for regular
quadratic equations.

Let G be a group generated by A, F(X) be a free group with basis X =
{z1,%2,...,2n}, G|X] = G x F(X) be a free product of G and F(X). If S C G[X]
then the expression S = 1 is called a system of equations over G. A solution of
the system S =1 over G can be described as a G-homomorphism ¢ : G[X] — G
such that ¢(S) = 1. By Vz(S) we denote the set of all solutions in G of the system
S =1, it is called the algebraic set defined by S. This algebraic set V(S) uniquely
corresponds to the radical R(S):

R(S)={T(z) e G[X] | VAe G"(S(A)=1—->T(A) =1}.
The quotient group
Gres) = GIX]/R(S)
is the coordinate group of the algebraic set V(S). Every solution of S(X) =1 in G
can be described as a G-homomorphism Gp(s) — G.
Recall that a standard quadratic equation S(X) = 1 over group G is an equation
in one of the following forms (below d, ¢; are nontrivial elements from G):

(1) H[l‘iayi] =1, n>0;

i=1
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Equations (1), (2) are called orientable and equations (3), (4) are called non-
orientable. The numbers n and n+m are called genus and atomic rank of S(X) = 1.
Put

r(5) = | X] +&(9),
where €(S) = 1 if the coefficient d occurs in S, and (S) = 0 otherwise. A standard
quadratic equation S(X) = 1 is regular if £(S) > 4 and there is a non-commutative
solution of S(X) = 1 in G (see [16] for details), or it is an equation of the type
[z,y]d = 1. Notice, that if S(X) = 1 has a solution in G, (S) > 4, and n > 0 in
the orientable case (n > 1 in the non-orientable case), then the equation S =1 has
a non-commutative solution, hence regular.

Basic Form of IFT. Let S(X) =1 be a regular standard quadratic equation
over a non-abelian free group F and let T(X,Y) =1 be an equation over F, | X| =
m, |Y| = n. Suppose that for any solution U € Vg(S) there exists a tuple of
elements W € F™ such that T(U,W) = 1. Then there exists a tuple of words
P = (p1(X),...,pn(X)), with constants from F, such that T(U, P(U)) =1 for any
U € Vr(S). Moreover, one can fund a tuple P as above effectively.

We define a Zariski topology on G™ by taking algebraic sets in G™ as a sub-basis
for the closed sets of this topology. If G is a non-abelian fully residually free group
(for every finite set of non-trivial elements in G there exists a homomorphism from
G to a free group such that the images of these elements are non-trivial), then the
closed sets in the Zariski topology over G are precisely the algebraic sets.

The Basic Form of IFT implies that locally (in terms of Zariski topology in F™),
i.e., in the neighborhood defined by the equation S(X) = 1, the implicit functions
Y1,- -+, Ym can be expressed as explicit words in variables x1,...,x, and constants
from F', say Y = P(X). This allows one to eliminate a quantifier from the following
formula (if it holds in a free group F')

O=vVXAY(S(X)=1 — TX,Y)=1).
Indeed, in this event the sentence @ is equivalent in F' to the following one:
U=VX(S(X)=1 — T(X,P(X))=1).

From the point of view of model theory Theorem A states the existence of very
simple Skolem functions for particular V3-formulas over free groups. Observe, that
Theorem A reinforces the results of [18] by giving the corresponding explicit Skolem
functions effectively.

From algebraic geometry view-point the implicit function theorem tells one
that (in the notations above) T(X,Y) = 1 has a solution at a generic point of
the equation S(X) = 1. Indeed, since the coordinate group F'r(g)y of the equation
S(X) =1 is discriminated by the free group F' the equation T(X,Y) = 1 has a
solution in the group Fp(s) (where elements from X are viewed as constants). This
shows the Theorem A can be stated in the following form.

Theorem A'. Let S(X) = 1 be a regular standard quadratic equation over
a non-abelian free group F and let T(X,Y) = 1 be an equation over F, |X| =
m, |Y| = n. Suppose that for any solution U € Vg (S) there exists a tuple of
elements W € F™ such that T(U,W) = 1. Then the equation T(X,Y) =1 has a
solution in the group Fr(s) (where elements from X are viewed as constants from

Fr(s))-
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This approach allows one to generalize the results above by replacing the equa-
tion T'(X,Y) = 1 by an arbitrary system of equations and inequalities or even
by an arbitrary boolean formula. Notice, that such generalizations in the form of
Theorem A are impossible. To this end we need to introduce a few definitions.

Let S(X) = 1 be a system of equations over a group G which has a solution in
G. We say that a system of equations T(X,Y) = 1 is compatible with S(X) =1
over G if for every solution U of S(X) =1 in G the equation T'(U,Y’) = 1 also has a
solution in G. More generally, a formula ®(X,Y) in the language L4 is compatible
with S(X) =1 over G, if for every solution @ of S(X) =1 in G there exists a tuple
b over G such that the formula ®(a,b) is true in G, i.e., the algebraic set Vi (.9) is
a projection of the truth set of the formula ®(X,Y) A (S(X) =1).

Suppose now that a formula ®(X,Y) is compatible with S(X) = 1 over G.
We say that ®(X,Y) admits a lift to a generic point of S =1 over G (or shortly
S-lift over G), if the formula Y ®(X*,Y) is true in G (g (here Y are variables
and X* are constants from Gp(g)). Finally, an equation T'(X,Y) = 1, which is
compatible with S(X) = 1, admits a complete S-lift if every formula T(X,Y) =
1 & W(X,Y) # 1, which is compatible with S(X) = 1 over G, admits an S-lift.
We say that the lift (complete lift) is effective if there is an algorithm to decide for
any equation T(X,Y) = 1 (any formula T(X,Y) = 1 & W(X,Y) # 1) whether
T(X,Y) =1 (the formula T(X,Y) =1 & W(X,Y) # 1) admits an S-lift, and if it
does, to construct a solution in G g(s).

Now the Implicit Function Theorem (IFT) for regular quadratic equations can
be stated in the following general form. This is the main technical result of the
paper, we prove it in Sections 3-6.

Theorem A. Let S(X,A) =1 be a regular standard quadratic equation over
F(A). Every equation T(X,Y,A) = 1 compatible with S(X,A) = 1 admits an
effective complete S-lift.

Furthermore, the IFT still holds if one replaces S(X) = 1 by an arbitrary
system of a certain type, namely, by a regular NTQ system (see [16] for details).
To explain this we need to introduce a few definitions.

Let G be a group with a generating set A. A system of equations S = 1 is called
triangular quasi-quadratic (shortly, TQ) if it can be partitioned into the following
subsystems

S1 (X1, Xoy.. o, X, A) = 1
SQ(XQ,-.-,X»,“A) =1
Sn(Xn,4) = 1

where for each i one of the following holds:
1) S; is quadratic in variables X;;
2) S; =A{ly,2] = L,[y,u] =1 | y,z € X;} where u is a group word in
Xi11U---UX,, UA such that its canonical image in G;; is not a proper
power. In this case we say that S; = 1 corresponds to an extension of a
centralizer;
3) Si={ly.z] =1]y.ze Xi };
4) S; is the empty equation.
Define G; = Ggs,,....s,) for i = 1,...,n and put G,+1 = G. The TQ sys-
tem S = 1 is called non-degenerate (shortly, NTQ) if each system S; = 1, where
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Xit1,...,Xp are viewed as the corresponding constants from G;y; (under the
canonical maps X; — Giy1, j = ¢+ 1,...,n, has a solution in G;41. The co-
ordinate group of an NTQ system is called an NTQ group.

An NTQ system S = 1 is called regular if for each ¢ the system S; = 1 is either
of the type 1) or 4), and in the former case the quadratic equation S; is in standard
form and regular.

In Section 8 we prove IFT for reqular NTQ systems.

Theorem B. Let U(X,A) = 1 be a regular NTQ-system. FEvery equation
V(X,Y,A) =1 compatible with U = 1 admits a complete effective U-lift.

Notice, that by definition we allow empty equations in regular NTQ systems.
In the case when the whole system U = 1 is empty there exists a very strong
generalization of the basic implicit function theorem due to Merzljakov [20].

Merzljakov’s Theorem. If
FEVvX:3Y; - VXY (S(X, Y, A) = 1),

where X = XqU---UX,, Y =Y, U--- UYL, then there exist words (with constants
from F) ¢1(X1),...,qx(X1,...,Xy) € F[X], such that

F[X] ': S(Xlaql(X1)7-"7Xk7qk(X1;' ,Xk,A)) = 17

i.e., the equation
S(X1, Vi, ., X, Vi, A) = 1

in variables Y) has a solution Y; = ¢;(Xq,...,X;, A) in the free group F[X], or
g
equivalently,

FEVX) . VX (S(X1, (X1, A), - Xi qi(X1, ..o, Xk, A)) = 1).

In [18] we gave a short proof of Merzljakov’s theorem based on generalized
equations. The key idea of all known proofs of this result is to consider a set of
Merzljakov’s words as values of variables from X; = {z;1, ...,z }:

xi; = ba™ ba™ii%h - - - ba"" i b,

where a, b are two different generators of F' = F(A). If S(X,Y, A) = 1 has a solution
for any Merzljakov’ words as values of variables from X, then it has a solution of
the type Y; = qi(X17~-~7Xi)7 1= 1,...,]{,‘.

Unfortunately, Merzljakov’s words are not, in general, solutions of a regular
quadratic equation S(X) = 1 over F. In this case, one needs to find sufficiently
many solutions of S(X) = 1 over F with sufficiently complex periodic structure
of subwords. To this end we consider analogs of Merzljakov’s words in the group
of automorphisms of F[X] that fix the standard quadratic word S(X) and the
corresponding set of solutions of S(X) = 1 in F. In Sections 4 and 5 we study
in detail the periodic structure of these solutions. This is the most technically
demanding part of the paper.

There are two more important generalizations of the implicit function theorem,
one — for arbitrary NTQ-systems, and another — for arbitrary systems. We need a
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few more definitions to explain this. Let U(X3,..., X,, A) = 1 be an NTQ-system:

S1 (X1, Xa, .., X, A) =1
So(Xa,..., Xn, A) =1

Sp(Xn,A) =1

and G; = GRs,.....5,)> Gnt1 = F(A).
A Gjy1-automorphism o of G; is called a canonical automorphism if the fol-
lowing holds:

1) if S; is quadratic in variables X; then o is induced by a G;1-automorphism
of the group G, 1[X;] which fixes S;;

2 if S ={ly,2] = 1,[y,u] =1 y,z € X;} where u is a group word in
Xit1U---UX,,UA, then G; = Giy1%y—y Ab(X;U{u}), where Ab(X;U{u})
is a free abelian group with basis X; U {u}, and in this event o extends
an automorphism of Ab(X; U {u}) (which fixes u);

3) IfS; ={ly, 2] =1] y,z € X;} then G; = G;41 * Ab(X;), and in this event
o extends an automorphism of Ab(X;);

4) If S; is the empty equation then G; = G;11[X;], and in this case o is just
the identity automorphism of G;.

Let m; be a fixed G;11[Y;]-homomorphism
T : Gz’[Yi] - Gz‘+1[Yi+1],

where ) = Y; C Yy, C ... CY, C Y, is an ascending chain of finite sets of
parameters, and G,+1 = F(A). Since the system U = 1 is non-degenerate such
homomorphisms 7; exist. We assume also that if S;(X;) = 1 is a standard quadratic
equation (the case 1) above) which has a non-commutative solution in G;41, then
X™ is a non-commutative solution of S;(X;) =1 in G;y1[Yiy1]-

A fundamental sequence (or a fundamental set) of solutions of the system
U(Xy,...,Xn,A) =1in F(A) with respect to the fixed homomorphisms 1, ..., m,
is a set of all solutions of U =1 in F(A) of the form

O1T1 " OpTpT,

where o; is Y;-automorphism of G;[Y;] induced by a canonical automorphism of G;,
and 7 is an F'(A)-homomorphism 7 : F(AUY, 1) — F(A). Solutions from a given
fundamental set of U are called fundamental solutions.

Theorem C (Parametrization theorem). Let U(X,A) = 1 be an NTQ-
system and Viund(U) a fundamental set of solutions of U =1 in F = F(A). If a
formula

d=VX(UX)=1— Y (W(X,Y,A) =LAWL (X,Y,A) # 1)

is true in F' then one can effectively find finitely many NTQ systems Uy = 1,..., Uy =
1 and embeddings 0; : Fry — Fru,) such that the formula

JY(W(X% Y, A) = 1AW (X%, Y, A) £ 1)

is true in each group Fr(y,). Furthermore, for every solution ¢ : Fryy — F
of U =1 from Vigna(U) there exists i € {1,...,k} and a fundamental solution
Y Fru,) — F such that ¢ = ;3.
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As a corollary of this theorem and results from [16, Section 11], we obtain the
following result.

Theorem D. Let S(X) =1 be an arbitrary system of equations over F. If a
formula

d=VXIV(S(X)=1 — (W(X,Y,A)=1AW;i(X,Y,A)#1))

is true in F' then one can effectively find finitely many NTQ systems Uy = 1,..., Uy =
1 and F-homomorphisms 0; : Frsy — Fr,) such that the formula

FY(W(X% Y, A) = 1AW (X% Y, A) #1)

is true in each group Fry,). Furthermore, for every solution ¢ : Frigy — F of
S =1 there exists i € {1,...,k} and a fundamental solution v : Fry,) — F such
that ¢ = ;1.

In Section 9 we show that the converse of Theorem B holds. Namely, we prove
the following theorem.

Theorem E. Let F be a free non-abelian group and S(X) = 1 a consistent
system of equations over F. Then the following conditions are equivalent:

(1) The system S(X) =1 is rationally equivalent to a reqular NTQ system.

(2) Ewvery equation T'(X,Y) = 1 which is compatible with S(X) = 1 over F
admits an S-lift.

(3) Ewery equation T(X,Y) = 1 which is compatible with S(X) = 1 over F
admits a complete S-lift.

Theorem E immediately implies the following remarkable property of regular
NTQ systems. Denote by L 4 the first-order group theory language with constants
from the free group F(A). If ® is a set of first order sentences of the language L 4
then two groups G and H are called ®-equivalent if they satisfy precisely the same
sentences from the set ®. In this event we write G =¢ H. In particular, G =y3 H
(G =3v H) means that G and H satisfy precisely the same V3-sentences (V-
sentences). We have shown in [13] that for a finitely generated group G if G =y3 H
then G is torsion-free hyperbolic and fully residually free. Now we improve on this
result.

Theorem F. Let G be a finitely generated group. If G is Y3-equivalent to a
free non-abelian group F' then G is isomorphic to the coordinate group Frs) of a
reqular NTQ system S =1 over F.

Notice, that we prove in the consequent paper [17] that the converse is also
true, moreover, it holds in the strongest possible form. Namely, the coordinate
group Fpr(s) of a regular NTQ system S = 1 over F is elementary equivalent to
a free non-abelian group F'. Combining this result with Theorem E one obtains a
complete algebraic characterization of finitely generated groups which are elemen-
tary equivalent to a free non-abelian group. Similar characterization in different
terms is given in [26].

1. Scheme of the proof
We sketch here the proof of Theorem A for the orientable quadratic equation.

n m

(5) H[gjwyl] Hzi_lcizic = la nz 1am +nz 170 # L.

i=1 i=1
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We begin with the definition of compatibility. Let X,Y be families of variables

DEFINITION 1.1. Let S(X) = 1 be a system of equations over a group G which
has a solution in G. We say that a system of equations T(X,U) = 1 is compatible
with S(X) = 1 over G if for every solution B of S(X) = 1 in G the equation
T(B,U) =1 also has a solution in G.

Let F = F(A) be a free group with alphabet A. Denote by S(X) = 1 equa-
tion (5), where X = {x1,91,...,%n,Yn, 21, -- -, 2m}, and suppose that an equation
T(X,U)1 is compatible with S(X) = 1.

STEP 1. The following statement can be obtained using the Elimination pro-
cess similar to Makanin-Razborov’s process described in [16].

One can effectively find a finite disjunction of systems II(M, X) of graphic
equations (without cancellation) in variables M, X with the following properties.

1) Each equation in the system II(M, X) has form © = p;, 0- - -op;, , where x €
X, pu; € M, “=7 stands for graphic equality and “o” means multiplication
without cancellation. A solution of such a graphic equation is a tuple of
reduced words z®, uf ..., pug in F' such that 2 is graphically equal to
the product puf o---opud .

2) For every solution B of S(X) = 1 written in reduced form there exists a
graphic solution B, D of one of the systems II(M, X) in this disjunction.

3) Let U = {uy,...,ui}. For every system Q(X, M) one can find words
fi(M), ..., fi(M) such that for every solution B, D (not necessary graphic)
of the system Q(X, M) in F one has T(X, f1(D),..., fx(D)) = 1.

Such system of graphic equations II(M, X) is called in Section 3 a “cut equa-
tion” (see Definition 3.1 and Theorem 3.4.) Indeed, variables X are “cut” into
pieces. We can think about the cut equation as a system of intervals labelled by
solutions of S(X) =1 that are cut into several parts corresponding to variables in
M.

STEP 2. Now we construct a discriminating family of solutions of S(X) =1
(see the definition in [16, Section 1.4]) which later will be called a generic family.
Consider a group F[X] = F % F(X) and construct a particular sequence I' =
(71, --.,7K) of F-automorphisms of F[X] that fix the quadratic word S(X). This is
done in Section 4. These automorphisms have the property that any two neighbors
in the sequence do not commute and it is in some sense maximal with this property.
For any natural number j define y; = -,., where 7 is the remainder when j is divided
by K.

For example, for the equation [z, y] = [a,b] we can take

M =T, Y —TY;

Y2 T =YL, Y — Y,
in this case K = 2 and

Y2s—1 = 71, V2s = V2-
These automorphisms are, actually, Dehn twists. Notice that

Nz, y =3ty e =yl y >y,
therefore big powers of automorphisms produce big powers of elements. Let L be
a multiple of K. Define
by =V
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where p = (p1,...,pr). Now we take a suitable (with small cancellation, in general
position) solution of S(X) = 1. Denote Fraqsy = F * F[X]/ncl(S). This solution
is a homomorphism (3 : Fraq(s) — F. The family of mappings

\IIL = {dJL,p = ¢L,p57 p € P}7

where L is large and P is an infinite set of L-tuples of large natural numbers, is a
family of solutions of S(X) = 1. It is very important that this is a discriminating
family.

For example, take for the equation [z,y] = [a,b] 2° = a,y® = b, then for L = 4
we have

(6) T = (((apl b)Pz a)ps aP? b)P4 (apl b);ﬂza7 y= ((am b)pza)ps aPb.

The word ((aP'b)P2a)P3aPb is called a period in rank 4. Notice that the period
of rank 4 is, actually, y¥s».

Since the family of cut equations is finite, some infinite set of solutions X ¥
satisfies the same cut equation II(M, X). Therefore, it is enough to consider one of
the cut equations II(M, X).

In the example (6) there is no cancellation between a and b and, therefore, it
does not matter whether we label intervals of the cut equation by X¥%» or by X¢z.».
In Section 5 we show how to choose a solution 3 with relatively small cancellation,
so that we can forget about the cancellation and label the intervals of II(M, X) by
XPLp,

STEP 3. We can see now that for different L-tuples p all values of X?Z» (in
F[X]) have similar periodic structure and must be “cut ” the same way into pieces
u € M. Therefore big powers are similarly distributed between pieces p € M. In
Section 7 we introduce the notion of complezity of a cut equation.

Let TI(M, X) be a cut equation. For a positive integer n by k&, (IT) we denote
the number of equations (intervals) & = u;, o--- o p; that have right hand side of
length n. The following sequence of integers

Comp(IT) = (ko(I), ks (IT), .. ., Kiengtn(rr) (11))

is called the complezity of II.

We well-order complexities of cut equations in the (right) shortlex order: if I
and IT" are two cut equations then Comp(IT) < Comp(II’) if and only if length(IT) <
length(IT") or length(II) = length(IT") and there exists 1 < i < length(II) such that
kj (H) = ]{Ij (H/) for all 7> but ]%(H) < kl(H,)

Observe that equations of the form x = y; have no input into the complexity
of a cut equation. In particular, cut equations that have all graphic equations of
length one have the minimal possible complexity among equations of a given length.
We will write Comp(II) = 0 in the case when k;(IT)0 for every i = 2,...,length(II).

We introduce the process of transformations of the cut equation II(M, X).
This process consists in “cutting out” big powers of largest periods from the in-
terval and replacing one interval labelled by X ®:» by several intervals labelled by
X%i-1»_ After such a transformation the left sides of the graphic equalities in the
cut equation correspond to values X #-1» (or very short words in X®i-*») and the
complexity either decreases or stabilizes during several steps of the process. Sup-
pose Comp(II) = 0 after ¢ transformations, so that each graphic equality has form
x%r-tr = 1 or y?t-+» = py. Therefore, xz¥t—t» = 1 or y¥=-+» = v for a discrim-
inating family of solutions W _, p. By the properties of discriminating families,
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= x, v =y in the group Fgraq(s). Substituting u and v into words fi,..., fx
we obtain a solution U of the equation T(X,U) = 1 given by a formula in z,y in
Fraa(s)-

In a general case, when the length of the right hand side of the cut equation does
not decrease during several steps in the process of transformations, the situation is,
certainly, a bit more complicated. In this case one can show that in each graphic
equation all the variables u; except the first and the last one are very short and
can be taken almost arbitrary, and the other variables can be expressed in terms of
them and XVe-t.7,

2. Elementary properties of liftings

In this section we discuss some basic properties of liftings of equations and
inequalities into generic points.

Let G be a group and let S(X) = 1 be a system of equations over G. Recall
that by Gg we denote the quotient group G[X]/ncl(S), where ncl(S) is the normal
closure of S in G[X]. In particular, Gr(s) = G[X]/R(S) is the coordinate group
defined by S(X) = 1. The radical R(S) can be described as follows. Consider a set
of G-homomorphisms

Pg.s = {¢ € Homa(G[S5], G) | ¢(5) = 1}.

Then
o ﬂ¢€‘I’G.s ker(b lf (I)G,S 75 @
R(S) = { GIX] otherwise

Now we put these definitions in a more general framework. Let H and K be
G-groups and M C H. Put

Oy v ={¢ € Homg(H, K) | $(M) = 1}.
Then the following subgroup is termed the G-radical of M with respect to K :

S Nocar,, ker o, if @ # 0,
Rady (M) = { G[X] otherwise.

Sometimes, to emphasize that M is a subset of H, we write Radx (M, H). Clearly,
if K =@, then R(S) = Radg(S, G[X]).
Let
Hj, = H/Radg(1).

Then Hj; is either a G-group or trivial. If Hj. # 1, then it is G-separated by K.
In the case K = G we omit K in the notation above and simply write H*. Notice
that

(H/nel (M) = H/Radxc (M),
in particular, (Gs)*Gp(s)-
LEMMA 2.1. Let o : Hy — Hs be a G-homomorphism and suppose
®={¢: H— K}

be a separating family of G-homomorphisms. Then

ker a = ﬂ{ker(ad)) | ¢ € ®}
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PRrROOF. Suppose h € H; and h ¢ ker(a). Then a(h) # 1 in Hs. Hence there
exists ¢ € ® such that ¢(a(h)) # 1. This shows that ker &« D ({ker(aod) | ¢ € D}.
The other inclusion is obvious. (]

LEMMA 2.2. Let Hy, Hs, and K be G-groups.

(1) Let a: Hy — Hy be a G-homomorphism and let Hy be G-separated by K.
If M C ker «, then Radg (M) C ker .
(2) Every G-homomorphism ¢ : Hy — Hs gives rise to a unique homomor-
phism
0" ¢ (Hy)ie — (Ha)ic
such that ¢ne = n1¢*, where n; : Hy — H} is the canonical epimorphism.

PROOF. (1) We have

Radg (M, Hy) = [{ker¢|o¢:Hi —c K A ¢(M) =1}
C (iker(ep) | B: Hy —¢ K}
= kera.

(2) Let oo : Hy — (Ha)%; be the composition of the following homomorphisms
H % Hy 3 (H,)%.

Then by assertion 1 Radg (1, H;) C kera, therefore o induces the canonical G-
homomorphism ¢* : (H1)}, — (Ha2)%- O

LEMMA 2.3.

(1) The canonical map X : G — Gg is an embedding <= S(X) = 1 has a
solution in some G-group H.

(2) The canonical map p : G — Gpr(s) is an embedding <= S(X) =1 has a
solution in some G-group H which is G-separated by G.

Proor. (1) If S(z1,...,2m) = 1 has a solution (hy,...,hy,) in some G-group
H, then the G-homomorphism z; — h;, (i = 1,...,m) from G[zy,...,2,,] into
H induces a homomorphism ¢ : Gg¢ — H. Since H is a G-group all non-trivial
elements from G are also non-trivial in the factor-group Gg, therefore A : G — Gg
is an embedding. The converse is obvious.

(2) Let S(x1,...,2m) = 1 have a solution (hy,...,hy,) in some G-group H
which is G-separated by G. Then there exists the canonical G-homomorphism
a: Gg — H defined as in the proof of the first assertion. Hence R(S) C ker « by
Lemma, 2.2, and « induces a homomorphism from G Rr(s) into H, which is monic on
G. Therefore G embeds into G'g(s). The converse is obvious. ([

Now we apply Lemma 2.2 to coordinate groups of nonempty algebraic sets.

LEMMA 2.4. Let subsets S and T from G[X] define non-empty algebraic sets
in a group G. Then every G-homomorphism ¢ : Gg — G gives rise to a G-
homomorphism ¢* : Gr(s)y — GRr(r)-

PRrROOF. The result follows from Lemma 2.2 and Lemma 2.3. O

Now we are in a position to give the following
Recall that for a consistent system of equations S(X) = 1 over a group G, a
system of equations T'(X,Y) = 1 is compatible with S(X) = 1 over G if for every
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solution U of S(X) = 1 in G the equation T'(U,Y) = 1 also has a solution in G,
i.e., the algebraic set Vz(S) is a projection of the algebraic set V(S UT).

The next proposition describes compatibility of two equations in terms of their
coordinate groups.

PROPOSITION 2.5. Let S(X) = 1 be a system of equations over a group G which
has a solution in G. Then T(X,Y) =1 is compatible with S(X) = 1 over G if and
only if Grs) is canonically embedded into G r(sur), and every G-homomorphism
a: Gpesy) — G extends to a G-homomorphisms o : Grsur) — G.

PROOF. Suppose first that T(X,Y) = 1 is compatible with S(X) = 1 over
G and suppose that Vg(S) # (0. The identity map X — X gives rise to a G-
homomorphism
A GS — GSUT
(notice that both Gg and Ggyr are G-groups by Lemma 2.3), which by Lemma
2.4 induces a G-homomorphism

A" Gres)y — GRresur)-

We claim that A\* is an embedding. To show this we need to prove first the statement
about the extensions of homomorphisms. Let a : Gr(sy — G be an arbitrary G-
homomorphism. It follows that a(X) is a solution of S(X) = 1 in G. Since
T(X,Y) =1 is compatible with S(X) = 1 over G, there exists a solution, say 3(Y),
of T(a(X),Y) =11in G. The map

X —a(X),Y = p(Y)

gives rise to a G-homomorphism G[X,Y] — G, which induces a G-homomorphism
¢ : Gsur — G. By Lemma 2.4 ¢ induces a G-homomorphism

P* GR(SUT) — G.

Clearly, ¢* makes the following diagram to commute.
)\*

GR(S) GR(SUT)

Now to prove that A* is an embedding, observe that Gp(s) is G-separated by
G. Therefore for every non-trivial h € Gpg(s) there exists a G-homomorphism
a : Gpgy — G such that a(h) # 1. But then ¢*(A\*(h)) # 1 and consequently
h & ker A*. The converse statement is obvious. O

Let S(X) = 1 be a system of equations over G and suppose Vg (S) # 0. The
canonical embedding X — G[X] induces the canonical map
o X — GR(S)~

We are ready to formulate the main definition.
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DEFINITION 2.6. Let S(X) = 1 be a system of equations over G with Vi (S) # 0
and let u : X — GRr(s) be the canonical map. Let a system T'(X,Y) = 1 be
compatible with S(X) = 1 over G. We say that T(X,Y) = 1 admits a lift to a
generic point of S = 1 over G (or, shortly, S-lift over G) if T(X*,Y) = 1 has a
solution in G (g (here Y are variables and X* are constants from Grs)).

LEMMA 2.7. Let T(X,Y) = 1 be compatible with S(X) = 1 over G. If
T(X,Y) =1 admits an S-lift, then the identity map Y — Y gives rise to a canon-
ical G g(s)-epimorphism from G g(sur) onto the coordinate group of T(XH,Y) =1
over Gr(s):

"/J* : GR(SUT) - GR(S) [Y]/RadGR(s) (T(X“, Y))
Moreover, every solution U of T(X*,Y) = 1 in Gg(g) gives rise to a Gp(s)-
homomorphism ¢y : Ggisur)y — Gr(s), where oy (Y) =U.

PROOF. Observe that the following chain of isomorphisms hold:

Grsur)y ~c G[X][Y]/Radg(SUT)
¢ GX][Y]/Radg(Radg (S, G[X]) U T)
~¢ (GX][Y]/ncl(Radg(S,G[X]) UT))"
~¢  (Gres)[Y]/n(T(XH, Y)))* .
Denote by G'p(sy the canonical image of Gr(g) in (Gpr(s)[Y]/ncl(T(X*,Y)))*.

Since  Radg, (T(X*,Y)) is a mnormal subgroup in Gpgg)[Y]

containing T'(X*,Y") there exists a canonical G-epimorphism
P GR(S) [Y]/HCI(T(X'M7 Y)) - GR(S) [Y} /RadGR(S) (T(Xuv Y))
By Lemma 2.2 the homomorphism v gives rise to a canonical G-homomorphism
Y (Grs) [Y]/ne(T(XH,Y)))" = (Gres)[Y]/Radg s, (T(XH,Y)))"

Notice that the group Gp(s)[Y]/Radg,, (T(X*#,Y)) is the coordinate group of
the system T'(X*,Y) = 1 over Gg(s) and this system has a solution in Gg(g)-
Therefore this group is a G (g)-group and it is G g(g)-separated by Gpr(s). Now
since G'r(g) is the coordinate group of S(X) = 1 over G and this system has a
solution in G, we see that Gpr(g) is G-separated by G. It follows that the group
Gr(s)[Y]/Radg s, (T(X",Y)) is G-separated by G. Therefore

Gres)[Y]/Radg s, (T(X",Y)) = (GRres)[Y]/Radg s, (T(XH,Y)))"
Now we can see that
V" 1 Gresur) — Gres)lY]/Raday, s, (T(X",Y))

is a G-homomorphism which maps the subgroup Gg(s) from Grgur) onto the
subgroup Gr(s) in Gpr(s)[Y]/Radg, s, (T(X*,Y)).
This shows that Gr(s)y ~¢ Gr(s) and " is a Gg(s)-homomorphism. If U is a
solution of T(X*,Y) =1 in GR(s), then there exists a G g(s)-homomorphism
dv : Gres)lY]/Radg s (T(XH,Y)) = Gres)-

such that ¢y(Y) = U. Obviously, composition of ¢y and ¥* gives a Gr(g)-
homomorphism from G r(sur) into Gr(s), as desired. O

12

The next result characterizes lifts in terms of the coordinate groups of the
corresponding equations.
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PROPOSITION 2.8. Let S(X) =1 be an equation over G which has a solution
in G. Then for an arbitrary equation T(X,Y) =1 over G the following conditions
are equivalent:

(1) T(X,Y) =1 is compatible with S(X) =1 and T(X,Y) = 1 admits S-lift
over G;

(2) Gres) is a retract of Gres,ry, i.e., Gres) is a subgroup of Grsr) and
there exists a G'r(s)-homomorphism G r(s 1) — GRr(s)-

PROOF. (1) = (2). By Proposition 2.5 G g(g) is a subgroup of G r(s,r). More-
over, T(X*,Y) = 1 has a solution in Gr(g), so by Lemma 2.7 there exists a Gr(s)-
homomorphism Gr(s, ) — GR(s), i-e., Gr(s) is a retract of Gr(s 1)

(2) = (1). If ¢ : Gres,r) — GRys) is a retract then every G-homomorphism
a : Grsy — G extends to a G-homomorphism ¢a : Grgr) — G. It follows
from Proposition 2.5 that T(X,Y) = 1 is compatible with S(X) =1 and ¢ gives a
solution of T'(X*,Y) = 1 in G(s), as desired. O

Denote by C (respectively C*) the class of all finite systems S(X) = 1 over
F' such that every equation T'(X,Y) = 1 compatible with S = 1 admits an S-lift
(complete S-lift).

The following result shows that the classes C and C* are closed under rational
equivalence.

LEMMA 2.9. Let systems S =1 and U =1 be rationally equivalent. Then:

(1) IfU=14isinC then S=1isC;
(2) IfU=1"4sin C* then S =1 is C*.

PrROOF. We prove (2), a similar argument proves (1). Suppose that a system
S(X) = 1 is rationally equivalent to a system U(Z) = 1 from C*. Then (see [2])
their coordinate groups Fr(s) and Fr(y) are F-isomorphic. Let ¢ : Fr(sy — Fr)
be an F-isomorphism. Then X% = P(Z) for some word mapping P. Suppose now
that a formula

TX,Y)=1AW(X,Y)#1
is compatible with S(X) =1 over F. One needs to show that this formula admits
an S-lift. Notice that

T(P(2),Y) = LAW(P(2),Y) #1

is compatible with U(Z) = 1, hence it admits a U-lift. So there exists an element,
say D(Z) € Fry), such that in Fr(y) the following holds

T(P(Z),D(Z)) =1 AW (P(Z),D(Z)) # 1.

Now
1=T(P(2),D(2))* =T(P(2)* " ,D(2* ")) =T(X,D(z° "))
and
14 W(P(2),D(2)* " =W(X,D(Z ")

T(P(2),Y)=1AW(P(Z),Y)#1

admits a complete S-lift, as required. O
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3. Cut equations

We refer to [16] for the notion of a generalized equation. In the proof of the
implicit function theorems it will be convenient to use a modification of the notion
of a generalized equation. The following definition provides a framework for such
a modification.

DEFINITION 3.1. A cut equation II = (£, M, X, fu, fx) consists of a set of
intervals £, a set of variables M, a set of parameters X, and two labeling functions

fx:&—F[X]|, fu:&— F[M].

For an interval o € £ the image fi(0) = far(0)(M) is a reduced word in variables
M*! and constants from F, we call it a partition of fx (o).

Sometimes we write Il = (€, fas, fx) omitting M and X.

DEFINITION 3.2. A solution of a cut equation II = (&, fas, fx) with respect
to an F-homomorphism 3 : F[X]| — F is an F-homomorphism « : F[M] — F
such that: 1) for every up € M a(u) is a reduced non-empty word; 2) for every
reduced word fys(0)(M) (o € €) the replacement m — a(m) (m € M) results in a
word far(o)(a(M)) which is a reduced word as written and such that fas(o)(a(M))
is graphically equal to the reduced form of 3(fx(c)); in particular, the following

diagram is commutative. £
f)/ \(M
F(X) F(M)
X\ /
F

If o : FIM] — F is a solution of a cut equation I = (&, fa, fx) with respect
to an F-homomorphism g : F[X] — F, then we write (I, 3, o) and refer to « as a
solution of II modulo . In this event, for a given o € £ we say that fys(o)(a(M)) is
a partition of B(fx(0)). Sometimes we also consider homomorphisms o : F[M] —
F, for which the diagram above is still commutative, but cancellation may occur in
the words fus(0)(a(M)). In this event we refer to « as a group solution of II with
respect to [3.

LEMMA 3.3. For a generalized equation QQ(H) one can effectively construct a
cut equation g = (€, fx, far) such that the following conditions hold:
(1) X is a partition of the whole interval [1, pg| into disjoint closed subinter-
vals;
(2) M contains the set of variables H;
(3) for any solution U = (uq,...,u,) of Q the cut equation Ilg has a solution
a modulo the canonical homomorphism

Bu:F(X)—F

(Bu(x) = wiuiqp1---uj where i,j are, correspondingly, the left and the
right end-points of the interval x);
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(4) for any solution (B,«) of the cut equation Il the restriction of o on H
gives a solution of the generalized equation 2.

PrOOF. We begin with defining the sets X and M. Recall that a closed interval
of ) is a union of closed sections of €). Let X be an arbitrary partition of the whole
interval [1, pg| into closed subintervals (i.e., any two intervals in X are disjoint and
the union of X is the whole interval [1, pq]).

Let B be a set of representatives of dual bases of €2, i.e., for every base u of €
either p or A(u) belongs to B, but not both. Put M = H U B.

Now let 0 € X. We denote by B, the set of all bases over ¢ and by H, the
set of all items in 0. Put S, = B, U H,. For e € S, let s(e) be the interval [i, j],
where ¢ < j are the endpoints of e. A sequence P = (ey,...,ex) of elements from
S, is called a partition of o if s(e1) U---Us(ex) = o and s(e;) Ns(e;j) = 0 for i # j.
Let Part, be the set of all partitions of o. Now put

E={P| P ePart,,0c € X}.

Then for every P € £ there exists one and only one o € X such that P € Part,.
Denote this o by fx(P). The map fx : P — fx(P) is a well-defined function from
€ into F(X).

Each partition P = (eq,...,ex) € Part, gives rise to a word wp (M) = wy ... wy
as follows. If e; € H, then w; = ¢;. If ¢, = p € B, then w; = ,us(“). Ife =pn
and A(u) € B, then w; = A(u)*™. The map fu(P) = wp(M) is a well-defined
function from & into F'(M).

Now set Il = (€, fx, far). Tt is not hard to see from the construction that
the cut equation Il satisfies all the required properties. Indeed, (1) and (2) follow
directly from the construction.

To verify (3), let’s consider a solution U = (u1,...,u,,) of Q. To define
corresponding functions fy and «, observe that the function s(e) (see above) is
defined for every e € X U M. Now for ¢ € X put fy(c) = u;...u;j, where
s(o) = [i, ], and for m € M put a(m) = w;...u;, where s(m) = [i,j]. Clearly,
is a solution of Ilg modulo 3.

To verify (4) observe that if « is a solution of Il modulo 3, then the restriction
of a onto the subset H C M gives a solution of the generalized equation 2. This
follows from the construction of the words w, and the fact that the words wy,(a(M))
are reduced as written (see definition of a solution of a cut equation). Indeed, if a
base p occurs in a partition P € £, then there is a partition P’ € £ which is obtained
from P by replacing p by the sequence h;...h;. Since there is no cancellation in
words wp(a(M)) and wps((M)), this implies that a(u)**™ = a(h;...h;). This
shows that a g is a solution of 2. O

THEOREM 3.4. Let S(X,Y, A)) =1 be a system of equations over F = F(A).
Then one can effectively construct a finite set of cut equations

CE(S) = {Hz | II; = (gi7in7fIVIi)7i =1... 7k}
and a finite set of tuples of words {Q;(M;) |i=1,...,k} such that:
(1) for every equation 1I; = (&, fx,, fm;) € CE(S), one has X; = X and
fX1(5/L) C Xil;
(2) for any solution (U,V) of S(X,Y,A) =1 in F(A), there exists a number
i and a tuple of words P; v such that the cut equation II; € CE(S) has a
solution a : M; — F with respect to the F-homomorphism By : F[X] — F
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which is induced by the map X — U. Moreover, U = Q;(a(M;)), the word
Qi(a(M;)) is reduced as written, and V = P; v (a(M;));

(3) for any1l; € CE(S) there exists a tuple of words P,y such that for any so-
lution (group solution) (B, ) of I1; the pair (U, V'), where U = Q;(a(M;))
and V = P, v (a(M;)), is a solution of S(X,Y)=1in F.

ProOF. Let S(X,Y) = 1 be a system of equations over a free group F. In
[16, Section 4.4] we have constructed a set of initial parameterized generalized
equations GEpar(S) = {Q4,...,9Q,} for S(X,Y) = 1 with respect to the set of
parameters X. For each Q € GE,,,(S) in [16, Section 8] we constructed the finite
tree Tyo1(§2) with respect to parameters X. Observe that parametric part [j,, fuv,)
in the root equation 2 = Q,, of the tree Ty, (€2) is partitioned into a disjoint union
of closed sections corresponding to X-bases and constant bases (this follows from
the construction of the initial equations in the set GE,,(S)). We label every closed
section ¢ corresponding to a variable z € X*! by x, and every constant section
corresponding to a constant a by a. Due to our construction of the tree Ty (£2)
moving along a branch B from the initial vertex vy to a terminal vertex v, we
transfer all the bases from the active and non-active parts into parametric parts
until, eventually, in €2, the whole interval consists of the parametric part. Observe
also that, moving along B in the parametric part, we neither introduce new closed
sections nor delete any. All we do is we split (sometimes) an item in a closed
parametric section into two new ones. In any event we keep the same label of the
section.

Now for a terminal vertex v in Ty, (Q2) we construct a cut equation I, =
(&v, fx,, far,) as in Lemma 3.3 taking the set of all closed sections of €, as the
partition X,. The set of cut equations

CE'(S) = {IT, | Q € GEpar(S),v € VTerm(Tuo ()}

satisfies all the requirements of the theorem except X, might not be equal to X.
To satisfy this condition we adjust slightly the equations IT/.

To do this, we denote by [ : X, — X*1 U A*! the labelling function on the set
of closed sections of Q,. Put II, = (&,, fx, far,) where fx is the composition of
fx, and l. The set of cut equations

CE(S) = {IL, | Q € GEpar(S),v € VTerm (T ()}

satisfies all the conditions of the theorem. This follows from [16, Theorem 8.1], and
from Lemma 3.3. Indeed, to satisfy 3) one can take the words P; v that correspond
to a minimal solution of II;, i.e., the words P;y can be obtained from a given
particular way to transfer all bases from Y-part onto X-part.

O

The next result shows that for every cut equation II one can effectively and
canonically associate a generalized equation (1.

For every cut equation IT = (£, X, M, fx, fa) one can canonically associate a
generalized equation Qi (M, X) as follows. Consider the following word

V = fx(o1)fm(or) -+ fx (oK) [ (o).
Now we are going to mimic the construction of the generalized equation in [16,
Lemma 4.6]. The set of boundaries BD of Qg consists of positive integers 1,. .., |V |+
1. The set of bases BS is union of the following sets:
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a) every letter x4 in the word V. Letters X*' U M*! are variable bases, for
every two different occurrences p°t, u°2 of a letter u € X1 UM™*! in V we say that
these bases are dual and they have the same orientation if €165 = 1, and different
orientation otherwise. Each occurrence of a letter ¢ € A*' provides a constant
base with the label a. Endpoints of these bases correspond to their positions in the
word V' [16, Lemma 4.6].

b) every pair of subwords fx (o), far(0;) provides a pair of dual bases A\;, A(\;),
the base \; is located above the subword fx (o;), and A();) is located above fas(0;)
(this defines the endpoints of the bases).

Informally, one can visualize the generalized equation Qp as follows. Let £ =
{o1,...,01} and let &' = {0’ | o € £} be another disjoint copy of the set £. Locate
intervals from £ U £’ on a segment I of a straight line from left to the right in the
following order o1, 07, ..., 0%, 0}; then put bases over I according to the word V.
The next result summarizes the discussion above.

LEMMA 3.5. For every cut equation Il = (€, X, M, f., far), one can canonically
associate a generalized equation Qu (M, X) such that if ag : F{M]| — F is a solution
of the cut equation 11, then the maps o : F[M] — F and 8 : F[X]| — F give rise to a
solution of the group equation (not generalized!) Qf; = 1 in such a way that for every
o €& fu(o)(a(M)) is a reduced word which is graphically equal to B(fx(c)(X)),
and vice versa.

4. Basic automorphisms of orientable quadratic equations

In this section, for a finitely generated fully residually free group G we intro-
duce some particular G-automorphisms of a free G-group G[X|] which fix a given
standard orientable quadratic word with coefficients in G. Then we describe some
cancellation properties of these automorphisms.

Let G be a group and let S(X) = 1 be a regular standard orientable quadratic
equation over G :

m

(7) Hzi_lcizi H['rivyi]d71 = 15
=1

i=1
where ¢;, d are non-trivial constants from G, and
X:{mi,yi,zj |i: 1,...,7’L,j: 1,...,m}
is the set of variables. Sometimes we omit X and write simply S = 1. Denote by
Cs={c1,...,cm,d}
the set of constants which occur in the equation S = 1.
Below we define a basic sequence
I'= (’\/17727 e 77K(m,n))
of G-automorphisms of the free G-group G[X], each of which fixes the element

n

m
Sy = HZi_lciZi H[x“yl] S G[X]
i=1 i=1
We assume that each v € T' acts identically on all the generators from X that are
not mentioned in the description of .

Let m > 1,n = 0. In this case K(m,0) = m — 1. Put
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Zit+1 ?i+1

. Zq Z4 .
vi oz zielel), oz — zia(ciel), fori=1,...,m—1

Let m =0, n > 1. In this case K(0,n) = 4n — 1. Put

Vai—z 1 Yi — Ty, fordi=1,....m;
Vaia 1 Ty — yiwg,  fori=1,...,m;
Vai—1 1 Yi — TiYi, for i = ].,...7TL;

—1 —1

. —1\-1 Yil; g YiT; g

Yai - Tp — (yifUHl) Tiy, Yi —Y; y o LTikl 7 Ty
—1\—1 .

Yir1 — Wiri 1) Yy, fori=1,....n—1

Let m > 1, n > 1. In this case K(m,n) =m +4n — 1. Put

. Z; Rit+1 Z; Zit+1 . .
Yi oz zi(ciall),  ziqn — zia(ciely), fori=1,...,m—1;
. Zm 1 Tyt Zm o —1\—1, .
Ym + Am Zm(cmmxl )7 Ty — x™" Yoy — (Crr;nxl ) Y1;
Vmtdi—3  Yi — xzy;,  fori=1,....,m;
Ymidi—2 T — YT, fori=1,...,n;
Vmtdi—1  Yi — Xy, fori=1,...,m;
1 .
. —1\—1 Yiliq YiT;
Ym+4i Ty (yixi+1) L, Yi — yi ) Tij41 — -Ti+1 3
—1\-1 .
Yirr — (Y1) Yiyr, fori=1,...,n—1.

It is easy to check that each v € T fixes the word Sy as well as the word S.
This shows that « induces a G-automorphism on the group Gs = G[X]/ncl(S). We
denote the induced automorphism again by v, so I' C Autg(Gg). Since S =1 is
regular, Gs = Gr(s). It follows that composition of any product of automorphisms
from I' and a particular solution § of S =1 is again a solution of S = 1.

Observe, that in the case m # 0,n # 0 the basic sequence of automorphisms
I" contains the basic automorphisms from the other two cases. This allows us,
without loss of generality, to formulate some of the results below only for the case
K(m,n) = m+ 4n — 1. Obvious adjustments provide the proper argument in the
other cases. From now on we order elements of the set X in the following way

1< ... <zZp<rn1 <yt <...<xp <Yn-

For a word w € F(X) we denote by v(w) the leading variable (the highest variable
with respect to the order introduced above) that occurs in w. For v = v(w) denote
by j(v) the following number

m + 41, ifv=ux; orv=y; and i <mn,
. m+4i—1, ifv=uz;,orv=y; and i =n,
i(v) = 1, if v =2z and n #0,

m—1, if v=2zp, n=0.

The following lemma describes the action of powers of basic automorphisms
from I" on X. The proof is obvious, and we omit it.
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LEMMA 4.1. LetT' = (71,. .., Ym+an—1) be the basic sequence of automorphisms
and p be a positive integer. Then the following hold:
D . Zi Rit+1 Z; Rit+1l
i bz — oz i)’y ziv1 = zipa(ef e )P,
fori=1,...,m—1;
. moo—1 (cimar )P mp—1\=p,, .
Y ] At SO S e 3} Yy = (e ) Py
P . P L .
Vmidioz + Yi— Ty, fori=1,....n;
P . D L .
Vmidi—o  Ti—Yiwi, for i=1,....n;
p ) p C_ .
Vmadio1l ¢ Yi = XY, for i=1,...m
p . —1\—p (y“v;rll)p
Vm+4i fom— (Yir) P v oy )
(i )P —1\-p
Lit1 = Tjqq y o Yigb1 — (inH_l) Yit+1,

fori=1,...,n—1.

The p-powers of elements that occur in Lemma 4.1 play an important part in
what follows, so we describe them in a separate definition.

DEFINITION 4.2. Let I' = (71, ..., Vm+an—1) be the basic sequence of automor-
phism for S = 1. For every v € I we define the leading term A(v) as follows:

Aly) = ey, fori=1,...,m—1;
Alym) = Cfryznxl_%

A(Ymyai-z) =25, fori=1,...,n;
A(Ymtai—2) =yi, fori=1,...,m
A(Ymadi—1) =, fori=1,... n;
A(Ymtai) = yixi__:l, fori=1,...,n—1.

Now we introduce vector notations for automorphisms of particular type.

Let N be the set of all positive integers and N* the set of all k-tuples of elements
from N. For s € N and p € N* we say that the tuple p is s-large if every coordinate
of p is greater then s. Similarly, a subset P C N¥ is s-large if every tuple in P is
s-large. We say that the set P is unbounded if for any s € N there exists an s-large
tuple in P.

Let § = (61,...,0x) be a sequence of G-automorphisms of the group G[X], and
p=(p1,..-,pr) € N¥. Then by 67 we denote the following automorphism of G[X]:

5P = o0 .. gPx.

NoOTATION 4.3. Let ' = (71, ...,7K) be the basic sequence of automorphisms
for § = 1. Denote by I', the infinite periodic sequence with period T, i.e., 'y =
{7 }iz1 with 7,1k = 7;. For j € N denote by I'; the initial segment of I'ss of
length j. Then for a given j and p € N7 put

H; Pj Pj—1 P1
Gjp=T; =777 "
Sometimes we omit p from ¢;, and write simply ¢;.

Agreement. From now on we fix an arbitrary positive multiple L of the number
K = K(m,n), a 2-large tuple p € N*, and the automorphism ¢ = ¢, , (as well as
all the automorphism ¢;, j < L).
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DEFINITION 4.4. The leading term A; = A(¢;) of the automorphism ¢; is
defined to be the cyclically reduced form of the word

Ayy)%i-1, ifj#m+4i—1+sK for any i=1,...,n,s € N;,
Y, ~9i- 2 A(ry)%i- 1y¢j_2, ifj=m+4i—1+sK for some i=1,...,n,s € N.

LEMMA 4.5. For every j < L the element A; is not a proper power in G[X].

PROOF. It is easy to check that A(ys) from Definition 4.2 is not a proper power
for s=1,...,K. Since A;) is the image of some A(v,) under an automorphism of
G[X] it is not a proper power in G[X]. O

For words w, u,v € G[X], the notation

w
u v

means that w = u o w’ o v for some w’ € G[X], where the length of elements and
reduced form defined as in the free product G * (X). Similarly, notations Fu and

7{’ mean that w = vow’ and w = w’ ov. Sometimes we write or when

the corresponding words are irrelevant.

If n is a positive integer and w € G[X], then by Sub,(w) we denote the set of
all n-subwords of w, i.e.,

Subp(w) ={u | |u| =n and w=w; ouows for some wy,wy € G[X]}.

Similarly, by SubC,(w) we denote all n-subwords of the cyclic word w. More
generally, if W C G [X ], then

Sub, (W) = | Subp(w), SubC,(W) = ] SubCp(w).

weWw weWw
Obviously, the set Sub;(w) (SubC;(w)) can be effectively reconstructed from Sub,, (w)
(SubChp(w)) for i < n.
In the following series of lemmas we write down explicit expressions for images
of elements of X under the automorphism
b =1, K =K(m,n).

These lemmas are very easy and straightforward, though tiresome in terms of nota-
tions. They provide basic data needed to prove the implicit function theorem. All
elements that occur in the lemmas below can be viewed as elements (words) from

the free group F(X U Cg). In particular, the notations o, }L{ , and Sub, (W)

correspond to the standard length function on F(X U Cg). Furthermore, until the
end of this section we assume that the elements c1, ..., ¢, are pairwise different.

LEMMA 4.6. Let m #0, K = K(m n) p=(p1,...,pK) be a 3-large tuple, and
oK = : ')/1 .
The following statements hold.

(1) All automorphisms from T, except for ~vi—1,v: (if defined), fix z;, i =
1,...,m. It follows that
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fori=1,....,m—1.
(2) Let z :zfi’l (i=2,...,m), 21 = z1. Then
g =z (5 0 )|
‘2112;11 Cizi‘
fori=2,...,m.
(3) The reduced forms of the leading terms of the corresponding automor-
phisms are listed below:
— Z1 Z2
Ay = | c¢ftocy? |,
z; 1 Cco2z2
Ay = AT 2 AV e, (m > 2)
-1 -1 -1 —1 —1 —1. 3.
SubCs(A1) = {7z c1z1, crz1zq, 2125 C2, 25 CaZa, CaZaZi , %221 C1};
i _ —Pi—-1 Zi Di—1 Zi41
A = ‘ 1 /}Fl ‘Ci - Az‘;l | i b
z; ¢ ci,lzi,l‘ Z;4C;_q, CiZi z;_l Ci+lzi+1‘
1=3,...,m—1,
SubCs(A;) = SubCs(A;_1)*!
—1 —1 - —1 -1 -1
U{Ciflziflzi y Zi—1%; Ciy 2; CiZiy CiZiZ;_1,%i%;_1C;_q,
CiZiZi 1, %iZi41Ci+1, 2i41Ci+1%i+1, Cit12i+1%; 5 Ri+1%; C; }7
_ —P1 .22 AP1,—1 — 9).
Ay = ATP AV 2T (m=2);
_ —Pm-—1 Zm Pm—1 —1
Ap = | A | e | i Agn—l ER
[2micm’  Cm—1Zm—1] [z licniy  Cmzm
(n#0,m>2),
SubCs(Ap) = SubCs(Ap,_1)*!

1 -1
Cm, zm_lcmzm;

1

1 _
U{Cm—12m—1%m » Zm—1%m,

-1 —1,-1 ,—1_-1,-1
CmZmZm—1s CmZmT1 s ZmET1 Zm s 1 Zm Coo }-

(4) The reduced forms of z?"’l,z‘-ﬁi are listed below:

(2

A =at =a_zme | AP [(m>2),

‘zlzgl 0222|zf101 czzz‘

Py -1 -1 —1 -1 -1 -1 .
SubCs(27%) ={ c12125 ', 2125 Ca, 25 Caza, CoZazy , 222 C1, Z1 C1Z1};

pi—1 ‘
Ai
—1 _—T1
i G Ci+12i+1‘

(i=3,....,m—1),
—1 -1 -1
Subg(Z?K) = SUng(AZ_l) U Subc;g(Az) @] {cizizi_l, ZiZ; _1Ci 15
—1 —1 —1 —1 —1 —1y .
CiZiZiJrl, Zizi+1ci+17 Zi+101'+12i+1, ci+1zi+1zi 3 Zi+1zi Ci } N

_ _Pm—1 Pm—1 _
Z?;LK = Zm" - Zm‘ An;n—l ‘ ’ (n - 0);
—1 —1
‘ Zm—1%m—1 CmZm ‘
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SUbS( )(when n=0) — SUbCBs(Am—l)U{CmZmZ;Llfp Zmz;171c;171} 5

O = enly = cwza| A oy | AmTl | (n#0),
2 tet zmwl_l‘

m “m

E

—1
m—1%m—1 CmZm

Subg(225) = Subs(225) (when ne0)I{emzmay 'y zmay 2k, o1z et}
(5) The elements Z¢K have the following properties:

zf’(:ciziéi (i=1,...,m—1),

where 2; is a word in the alphabet {ci*,..., fﬁf,} which begins with
Zl 17 Zf’L?él and ’thhC , Zf’i:l"

z;’ff‘ = 2ZmZm (n=0), where 2, is a word in the alphabet {ci*,. .., cZm

m J

28K = copzmim  (n#0), where 2, is a word in the alphabet
{C e G ,.’171}

Moreover, if m > 3, the word (cz)*! occurs in 2z (i =m—1,m) only
as a part of the subword (-, ¢’ )il.

i=1 "1
PROOF. (1) is obvious. We prove (2) by induction. For i > 2,

Pi—1
~ L $i-1 Vi Pi—2
Zi = 2 =z

Therefore

5 = Zi(cfl 11021)1%71 =zo0 (sz_fll o C )PL N
and the claim follows by induction.
Now we prove (3 ) and (4) simultaneously. By the straightforward verification

one has: Ay =|cj' oc3?
zy Zo

p1
¢1—zl = z1(c]' c3?)P ‘clozlocz o A ‘

1 22|

Denote by cycred (w) the cyclically reduced form of w.

A; = cycred ((cf cffll)@*l) =|cZ ol (i <m—1).
z; 21+1

Observe that in the notation above

=z AV (i > 2).

This shows that we can rewrite A(¢;) as follows:

A_APIIOCZ1OAP7.IOCZ7.+1

i+1 0
beginning with z; ! and ending with z;1, (i=2,...,m —1);
Ay = cycred (cZrart) = cirart = AP ocim o AP oyt (m > 2).

beginning with z;,! and ending with 7" (n # 0).

= (TGP ) T = (G ) = e AT
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beginning with z; and ending with z;;

= (alrer) T
Al
= ¢jo0Z%o0 cf_fll o (cf’icfrll)pi*l

o 2 1
= (0% 0 Afill o ci:rll o Afl ,

beginning with ¢; and ending with z;41 (i =2,...,m —1);
_ G
S = (emleipartym)t
Zm(ci%ﬂ'xfl)pm'

— Cmgmxfl(ch;,'Lm;l)p"’L_l
= cpozmo Al oxt o AP (n #£0),
beginning with ¢, and ending with x;l. This proves the lemma. [

In the following two lemmas we describe the reduced expressions of the elements

2% and y?P*.

LEMMA 4.7. Letm =0, K =4n—1, p = (p1,...,pK) be a 3-large tuple, and
Pr =K

(1) All automorphisms from T, except for 2,74, fix 1, and all automorphisms
from T, except for ~v1,7v3,74, fix y1. It follows that

o =t gt =yt (n>2).
(2) Below we list the reduced forms of the leading terms of the corresponding
automorphisms (the words on the right are reduced as written)

Al =15
Ay =y = AP oy ;
Az =] AR 2Ty, SubCs(Az) = SubCs(Ag) = {3, 23y1, z1y1z, 123} ;

2
Ty ZT1Y1

p3
Ay = AP |1y Ay |xyt (n>2),
7 Ty
2

T1 Y1x1
SubC3(Ag) = SubCs(Az) U {zyixy b, yrwy tay, xyta?}).
(3) Below we list reduced forms of xfj,yfj forj=1,...,4:

P1 _ .
s =1,

=t s

b2 __ p2 3
x7?=| A x1;
x% T1Y1

Y =2ty

b3 _ P2 __ D2 .
x1? =27 = 2142 Z1;
x;  T1Y1

Sub3(x(1bK)(when n=1) = Schd(AQ))
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Pp1 .
1'1 Y1,

b3 _ D2 P
yi® =45 xp)P3
i my1

P)
‘5171 wlyl‘

Subs (Y7 ) when ne1) = SubCs(Az);

—(ps—1 _ _ — _
2Pt = ap = AP |3 | At (a7t AP et
=1 = =T —f = —T =% =
‘ﬂ?2y1 g ‘ Y

Subg(x‘f") = SubC’g(A4)_1USung(Ag)‘lu{xf2a?2, xflxgyfl, xgyflmfl, xf37

ety ey et (n > 2);

gt = ALY Ja | AR | (2 2),

= —T 5 —
T2y, Ty ‘ ‘551 YiTy ‘

Sub;;(y(fK) = SubCs(A4)*Tt U {xf2x27 xflachh rox?}  (n>2).

Proor. (1) follows directly from definitions.
To show (2) observe that

Ay = A(m) = 213
a:fl = x1;

yi' = ally = AP oy,

Then
Ay = cycred(A(y2)?) = cycred(yfl) =zt oy = A oy
¢2 VoINAPL e NP D1 \po — AP2 .
z7? = (%) = (y1°z1) = (27'y1)P? 1 = AY? o xy;
P2 p P1
y(fz = (inQ )’Yll = y;yl = .’L’i’l Yy = AQ.
Now
Az = cycred(y; * A(vs)*yf") = cycred((@} y1) 2 {? (2 1))
= cycred((zf y1) (@] y1) P22 (2] 1))
(@ )Pl

= APTloAl oy,
It follows that
1 = (a]F)% = af;
bt = W) = (@)™ = ()Pl = (45 o)™ 0 Ay

Hence

Ay = cycred(A(y4)%?) = cycred((y125)?) = cycred(y a5 %) = (A5 oy )20 Agox; .
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Finally:
x‘f“
yit
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P4 _ _ ¢
= @ = (Garh) )"

(1

— —Pa
= A4

This proves the lemma.

LEMMA 4.8. Let m#0,n#0, K=m+4n—1, p = (py,...

tuple, and

(1) All automorphisms from T except for ~m,Ym+2, Ym+a fix ©1; and all au-
It follows

(125
— A;(M*
P4 o 1yPa
=
(g h)?) ™yt (s
yiﬁsA;ZzL _ Az(PAL—l)AZly(lbsAiM
— AZ(]M—

1)(173))7”4 zfs = A PPAD? o 3y

Vowyodzto (arl o Azt
1)¢3>p4

1
)ozgoAZ‘*.

Q/)K— "Yl-

tomorphisms from I' except for Ym,Ym+1, Ym+3, Ym+4 fiT y1.

that
xf“

(2) Below we list the reduced forms of the leading terms of the corresponding
automorphisms (the words on the right are reduced as written)

Aerl

Am+2 =

SubCy(Apmis) =

Am+3 -

SubCs(Ams)

Am+4 -

SubCs(Amss) =

(3) Below we list reduced forms of x(fj,y(fj for 5 = m,...,m+ 4 and their

a{m e yPe

=yt (n>2).

X,
¢7n+1
Y1
_ — Pm+1
— Amp’ﬁl :L‘lnz yl’
mlz;l Cm Zm
—1
SubCls(Ap)
2 3 2 —1n.
U{emamT1, 2mxi, I, TiY1, T1Y12T1, Y1T12,, };
Pm+2—1 —p Pm+1+1
Apris AP |
Cl)lz;ll T1Y1 112;11 cmzm‘
Sung(Am+2);
Afpm
Zm CmZm

Pm+3
Prmt1 Pmt2—1
( ’ yl Amm+2 A - xl)

SubCs(Am
(n

) T
‘112 T1Y1|T12,, szm‘

\\/

2),
z)U{mylx;l, vy 'wy, @y ezt
> 2).

expressions via the leading terms:
= A, Pmoxy o Alm,

yibm _

A Pm o Y1,

¢'m+1 _ l‘f""

)

Pm+1
L1

d

,Px) be a 3-large

Y1Tq

1
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Gmt1 - Pm+1
Yy = AP o™ oy,

m+2 ‘xl ‘

239

A .

Om+t2 K ‘ Apm+2 A=Pm
m

—1
v e, B P

—T
m ZmTy ‘

Sub3 (7)) (when ne1) = SUbCs(Api2)USubCy(Ap) I zma1 2}, w12, el s

yiﬁm+2 _ y;ﬁm+1 )

¢m+3 . ¢m,+2
Ly =T )

bm PK m
Y1 " =Y (when n=1) — A P

T zml Cm Zm,

Pm+3
Prmt1 Pm+2— —p,
a y1\ Am+2 Ap) P |2
‘mzml Ty |1z, szm‘

S’U/bS(ny) ~(when n=1) SUbC3(Am+2);

Pmta _ OK Pm+4+1 “Pmt1g
T =21 (when n>2) A Tayy

=
T2y; ' Zma)

Pm+43—1

Pm+1
MR T

-1 p —Pm-+2 ‘ —1,_.—Pm+1 Pm
Ty | 1 A . A Y1 T 1 11417{" (n>2),
e T L el ema;

Subg(20%) = SubCs(Amys) L U{zma] aa, o7 oy, moyy a7}

Om+a Pk ‘ (Pm4a—1) ‘ Pm+4
% = Y1 (when n>2) = Am;r4 T2 | ‘Alm+4 1‘
\zzyl ZmTy \ T1Z,,  Y1Ty \

(n>2),

Subg(y‘f’{) = SubCs(Apya)™ U{zmay  aa, o7 wowy, 20wy 2, }

(n>2).

ProOF. Statement (1) follows immediately from definitions of automorphisms

of T.

We prove formulas in the second and third statements simultaneously:

Pm—1 p
b (cZmaytypm - A m »
xlm =\ - " *AnzmoxloAmmv

beginning with x; and ending with xfl

yim = ((egrat ) o)™ = A oy,

beginning with x; and ending with ;. Now A,,11 is the cyclically reduced form of

A(ym1)?m = 2{m = AgPm oz 0 AP,

Am+1 =XT1.
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x(lﬁmﬂ = qubmv
Pm+1 d)m
m Tm m
yib +1 (yl +1 > :(:zrf +1y1)¢m
(xﬁfm)pm+1yfm

= A Pro xf’”“ oy,

beginning with x; and ending with y;, moreover, the element that cancels in re-

ducing

APt APy is equal to AP

Atz = cycred(A(ym2)+) = cycred(y{™ ") = AzPm 0 2™ oy,

beginning with z; and ending with y;.

¢ P2 Dm41
xl m+2 — (‘Tlm+2 )

¢'7n+1 Pm+42 ¢7n+1
(g™ )Py

— APmt2 4 A—pm o0xy 0 Apm

m—+2
= Agrmo (a0 oy o AT 0 A Prom ) o ALy
beginning with z; and ending with z7";
yir = g
Amys = gy "y
= AT oA ot oy,

beginning with z; and ending with y;;

Pm+3 Dmt2
Ty T )

yfmﬂ _ (x(lz)m+2)p7n+3y<fm+l

— —1 _ Pm+3
Ampm ° (.,L,pm+1 oYy 0 Afnm—‘:; ° Ampm O.Tl) ° :L,117m+1 oy,

beginning with z; and ending with y;. Finally,
A = Cycred(A('ym+4)¢’”+3) — Cnyed((y1$;1)¢7'L+3) _ y¢7m+2 _ yibers o w;l’
beginning with z; and ending with =5 1,
m —1\— bt
xf +4 = ((ylx 1) pm+4m1) +3

—bm43 \ P s
(z29, Ty

Pm+44
=l ey )

— (w ¢7n+3 )pm+4 1 oxy0 y;l ° ml—Perl
_ _ Pm43—1
o (ml Lo APm oo Amzf”?” o yl pm+1)

o APm
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beginning with xo and ending with :cl_l, moreover, the element that is cancelled

out is 2{™**. Similarly,
Pm —Pm m m m —1\pm
n o= (x2y1¢ )P Hyf +3(y(f +3$2 )P
= (g oy o (g s
—(Pm+ya—1 m

= Am(_f4+4 )oxgoAfn_ﬁf,
beginning with x5 and ending with x5 ! moreover, the element that is cancelled
out is y™*?.

This proves the lemma. O

In the following lemmas we describe the reduced expressions of the elements
xfj and y; .
LEMMA 4.9. Letn > 2, K = K(m,n), p= (p1,...,pK) be a 3-large tuple, and
K = VRN
Then for any i, n > 1i > 2, the following holds:

(1) All automorphisms from T, except for Ymia(i—1), Ymtdi—2, Vm+ai fi T4,
and all automorphisms from ', except for Ymia(i—1), Ym+4i—3, Ym+di—1,
Ymtai fiT y;. It follows that

a0 = PR = = P
¢ - ¢7n i
Yl = PRt == gy

(2) Let §; = yP™ =", Then

%

where (for i = 1) we assume that yo = xl_l form =0, and yo = zp, for

m # 0;
(3) Below we list the reduced forms of the leading terms of the corresponding
automorphisms. Put q; = ppiai—1)4+5 for j = 0,...,4. In the formulas

below we assume that yo = xfl form =0, and yo = zp, for m # 0.

- -1
Apisica = | Ji—10T; |
‘xz'flyiilg 961:71311'71%71‘
SUbC3(Am+41'—4) = SUb?)@i—l)
-1 -1 -1 —17.
U{Zi1yim1®; ) Yic1@; Tio1, T, Tio1Y;_ o)
Am+4i73 = T
— —q0 q1
Apgaice = A i Ly Yi
Ty, Yie2T,
SubCs(Apyai—2) = SubCs(Apyai-a)
—1 1.2 .2 —1 .37,
U{yi72xi_1xiv Ty %5y L;Yiy LiYiZi, yimiyi_1xi}a
) — g2—1 —q0 i+l
Amiai-r = Am+4i—2| Am+4i—4 l‘xi Yi,
TiY;_,  TiYi|TiY;_, ywzw;l‘

SubC’3 (Am+4i— 1 ) = SUng (Am+4i—2)~
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(4) Below we list the reduced forms of elements xd)m““ ”“,y?m““’l)“ for
Jj=0,...,4. Again, in the formulas below we assume that yo = x| L for
m =0, and yg = 2z, for m # 0.

Omtai—a _ 4—
Ty = A g0mio Al iy,
bPmtdi—a __
7 - Am+4174 ©Yi,
Pm44i—3 __  Pmtai—a
Z; = ’
Pmyai—3 A4 q g
yz - m+4z— xi Yi,
Pmtai—2 | ‘ q0
T ‘ m+4z— /}m+4z— ; xl\ qu+4i—4 "
‘Izy1,1 a:zyz|a:iyi,1 y172w1,1‘ \wiflyf,z Yi—1T;
Omtai—2 __ , Pmt4ai—3
Y; = )
Pmtai—1 __ _ Pmtdi—2 __ dK
Z; =T, =(when i=n) L;

Subs(z{) =(when i=n) SUbC3(Amyai—2) U SubCs(Apmisi—a)*' U

-1 -1 —17.
{yi—ﬂi,lmi, T, 1T;Ti—1, wixi—lyifz}a

Pmtdi-1 _ ~ K _
Y; =Y —(when i=n) Y; -
a3
q0 qi,,. q2— . a,,.
Am 4i—4 T Yi ‘ Am+41— | Am+4z— ‘ T4 T Yiy

= T T T
$iyi,1 Yi—2T,; 4 ‘f'yz, X4 yzlftyb, %—2%,1‘

Subs(§;) = SubCs(Amai—2) U SubCs(Apiai—a)”t U{yi—ox; Yy, a7t 22,

3 —1 2
Ty TiYilTiy YililY; 1, iy}

Gmtai _ K _ qa+1 —-1,.—q1
z; —(when i#n) €Z; _‘ Am+4l ‘ Tiv10Y;, X; ©
‘wz‘+1y, T yiax \
g3—1
-1 g2+1 ‘ —-1_—q 90
ol ‘ AT+427 . | . Arln+417 . Yi & ‘ Arlrl+41f . ‘ )
[zic1y; 5 vicaz; |y, 'z D yioaw, || [zic1y; 5 vi1z, |

Subs(z?%) = SubCs(Ap1i) ™1 U SubCs (A ai—2) ™t U SubCs(Apm 1 4is)
U{yicrz; " wigr, o ' wagay; Y iy eyt g et a7t o e,

-1 -1 -1 -1 -1 -1 —1_—17.
T, Ti-1Y;_o, Yi—1T; Ti—1, Yi1T; Y; 5 T; Y, Xy },

A~ qat+1

. . qa—1
1714»41 . ‘ Li+1 _ 12/1 1+1 Am 47 ’
[ziv1y; T yioaz; || TiY; oy Tl Ty Uit

Subs(y*) = SubCs(Apyai)™' U Subs(5;) U {yi12; i1,

—1 —1 —1 —1 —1 —1
T Lit1Tiy Ti+1TilY; 15 TiYidl; 1, Yid; 1L, $i+1$iy¢_1}'
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PRrROOF. Statement (1) is obvious. We prove statement (2) by induction on

1 > 2. Notice that by Lemmas 4.7 and 4.8 1 = yf’”” begins with z; and ends
with y;. Now let ¢ > 2. Then

gi _ y;i)m+47:—1
— (1‘33 yi)¢m+4i—2
= (e

_ (((:L.;_Ilyi)Q2l.i)‘13 xflyi)d)m“i*“ .

Before we continue, and to avoid huge formulas, we compute separately xf”*‘“*“
and y;ﬁm+4174:
Pmtdi—a (yi—1m; t)90 Pmta(i-1)-1

(gi71$;1)q0
7

= (2:9,5)% ox; 0 (Ji—rx; )%,

by induction (by Lemmas 4.7 and 4.8 in the case i = 2) beginning with :L'iyi__ll and
ending with yi,lel.

T
(Giawy )~y
= (wiof )" oy,
beginning with x;y,_ 11 and ending with x;_llyl It follows that
(@ y) et = (@) o aft o (Jiaay )™ (w0 i)™ oy
= (zgi )™ oaf oy,

beginning with x;y,_ 11 and ending with z;y;. Now looking at the formula

~ Pmydi—
Gi = (@ ya)2w) ™ alry;) "
it is obvious that ; begins with z;y,_ 11 and ends with z;y;, as required.
Now we prove statements (3) and (4) simultaneously.
Appraiog = cycred((yi_yx; b)Pma-0-1) = §;_jox; ', beginning with 2;_; and

ending with x; !, As we have observed in proving (2)

Omtai—a _ ~—1 \qo ~ —1\qgo — A~ qo0
T = (27 _1)P om0 (Fsrw; )0 = Am+4i—4 ox;0 Am+4i—47

beginning with z; and ending with x;l.

Pmtdi—a __ ~—1 \qo _ A%
Yi = (zioPi_1)" oy = A s a0 Vi,

beginning with x; and ending with ;. Now

Pmtai—a

Aptai—z = cycred(z; ) = z;, beginning with z; and ending with x;.
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Omtai—3 Omtdi—a

x; = x; ,

bmtai-3 q1 i

ymis _ (m yi)¢7n+4l 4
— AU a o Ado A*qo .
= mdi—a © T m44i—44 m+4i—a O Yi

— q1 X
= Am+4i74 ox; ©VYi,

beginning with x; and ending with ;. Now

Pm+ai—3
Am+4i—2 = Y )
Pmtai—2 q2 bm+tai—3
z; = (y{Px;)0mrH

q2 —q0 . qo0
Aniai—a 0 A g0 mi o A 4y g

beginning with z; and ending with z; 1 It is also convenient to rewrite xd)m*‘” 2

(by rewriting the subword A,,4;—2) to show its cyclically reduced form:

Omtai—2 q1 q2—1
T = Am+4z of@i oyio A s o OAm+4z 0
q0
oA L 4iar
¢7n+47, 2 _ ¢m+4173
yz - yl

Now we can write down the next set of formulas:

Am+4i71 _ cycred( —m4ai—3 ¢m+4i72y’?m+4i73)
= cycred(Am+4l 2 AT i 0 AL s
xiAm+4i— Am+4i—
= Agri;u 20 ALy g0 x[hH O Yis
beginning with z; and ending with y;,
x?n;+47‘,—1 _ :L,?m-{—él'i,—?’ yj?m+47‘,—1 =§; = (xggyi)¢m+4i_2 _ (xj)m,+4i—2)q3yj)m+4z 2 _

substituting the cyclic decomposition of xf’"*“” from above one has

= Am_~_4z o (xgl oy; o Agﬁ;ii_ o Am+4z o xi)%‘ oo oy
beginning with z; and ending with y;.
Finally

Apmyai = (yl 1+1)¢m+4171 =y;0 xz+1a
beginning with z; and ending with x;_ +11
e = ()"
= (gzlt;i_ll) Q41-¢7"+41—1

qa+1 -1 ¢7n+47,71

- Am+4z Ti+1 yz Z;

- A qs+1 0 Tiy1 0 ((x?m,+4i72)qg—lyi‘b7n+4i—2)

)¢7n+4i71

m-+41i
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Observe that computations similar to that for yfm*‘“’l show that

(( ;bm+41 2)q3—1yj)m+47, 2)_1 _

-1
gz—1
q0 1 X q1 .
<Am+4l 4o(i oy; 0 AL _,_41 2oAm+4l 4o:cl> o x; oy,) .
Therefore

Pmtai __ q4 )
mi Am+4z © mhLlO

q0 q1 q —qo as—1 @ -1
o | Antai-a© (mz °Yio Am+4z 20 A a0 xl) ox; oY )

beginning with z;11 and ending with x;l

_ Omtai—1
ymr = (y,(yiwifl)“>

= (ariﬂ@;l)%i(@im;:l)%

= Amﬂi“ O Tjy1 © yl © LU 1° Ani_t:417
beginning with x;;1 and ending with x;rll This finishes the proof of the lemma. [

LEMMA 4.10. Let m > 2,n =0, K = K(m,n), p = (p1,...,px) be a 3-large
tuple, prc = Yo - A, and X*FPKx = {295 | x € XF}. Then the following holds:

CjZj, z;lcj (1< m), B
zjzj_jl (1< j < m—1),
(1) Suby(XE9%) =< zpai?t, zmz (zf m # 0,n #0),
T, Ty, Yiti (I<i<n),
Tip1y; L oy wig, v (1<i<n—1)

moreover, the word zflcj, as well as c;z;, occurs only as a part of the
subword (z; '¢jz;) ! in 2% (z € XE);
(2) Suby(X=01) =

zj_lcjzj, (1<j<m), !
CiZiZi 1 2%t 2% Gt (I<j<m—1),
Yy, (m=0,n=1),
xyta?, wox?, (m=0,n>2)
crlzma, (m=1,n%#0)
CmZmTT " CmZm@1, ZmT1 25t ZmT, Zmxyiyrt, (m#0,n #0),
emy T, Zmay 137, (m #0,n > 2),
etz (m > 2),

o}, ety Ty, (1<i<n),

v iz, v vyiny, 1<i<n—-1),
v haf, iy, (2<i<n),
Yiow, iyt yiow w (3<i<n)
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(3) for any 2-letter word uv € Suby(X*?%) one has

S’U,bg

(UK v?%) C Suby(XEP%),  Subs(u®®v?%) C Subs(X+9K).

ProoF. (1) and (2) follow by straightforward inspection of the reduced forms
of elements z?% in Lemmas 4.6, 4.7, 4.8, and 4.9.

To prove

(3) it suffices for every word uv € Suby(XT?%) to write down the

product u®xv?x (using formulas from the lemmas mentioned above), then make
all possible cancellations and check whether 3-subwords of the resulting word all lie
in Subs(X*?x). Now we do the checking one by one for all possible 2-words from

SubQ(Xid’K).

1) For uv € {c;z;, zj_lcj} the checking is obvious and we omit it.

2) Let uv = zjzj_jl. Then there are three cases to consider:

2.a)

2.b)

2.¢)

(Zm—12,

3.a)

(mel_l

Let j <m — 2, then

-1 \¢x

(ijj+1) o

| Zitl
¥ CjH1Zj+1|Z540C 40 K

U

o3
“j

in this case there is no cancellation in u®<v®x. All 3-subwords of
u®% and v?% are obviously in Subz(XT?%). So one needs only to
check the new 3-subwords which arise “in between” u®% and v?x
(below we will check only subwords of this type). These subwords

are cj+1zj+1zj+12 and zj+1z;_ﬁ26]7_&2 which both lie in Subg(X*?x).

Let j =m — 1 and n # 0. Then
(zm-12)?% =] 20y | 2z |
‘* CmZm zlz;Ll *‘

again, there is no cancellation in this case and the words “in between”
are ¢, zme1 and z,712,1, which are in Subz(XTx).

Let j = m—1and n = 0. Then ( below we put - at the place where the
corresponding initial segment of u®% and the corresponding terminal
segment of v?% meet)

DI PR s
= Cnzma Ao Apr T A
(cancelling Af,’;l_’f_l and substituting for
Al its expression via the leading terms)
= Cmzmo A e (o AL e T T AT 2
= Zyp1| AP 2t
Z o %
Here zfﬁLK_ 1 is completely cancelled.
Let n = 1. Then
)¢K = CmZmA%ffl“flAﬁi"_l 'Ar_npmml_lAfnmA%T;

Pm—1_,—1 —Pm-1 _—=z Pm—1_,—1 Pm APm+2
CmZm Ay o AT T A T AR AT

= | Ay e AR AT
—1

m+2

Zm ZWL— 1 ‘

and z$X is completely cancelled.
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3.b) Let n > 1. Then

(2ma7 )% = cpam AL oy AP

—p —1 gp —Pm+42+l —1_—Pm+1\—p, +3t1, pm+1 —1 gAPm+a—1
Al (e AN AT Yy )P yizy Ay
o Pm—-1_—1 —1 ppm p—Pm+42tl —1_—Dm+1 pm+3+1 Pm+1 —1 gPm+a—1
= cmzmd,, 3 T A, ( Anr AL Y1 Iy )~ yizy Ayl
-1 - _1y— 1 -
— CmZmA m— ] 1‘1 $1A Pm 1 zmApm 1( lApmAmT§+2+ Y Z‘ Pm+1) Pmt3+1
pm+1 —1 APm+44—
Y1xy Am+4
zmAPm— ,
—1 —1
ZmZp,1Cm 1
and 2$X is completely cancelled.
4.a) Let n = 1. Then
(Zmz1)?% = zmApm | x1 PLADm L AP R A P gy AP
_ Pm—
= m ALk
ZmZWL—l WL—l *
and z$x is completely cancelled.
4.b) Let n > 1. Then
_ DK
(mxn)® =| 2 | afx |.
‘* zmxl_llzzyl_l *‘
5.a) Let n = 1. Then
2
mldbx _ AfnmJ;A P gy AP Ap”””A —Pmg APm

_ Pm+2 A—p Pm | —Pm o Pm+1 Pm+2—1 4—p P
- Am+2Am mxlAmm (Am "Xy yl)Am+2 Am m'rlAmm

= AZ;”I; A-Pmgy .xll’mﬂyl %

* ZmIT1

5.b) Let n > 1. Then

2y =] af* | afx |.
‘ Zm’I‘l |r2y1 ‘

6.a) Let 1 <4 <n. Then

20K _ qa+1 -1 q2+1 o Tyas—1
Ly - Am+4z xl+1yz L; ( Am+4z— Am+4z—2yz i )
. —Q4+1 ‘
‘Am+4i741‘ ‘ md4i | **
S R
6.0)
29k q2 —qo0 qo0
xn Am+4n72Am+4n74xT7«Am+4n74

'Agri+4n—2A7_n?£4n—4z"Agg+4n—4
Agﬁ,+4n—2‘4;ﬁ:4n—4xn‘4$+4n—4

~A;’$’4n74w%1yn Zi;in72A;££4n74angr?,+4n74
Z?L+4n—2 AL g aTn |- TR x.

Tn—1Tn

7.a) If n = 1. Then (z1y1)?% = AV7S A Pray - o™ s x,
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7.b) If n > 1. Then (z1y;)® ‘ | Yo ‘ .

T
\ zmxl HES T

7.c) If 1 <i < n. Then

(o) =| g™ | P |,

=T =T
‘ Yi-1T; |93'i+1y.; ‘

7.d) (mnyn)@< = sz yg:K
T, q1%Tn mi

8a) If n =1. Then

(rz)?* = yP* | afx

—1
T1Y1 [T12,,

8.b) If n > 1. Then

b _ —DPm4a+1 Pm+4 —Pm+at1 P +1
(y171) = A, T2 Ay 'Am+4 T2 y1 T o x
_ —Pm+atl P +1
= A, ToAmata - ajgyl L o % %
—Pm4at1 —Dm (Pmt1 Pm+2—1 4 —p,, DPm+3 . Pm+1 -1
Ay I2A (21 Am+2 AP a) Ty Y1y
Pm+1 Pm+3—1 APm
332y1 ()t A
_ —DPm4at+1 —p Pm+1 I)m+2— P
= Am+4 ngm’”( Y14, ‘A mx1| A, \
‘ zmzllzmlcfnl ‘
8.c) (Ynwn)?x :‘ PK | TéK ‘
‘ wnynlxnynfl ‘
9.a) If n =2, then
oK _
(w2yy ) Am+6Am+4
9.b) If n > 2,1 <i < n. Then
=1\ qa+1 -1 _—q1
(w3y; 1) = ‘ Am+4z Ti+10Y; Xy
\zi+1yz yt—lw;l‘
q3—1
-1 —g2+1 ‘ -1_.—q1
ol ‘ AT+4Z— | A tdi—o Yi Ty
‘xi—lyl,g Yio1T;  |Ti-1Y;_o yi_w;\
q0 qo+1 -1 qo—1 ‘
‘ motdi—4 1"Am+42 49%;0Yi—10; ‘ AT+4F4 .
‘zi—ly;_g yi—lx;‘ ‘zz‘—ly;_g yi—lx;‘
_ qat+1 ‘ ) -1 —q1
= ‘ A{n+4z Tit10Y; T4
\zi+1y1 Yi-1T,; ‘
g3—1
-1 q2+1 ‘ -1
ol ‘ ATH“ 1| A7L+4zf ; Yi Xy
[zic1y; s wio1z, |Ticiy; s vi1z, |
—1 qo—1 ‘
i ‘ A yaioa .

= =
Ti—1Y;_o Yi—1T, ‘

9.C) (Inyn 1 ¢K _‘Am+4n 2 Am+4n—4‘

—1
‘ TnYn [TnlYp_1 ‘




ALGEBRAIC GEOMETRY OVER FREE GROUPS 249

10.a) Let n = 2, then

b _ —Pm (o Pm+1 pm+2— —Pm Pmaz—1 Pm+1 —1 gPm+4a—1 APmts Pm+4
(.131 'TQ) - Am ( A Am Z1 ) + 1 l‘2 Am+4 m+6A ng
_ P (o Pm+1 Pm+2—1 —Dm Pmts—1, Pm41 —1 gPm+a—1
= AP (xy 1Am+2 APma) T Y129 Am+4
Pm+4 pm+o Pm+6 ;Dm+4 Pm+4
(A Ty yg) A .CEQAm+4
— —Pm ( pPm+1 Pmt2—1 p—pp, m 1 Pm+1
= AP (7" ALY ALY xl)p +37 Y1Ty
—1 Pm+5 Pm+4 Pm+o pmﬁ,fl Pm+4 Pm+4
m+4x2 (A Ty y?) A $2Am+4
= A;me
CmZm
—1 pApm | A~ Pm+2+]l —1_—Pmi1 gpm ,.Pm+5 Pm+4 ).Pmt5 Pm+e—1
ry AP AT ATy P ya (A, e 2P
pm+4 Pm+4
A $2Am+4 .
10.b) If1<i<n—1 then
¢K — ¢K
(.’E x2+1 ‘ — Tir1 -
‘ yz i1 | w2y ‘
10.c) Similarly to 10.a) we get
-1 037 _‘ —Pm+4n—s‘ . Pm4dn— Pm+tan—6+1
(T, 2120) " = Ay, Tinls ‘ Am+4n S‘Am+4n—6 * k.
T eety| [etienss
11.a) If 1 < i <n—1, then
—1
) NPk — —gqs+1 get+l, —1 —qs q4
($Z+1xl) - Am+4z+4xl+2yz+1$z+l 1+1Am+41Am41+2y1+1xz+1 m-4-44

mai— z m-+4i—4

g3—1
qa+1 ! g2+1 e qo0
Am+42 m1+1y2 Zz; (LU Am+417 A, 2y7, 1 ) A

—1
g+l —1 —qs .
Am+42+4‘r1+2y1+1xz+1 ( 'L+1Am+4zAm4z+2y7,+1 1+1> Am+41

gz3—1
) —-1,.—q1 -1 g2+1 —q1 q0
Tit+1 yi xi ( Am+4z— Am4l—2yz 1 ) Am+4i—4

gqr—1
g+l —1 —gs5
Am+4z+4xl+2yz+1xz+1 ( z+1Am+41Am4z+2yz+1 z+1>

q2—1
Am+41741‘ ylAm+4i7 ‘Am+4zf4x1| Am+4zf ‘

—l
1T zL—lyl 2 ‘

11.b) If n > 2, then

(x2x1)¢K: sk Aptomy | AL |

\ zmx1|zm ;1 \
11.c)
oK _ ge —q4 q4 . qa+1
(mnxn,l) - Am+4n72Am+4nf4anm+4n 4 Am+4n 4xnyn 1xn 1

— 1 —
(xnl m+4n SAm?iz_n Gyn 1.17 qll)qd 1Am+4n 8
- * *‘Am+4n Sx’ﬂ 1‘ ‘ Am+4n 8 ‘
| e w1 |maouly |

11.d) Similarly, if n = 2, then

(xgxl)d”f: wok| A Pmxy | APm |
T |

| Zm1 |2,

Pm+4
m+4
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This proves the lemma. O

LEMMA 4.11. Let m > 2, n =0, K = K(m,0). Letp = (p1,...,px) be
a 3-large tuple, ¢ = VoX ..., and X*9x = {a%x | ¥ € X*}. Denote the
element

et e F(XUCs)
by a new letter d. Then the following holds:

(1) Every element from X®5 can be uniquely presented as a reduced product
of elements and their inverses from the set

XU{Cl,...,Cmfl,d}

Moreover:
— all elements sz,i % m have the form z¢K = ¢;2;2;, where Z; is a
words in the alphabet {ci*,... ", d},
— 20K = 2,. 2, where 2, is a word in the alphabet {ci*,... ,c.m 7}, d}.
When viewing elements from X% as elements in
F(X U {Cl, ceesCm—1, d}),
the following holds:
. +1
€% o (dsg<m),
(2) SubQ(Xi¢K) = 2,"7 Cj7 Zjl 41 (]. < J < m — 1),
zod, dz,,~ 4
Moreover:
— the word zmz;£1 occurs only in the beginning of z0X as a part of the
subword
Zmznzl_lc;bl_lszl
— the words zod, dz;ffl occur only as parts of subwords
(i e?)dzt et Zmo1Cmo
and (¢ c3?)?d.
-1 -1 -1 -1 . +1
2 Ci%i> Ci%iEien FiRinCi (I<j<m—1),
(3) Subz(X*EPx) =S 2z Zi11C+1 (1<j<m-2),
cozod, Zdeml 1 dz;tl 1Cm1 1

PrOOF. The lemma follows from Lemmas 4.6 and 4.10 by replacing all the
products ¢j' ...cZm in subwords of X*+¢% by the letter d. O

m

NOTATION 4.12. Let m # 0, and if m = 1, then n # 1; K = K(m,n),p =
(p1,-..,pK) be a 3-large tuple, and ¢ = YRX ... 4. Let W be the set of words in
F(X UCg) with the following properties:

v E then Subs(v) C Subs K), Suba(v) C Suby K);
1) If W then Sub Subz(X*+?x), Sub Suby(X*+
(2) Every subword z? of v € W is contained in a subword z3
very subword ¢ ofv € 1s contained in (cj'c when m > 2 or
3) Every subword ¢;** of v € W i ined in (¢}'c3?)* wh 2
in (¢'z;')* when m = 1;
(4) Every subword ct*m (m > 3) is contained in ([]/~ cZ')il .

i=1"1

(5) every subword ch of v € W is contained either in (¢} c5?)*3 or as the cen-

tral occurrence of ¢ in (¢; 2¢] %1 )32 (¢#1¢32)3 or in (012102 (c]'c52)3)*L.
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DEFINITION 4.13. The following words are called elementary periods:
xg, e (if m>2), rayt (if m=1).

We call the squares (cubes) of elementary periods or their inverses elementary
squares (cubes).

NOTATION 4.14. Denote by Y the following set of words
1) ifn;éOthenY:{xi,yi,cjj l[i=1,...,n, j=1,...,m}.
2) if n=0then Y = {ci*,...,c."7, d}.

m—1>

NOTATION 4.15. 1) Denote by Wr the set of all subwords of words in
W.
2) Denote by Wr the set of all words v € Wr that are freely reduced forms
of products of elements from Y*!. In this case we say that these elements
v are (group) words in the alphabet Y.

LEMMA 4.16. Let v € Wp. Then the following holds:

(1) If v begins and ends with an elementary square but not an elementary
cube, then v belongs to the following set:

2 -1 -1 -2 2 -1 -2 +1
Ty o¥i—2%; 1 TiTi—1Y; 2%; oy TiYiTilY; 1T; 77, m2=2,n#0

xzz—zyi&x;—llxzzv 5”12—2%72‘”;—11%1‘/;—@;—21’
m%ylxlcizm(Z'D, DlClcf,;"mlc,_anCQDg,
Dl_lC’lcf;L"xl_largxlc;nZMC’ng

DTICycEma?, adyay tayc, P Oy Dy, xy 2w 7 Cs Dy,
Dy'OD,

21 ,22\2 7, *#m—1 —Zz2 —21\2 —Zm-—1 —ZzZo —21\2 _
(cf [ Vde, "t (e3er TN, 2wy, (e e )%, m=3,n=0
DyLCD,

i —Zi —z —
[lic ¢ 7™ )2

23y1 (z107 )3, (cfl33171)2332(53101_“)27 m=1mn>2

(zre7™)2%22, 23yiay H(vre]™)?, 2y 2 (x1c] ™)2,

2 -1 -1 -2 2 -1 -2 _
J}é_2yi_2$i71$i$i_11yi72$i722, l‘iylil‘ziyiilgiill, ) m = O7 n>1
x%—Qyi*szé—lxiyi—lxi—lv LiY1Zy T1, Ty Ty I7,

T1Y1%1, TY2T2

+zi . .
where Cy is an arbitrary product of the type ; cijz T with ij41 =14; £1,
Dy, = (cf'e5?) ™.

(2) If v does not contain two elementary squares and begins (ends) with an
elementary square, or contains no elementary squares, then v is a subword
of one of the words above.

PROOF. Straightforward verification using the description of the set Subs(X*¢x)
from Lemma 4.10. U

DEFINITION 4.17. Let Y be an alphabet and E a set of words of length at least
2 in Y. We say that an occurrence of a word w € Y U E in a word v is mazimal
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relative to E if it is not contained in any other (distinct from w) occurrence of
a word from F in v. We say that a set of words W in the alphabet Y admits
Unique Factorization Property (UF) with respect to E if every word w € W can be
uniquely presented as a product

w=1Uuy...ug

where u; are maximal occurrences of words from Y U E. In this event the decom-
position above is called irreducible.

LEMMA 4.18. Let Y be an alphabet and E a set of words of length at least 2 in
Y. If a set of words W in the alphabet Y satisfies the following condition:

o if wywows is a subword of a word from W and wiws, wows € E then
wiwows € E then W admits (UF) with respect to E.

DEFINITION 4.19. Let Y be an alphabet, E a set of words of length at least 2 in
Y and W a set of words in Y which admits (UF) relative to E. An automorphism
¢ € AutF(Y) satisfies the Nielsen property with respect to W with exceptions F
if for any word z € Y U E there exists a decomposition

(8) 2*=L,oM,oR,,

for some words L., M., R, € F(Y) such that for any uy,us € Y U E with ujug €
Sub(W) \ E the words L,,, o M,,, and M,, o R,, occur as written in the reduced

form of ufuf

LEMMA 4.20. Let W be a set of words in the alphabet Y which admits (UF)
with respect to a set of words E. If an automorphism ¢ € AutF(Y) satisfies the
Nielsen property with respect to W with exceptions E then for every w € W if
w = uj...u is the irreducible decomposition of w then the words M,, occur as
written (uncancelled) in the reduced form of w®.

Proof. follows directly from definitions.

It is easy to show that if an automorphism ¢ satisfies the Nielsen property with
respect to W and FE as above, then for each word z € Y U F there exists a unique
decomposition (8) with maximal length of M. In this event we call M, the middle
of 2% (with respect to ¢).

Set

m 1 +1
T(m,1) = {C?(s = 1,...,m),Hcfix1 H c,t-_zf'} ,m# 1,
i=1 i=m
T(m,2) = T(m,1)
m 1 1 m +1
U{ HCfi.’ﬂl_l,fCQxl H ¢ Y125 T H ¢ Hcfixl_lyl_l} ,
i=1 i=m i=m i=1
if n > 3 then put
m m +1
T(m,n) =T(m,1)U { [[artas?, HCfiﬂfflyfl} U Ti(m,n),
i=1 i=1

where
. —1 —1 —1 —1 -1, -1
Ti(m,n) = {Yn—2@, 1 TnTn-1Yp_o9, Yr—2Ty 1T; 5 Yr—1Ty Yy

ynflmglxnfly»;,lg (’I’L >r 2 2)}i1~
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Now, let

E(m,n) = U Sub;(T(m,n)) N Wr.
i>2

LEMMA 4.21. Let m # 0,n # 0, K = K(m,n),p = (p1,.-.,px) be a 3-large
tuple. Then the following holds:

(1) Letw € E(m,n), v=v(w) be the leading variable of w, and j = j(v) (see
notations at the beginning of Section /). Then the period A?j_l occurs in
w?s and each occurrence of A? in w® is contained in some occurrence of

A?rl. Moreover, no square A occurs in w for k > j.
(2) The automorphism ¢x satisfies the Nielsen property with respect to Wr
with exceptions E(m,n). Moreover, the following conditions hold:
(a) My, = APt a,y, for j #n.
(b) My, =zl oypo A%;in—z ° A;ﬂ‘:4n—4 0 Tn
(c) My, = y}bk, for j <mn.

q3
_ q2—1 —q
(d) My, = (x%lyn Apin— | Aptan—a xn) T Yn-
[Tnynly @ayn|oay,ly  Ynoaw, |
(e) M, = w?c for any w € E(m,n) except for the following words:
-1 —1, —
o wy =Ygz, i, 3 < r<n—1, wy = y,qm; Yy, L2 <1 <
n—1,
_ -1 _ -1 -1 _ -1 -1, -1
® W3 =Yn—2Tp_1Tn, W4 = Yn—-2Tp_1TnYp_1, W5 = Yn—2Tp_1TnTp_1Yp_2,
—1 -1 _ _
We = Yn—2Ty 1 Tnn—1, W7 = Yp2T, 1Ty, Wg = Y12, ",
-1 -1 -1 -1 -1
W9 = Tp _1Tn, W10 = Ty, _1TnlYp_1, Wil = Ly 1TnTn—-1Y,_o-
(f) The only letter that may occur in a word from Wr to the left of a
subword w € {wn,...,ws} ending withy; (i=r—1,r—2,n—1,n—
. ) i . . -1
2, i > 1) is x; the mazimal number j such that L,, contains A?’
isj=m+4i—2, and Ry, = Ry, =1,

PROOF. We first exhibit the formulas for u®%, where u € Uiso Subi(T1(m,n)).
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(1.a) Let 4 < n. Then

bPmtai 237
('xlyzf ) * - (xlyzf )
_ —qa+1 ‘ ) -1_.—q1
= ‘ At Ti+1°Y; 4
‘zq‘,+1y; Yi—1T;
q3—1
-1 q2+1 ‘ —1,.—q1
ol ‘ Aqw+4z 1| Aq%+4z— : Yi Ty
\xiayi, Yi—1T; |x¢71y1, ylfle\
q0
‘ Am+4i7 1‘
[zic1y;,  vi1z, ||
go+1 1‘ qo— ‘
Am+4z—4 0T 0Yi-10; A7{L+4z— .
‘%‘711/1, y1—1$;‘
_ —qa+1 ‘ ) -1,_.—q1
= ‘ A{n+4i . Tit+10Y; X,
‘$i+1y; Yi—1T;
q3—1
-1 —q2+1 ‘ —-1,_.—q
o1 ‘ Am+4z— 1| A’?Hi_Q 1 Yi T,
‘wi—lyl 5 Yi—1T; |5Di71y;2 yi—1$i_‘
71 qo—
x; ‘ Aﬁ”""”_ 1‘.
‘3%'712![,2 Yi—1T; ‘
(1.b) Let ¢ = n. Then
-1 \émian—1 _ -1 \¢Kr
(TnYp—1)mF = (Tn¥Yp_1)
— q2
- ‘ Am+4n72 | Am+4n 4 ‘
[20v, L) @n¥n|Zny,ly Un_23, ]
Here y,,~ ¢K is completely cancelled.
(2.a) Let ¢ <n — 1. Then
(wwrlmzyz )¢K = ($z+1xzyz )¢m+41+4
_ gs+1
= A, 4G40 %Tit20 yz—i—l °© %+1
—3gs 77—l —qo
© ( O Am+4z © Am+41+2 © y'L—‘rlm’L—‘rl) Am+4i—4

Oxgl Yio Am+4l— © A7n+4z—
Here (z;y; " )?m+4+ was completely cancelled.

(2.b) Similarly, (w;y;",)?m+4+3 is completely cancelled in (x4 1y, Y )Pm+4i+s
and

a3 +4i4+3 — g6 q2—
(ipraiy;y) P = Al g2 0 Ao i1 0 ALy Am+4z °© Am+4z—

(2.c)
1 Pmtan—1 qge+1 —gs
(‘T Tn— 1yn— ) - Am+4n 4 o x O Am+4n 4 © Am+4n 2 © yn © 1: ?
- g1
oAm+4n 8 © ’JS’ —1 ©Yn—10 Am+4n 6 © Am+4n 89

and (xn,ly;EQ)‘MH“*l is completely cancelled.
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(3.a)

—qa+1 q1
(ylxlyz )¢m+41 Am+4i O Xi+1 0 Am+4z 40, O0Y;0 Am+4z 2© Am+47,74?

and (z;y; )%™+ is completely cancelled.

(3.b) (ynxny;il)(z”( = ng o (xny';il)(bl(‘

(3.c)

-1 —1 _ qe+1 -
(Yn—12, wn—lyn—2)¢K = Amian— 40Am+4n QOyn oz,

OAm+4n g0 1 oYp_10 Am+4n 6 © Am+4n 89

and y ¥ and (2,19, *5)? are completely cancelled.
(4.a) Let n > 2.
(1’12 c,n)¢m+4L — (.’[10 Zm)¢K
— A;;M-H Tg 0 yflm;q1

=T =
1Yy ety

q3—1
—1 q0 —gq2+1 - —q
O(% o Al o A2 0y1 0Ty
oA’IO A- qoox Aqo 1

1 _ —
— AWt oy 0y, oxlm

m+4
0 A o AT oyl o g7 sl o Ad0—1
© °Amy2 °Y1 O °Ty °Anm
Let n = 1.
—em B —pm m41 Pm+42—1 -1
(z12,°m)?% = A Pmogl? oy o AT o ALY,
(z12,7)%% = yP* o (w12,"m) 0.

(4.b) (z1c,7m)?% is completely cancelled in x§* and for n > 2:
(zoxic,7m)PK = Am'fﬁ; ox3o0 y2_1 oxy®
o( oA4+40Am’f_’g'10y2_10x§qs)q771
0A P oz oy 0 A 2oA;l1
and for n = 2:
(zaaicy,7m)?K = A% o A 4 ox0 AP ozl oy 0 AR 0 AL
Zm—1

(4.c) The cancellation between (zax1c,?™)?% and ¢, """ is the same as the

PK
. 1 T Zm—1
cancellation between A" and ¢, "}”", namely,

PK
—1 " PFm-1 _ pm71 —z Pm—1
m Coni = (xloA oc,moA 1)
Pm 1+1 —z Pm 4 —Zm—1 Pm z pm—l 1
(A oc,Fmo A, o, Trto AT om0 ALY
= l’lAm 15

LOK
and c "i’l is completely cancelled.
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(4.d) The cancellations between (z21c;,*™)?% (or between (yyz1c,,*™)?%) and

%K 2K
Hll ._1C; * are the same as the cancellations between A,! and H2 G
_ K
namely, the product Hl m—1Cs %" is completely cancelled and

1 ox 1
-1 H C;Z’ =7 H Ci—z,
i=m—1 i=m

Similarly one can write expressions for u®x for all w € FE(m,n). The first
statement of the lemma now follows from these formulas.

Let us verify the second statement. Suppose w € E(m,n) is a maximal subword
from E(m,n) of a word u from Wr. If w is a subword of a word in T'(m,n), then
either u begins with w or w is the leftmost subword of a word in T'(m,n). All the
words in T (m,n) begin with some y;, therefore the only possible letters in u in

front of w are x?

We have xf’(xfkw‘bk = x?’( o J;f’( o w?x if w is a two-letter word, and
x?Kfowd’K = mj-”( o fow¢’K if w is more than a two-letter word. In this last

case there are some cancellations between xf’( and w?%, and the middle of z; is
the non-cancelled part of ; because x; as a letter not belonging to E(m,n) appears
only in z7.

We still have to consider all letters that can appear to the right of w, if w is
the end of some word in Tj(m,n) or w = yn_lx,jlxn_l, w = yn_lx,jl. There are
the following possibilities:

(i) w is an end of yn,gnglmnxn,ly;;;
(ii) w is an end of y, oz 'zt r < 4

(iif) w is an end of y, sz, Yty
Situation (i) is equivalent to the situation when w~! is the beginning of the word
yn,gxgilxnxn,ly;iz, we have considered this case already. In the situation (ii)
the only possible word to the right of w will be left end of x,_1y, 1230; 2, and

In the 51tuat10n (111) the first two letters to the right of w are xn_lxn_l, and
w¢Kx¢K = w?x o x‘bKl

There is no cancellation in the words ( 9K o(c if”l)m( (czm)Px og T 2950
d’K . For all the other occurrences of z; in the words from Wr, namely for occur-
rences in 2, x2y;, we have (22y;)?% = x¢K ;bK o yf’k for i < n.
In the case n = ¢, the bold subword of the word
T = A, e dn—4 © (Xﬁl oyno ARl S0 ALY, 4o Xn) ° An tan—4
is M, for ¢, and the bold subword in the word
a3
-1
gr= A4 (Xgl Yol ARl o | ALY 4 | Xn) X3 ¥n,

—1 1 —1 1 1
wnyn 1 Yn— 2In_1‘ ‘xnyn_l xrxynlxnyn 1 Yn— 2xn_1‘

is M, for ¢k.

O

COROLLARY 4.22. Let m # 0,n # 0, K = K(m,n),p = (p1,...,pkx) be a 3-
large tuple, L = Kl. Then for any v € X U E(m,n) the element M, with respect
to ¢y, contains A? for some j > L — K and q > p; — 3.
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PRrooOF. This follows from the formulas for M, with respect to ¢x in the lemma
above. (]

NOTA"_[‘ION 4.23. Denote by Wr 1, the least set of words in the alphabet Y that
contains Wr, is closed under taking subwords, and is ¢-invariant.

NoOTATION 4.24. Denote by Exzc the following set of words in the alphabet Y.

_ —21 —Zi , ~Ri—1 —2z1 —z —21,..,,—1
Exc={c; " ¢c; % c, 1", ¢ twic,™, ¢ xjyjil}.

LEMMA 4.25. The following holds:

(1) Sub37y(WF’L) = Subgyy(XiqﬁK) U Ezc.

(2) Let v € Wr 1, be a word that begins and ends with an elementary square
and does not contain any elementary cubes. Then either v € Wr or
v = vivy where v1,ve € Wr and these words are exhibited below:
(a) form>2 n>2,

1
)2 ; 2 -
vy € {v11 = (c]'c3?) HC T1%2%1 H ¢; 7 vz = Tiym H ¢ 7}

i=m

Zo —21\2 _ —z —2z3 —21 ,—21\2
;) U = a1, ™ e B ey el )T,

vy € {vg; =¢; 1.5 P (e ~

Uz, = xjy;jlx?—l};
(b) form=2, n>2,

21 22 —2; .2 —z
v1 € {v11 = (¢ c5?) 2x1xom H ¢ 7, vig = zTyia H ¢ *'}
i i=m

21

vy € {ugy = m1(c; P e; )2, ugy = wiy; et )

—Zi

(¢) form>2, n=1, U1—I1y19€1H1 mCi

vy € {vg; = ¢ 7 e3P ey P2, ung = wie, ey ey el )P Y
(d) form=2, n=1, v; = 23y121 Hl G v = (3 Per P2

( ) form—l, 7122,
v € {onn = (F'ay ) aamie] ™, vig = afyimie; 'Y, ve = ayy; et

PRrROOF. Let T' = KI. We will consider only the case m > 2, n > 2. We will
prove the statement of the lemma by induction on [. If [ =1, then T' = K and the
statement is true. Suppose now that

Sub37y(WFT_K) = Sub37y(wlﬂ) U Exc.
Formulas in the beginning of the proof of Lemma 4.21 show that
S’U,b3’y(E(m, n)im‘) Q Subg,y(y_\}p).

By the second statement the automorphism ¢ satisfies the Nielsen property with
exceptions F(m,n). Let us verify that new 3-letter subwords do not occur "be-
tween” u?% for u € T} (m,n) and the power of the corresponding x; to the left and
right of it. All the cases are similar to the following:
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— —q+1 — -1
(xnxn—lyniz)w '$£52 .. ‘ Ami—4n—10 ‘xnil A%+4n—8 :
[ yn—az, | [#n—2 x|
‘Words
(U1v2)¢}<

produce the subwords from Ezc. Indeed, [(z221 H;:m C;Zi)]¢K-7 ends with vyo and

K K

V]9 ends with vyy. Similarly, v5 ; begins with v ;11 for j < m and with uy; for

j=m. And ug’]‘ begins with us j41 for j < n and with ug ; for j =n.
This and the second part of Lemma 4.10 finish the proof. ]

Let W € G[X]. We say that a word U € G[X] occurs in W if W = WyoU oW,
for some Wy, Wy € G[X]. An occurrence of U? in W is called mazimal with respect
to a property P of words if U? is not a part of any occurrence of U” with ¢ < r
and which satisfies P. We say that an occurrence of U? in W is stable if ¢ > 1 and
W = W1 o UUU o Wy (it follows that U is cyclically reduced). Maximal stable
occurrences U9 will play an important part in what follows. If (U71)7 is a stable
occurrence of U~! in W then, sometimes, we say that U9 is a stable occurrence
of U in W. Two given occurrences U? and UP in a word W are disjoint if they do
not have a common letter as subwords of W. Observe that if integers p and ¢ have
different signs then any two occurrences of A? and AP are disjoint. Also, any two
different maximal stable occurrences of powers of U are disjoint. To explain the
main property of stable occurrences of powers of U, we need the following definition.
We say that a given occurrence of U? occurs correctly in a given occurrence of UP
if |¢| < |p| and for these occurrences U? and U? one has UP = UP! o U% o UP?.
We say, that two given non-disjoint occurrences of U4, UP overlap correctly in W if
their common subword occurs correctly in each of them.

A cyclically reduced word A from G[X] which is not a proper power and does
not belong to G is called a period.

LEMMA 4.26. Let A be a period in G[X] and W € G[X]. Then any two stable
occurrences of powers of A in W are either disjoint or they overlap correctly.

ProOOF. Let A9, AP (¢ < p) be two non-disjoint stable occurrences of powers
of A in W. If they overlap incorrectly then A% = u o A o v for some elements
u,v € G[X]. This implies that A = uov = vou and hence u and v are (non-trivial)
powers of some element in G[X]. Since A is not a proper power it follows that
u =1 or v =1 - contradiction. This shows that A? and AP overlap correctly. [

Let W € G[X] and O = O(W,A) = {A%,..., A%} be a set of pair-wise
disjoint stable occurrences of powers of a period A in W (listed according to their
appearance in W from the left to the right). Then O induces an O-decomposition
of W of the following form:

(9) W=BjoA" o---0Bjo A% o By,

For example, let P be a property of words (or just a property of occurrences
in W) such that if two powers of A (two occurrences of powers of A in W) satisfy
P and overlap correctly then their union also satisfies P. We refer to such P as
preserving correct overlappings. In this event, by Op = Op(W, A) we denote the
uniquely defined set of all maximal stable occurrences of powers of A in W which
satisfy the property P. Notice, that occurrences in Op are pair-wise disjoint by
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Lemma 4.26. Thus, if P holds on every power of A then Op(W,A) = O(W, A)
contains all maximal stable occurrences of powers of A in W. In this case, the
decomposition (9) is unique and it is called the canonical (stable) A-decomposition
of W.

The following example provides another property P that will be in use later. Let
N be a positive integer and let Py be the property of A7 that |¢| > N. Obviously,
Py preserves correct overlappings. In this case the set Op, provides the so-called
canonical N-large A-decompositions of W which are also uniquely defined.

DEFINITION 4.27. Let
W =BjoA?" o---0Byo A% o By
be the decomposition (9) of W above. Then the numbers
mjux(W) =max{q; |i=1,...,k}, mfi‘n(W) =min{g; |i=1,...,k}

are called, correspondingly, the upper and the lower A-bounds of W.

DEFINITION 4.28. Let A be a period in G[X] and W € G[X]. For a positive
integer N we say that the N-large A-decomposition of W

W =BioA" o---0Bj o A% o By
has A-size (I,7) if ming (W) > 1 and maxa(B;) < r for every i =1,... k.

Let A = {A1,As,...,} be a sequence of periods from G[X]. We say that a
word W € G[X] has A-rank j (rank (W) = j) if W has a stable occurrence of
(A;-H)q (¢ > 1) and j is maximal with this property. In this event, A; is called
the A-leading term (or just the leading term) of W (notation LT (W) = A; or
LT(W) = A)).

We now fix an arbitrary sequence A of periods in the group G[X]. For a period
A = A; one can consider canonical A;-decompositions of a word W and define the
corresponding Aj;-bounds and Aj-size. In this case we, sometimes, omit A in the
writings and simply write max;(W) or min; (W) instead of max 4, (W), mina, (W).

In the case when rank 4 (W) = j the canonical A;-decomposition of W is called
the canonical A-decomposition of W.

Now we turn to an analog of O-decompositions of W with respect to “periods”
which are not necessarily cyclically reduced words. Let U = D~! o Ao D, where
A is a period. For a set O = O(W,A) = {A?,..., A%} as above consider the
O-decomposition of a word W

(10) W =BjoA%" o-.-0BpoA% o By
Now it can be rewritten in the form:
W = (B1D)(D 'oA" oD)--- (D 'ByD)(D' o A% o D)(D ™' By y1).
Let ¢;,8; = sgn(g;). Since every occurrence of A% above is stable, By = By o A%,

B; = (A%-10B;0 A%), By, = A% o By, for suitable words B;. This shows that
the decomposition above can be written as

W = (B1A®'D)(D AN D) ... (D 'A% 1B;A% D) --- (D 'A% D)(D 'A% Bj41) =
(ByD)(D"'A*'D)(D"Y A" D) .- (D~ 'A% DY (D 'B;,D)(D'A" D) -
(D7YA%D)(D~* A% D)(D "' Bjy1)
= (BiD)(U)(U™M)--- (U) (D~ By D)(U)(U) (U’ ) (D" Bg1).-
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Observe, that the cancellation between parentheses in the decomposition above
does not exceed the length d = |D| of D. Using notation w = uogv to indicate that
the cancellation between u and v does not exceed the number d, we can rewrite the
decomposition above in the following form:

W = (BlD) Od UE1 Od []q1 Od (]51 Og *** 0y (]ElC Od qu Od U(sk Od (D71§k+1)7
hence
(11) W =DyoqU" oq+++0q Dy oqg U og4 D41,

where Dy = BlD, Dk+1 = D_IB;C+1, D, = D_lgiD (2 <1 < k/’), and the
occurrences U% are stable (with respect to og). We will refer to this decomposition
of W as U-decomposition with respect to O (to get a rigorous definition of U-
decompositions one has to replace in the definition of the O-decomposition of W
the period A by U and o by o|p|). In the case when an A-decomposition of W
(with respect to O) is unique then the corresponding U-decomposition of W is
also unique, and in this event one can easily rewrite A-decompositions of W into
U-decomposition and vice versa.
We summarize the discussion above in the following lemma.

LEMMA 4.29. Let A € G[X] be a period and U = D' o Ao D € G[X]. Then
for a word W € G[X] if

W =BjoA%" o-.-0BpoA% o By
is a stable A-decomposition of W then
W =D10qU% 0404 Dy ogU og Dy
is a stable U-decomposition of W, where D; are defined as in (11). And vice versa.
From now on we fix the following set of leading terms
ALy ={4; |J < L,¢=dr,}
for a given multiple L of K = K(m,n) and a given tuple p.

DEFINITION 4.30. Let W € G[X] and N be a positive integer. A word of the
type As is termed the N-large leading term LTxN (W) of the word W if A? has a
stable occurrence in W for some ¢ > N, and s is maximal with this property. The
number s is called the N-rank of W (s = ranky (W), s > 1).

LEMMA 4.31. Let W € G[X], N > 2, and let A = LTn(W). Then W can be
presented in the form

(12) W =B1oA" o...B,o A% o B4

where A% are mazimal stable occurrences, q¢; > N, and ranky (B;) < ranky(W).
This presentation is unique and it is called the N-large A-presentation of W.

ProOF. Existence follows from the definition of the leading term LT (W). To
prove uniqueness it is suffice to notice that two stable occurrences A? and A" do
not intersect. Since A = LT (W) is cyclically reduced and it is not a proper power
it follows that an equality A2 = uo A owv holds in F(X U Cg) if and only if u = 1
or v = 1. So, stable occurrences of A? and A" are protected from overlapping by
the neighbors of A on each side of them. O



ALGEBRAIC GEOMETRY OVER FREE GROUPS 261

In Lemmas 4.6, 4.7, 4.8, and 4.9 we described precisely the leading terms A;, j =
1,..., K as the cyclically reduced forms of some words A;. It is not easy to describe
A; for an arbitrary j > K. So we are not going to do it here, instead, we chose a
compromise by introducing a modified version of A; which is not cyclically reduced,
in general, but which is “more cyclically reduced” then the initial word A;.

Let L be a multiple of K and 1 < j < K. Define

Al =A% (r4y) = A?L

LEMMA 4.32. Let L be a multiple of K and 1 < j < K. Let p= (p1,...,pn) be

N + 3-large tuple. Then Ary; = cycred(A*(¢r+;)). Moreover, if

A*(¢r4j) =R 'oApijoR
then ranky(R) < L — K +j+2 and |R| < |Ar4;|.

ProOF. First, let L = K. Consider elementary periods z; = A,,14,—3 and
Ay = e, Fori #n, 229 = 2% 0 2%, For i = n,

A*(prrmian—3) = R o Aximian—3oR,

where R = AP" it therefore ranky (R) = m + 4n — 4. For the other elementary
period, (cilcgz)z‘bk = (6?652)4)1( o (071652)4’*‘(.

Any other A; can be written in the form A; = u; ov; oug 0wy o us, where vy, vo
are the first and the last elementary squares in A;, which are parts of big powers
of elementary periods. The Nielsen property of ¢ implies that the word R for
A*(¢r4j) is the word that cancels between (vouz)?s and (ujvq)®%. It definitely
has N-large rank < K, because the element (U2U3U1U1)¢K has N-large rank < K.
To give an exact bound for the rank of R we consider all possibilities for A;:

(1) A; begins with zi_l and ends with z;41,4=1,...,m —1,

(2) A, begins with z,,' and ends with z;*,

(3) Aptai—a begins with xi_lyi__12;vi__22, ifi = 3,...n, and ends with x?ﬁlyi_lxi_l
ifi=2,...,n, If i = 2 it begins with xlﬂ;:mcj_zj (c3 %2 e 7h)2.

(4) Apgai—2 and A;yi4i-1 begins with xiy;llx;fl and ends with z2y; if i =
1,...,n.

Therefore, A?K begins with zijrll and ends with z;40,7=1,...,m — 2, and is
cyclically reduced.

Aﬁfﬂ 1 begins with z,! and ends with z1, and is cyclically reduced, A2X begins
with 2! and ends with ;" and is cyclically reduced.

We have already considered Aﬁl’i L3

Elements Aﬁﬁ_h_ 47A(£11:-4i—27 Aiﬁ-u—l are not cyclically reduced. By Lemma
4.21, for A*(¢px+m+4i—4), one has R = (;_1y; %)% (ranky(R) = m+4i—4); for
A* (e +m+4i—2), and A*(px+m+4i—2), R = (zy; )% (ranky(R) = m+4i).

This proves the statement of the Lemma for L = K.

We can suppose by induction that A*(¢r_x4;) = R 'o Ar_k4+jo R, and
ranky(R) < L — 2K + j + 2. The cancellations between A?’iKﬂ. and R?% and
between Aii K4j and Aii K+j correspond to cancellations in words u?%, where u

is a word in Wr between two elementary squares. These cancellations are in rank
< K, and the statement of the lemma follows. O
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LEMMA 4.33. Let W € F(XUCs) and A= A; = LTy(W), and A* = R 1o
Ao R. Then W can be presented in the form

(13) W = By og A" og By o4 - -+ 04 By, 04 A™ 04 B4

where A*% are mazimal stable N-large occurrences of A* in W and d < |R|. This

presentation is unique and it is called the canonical N-large A*-decomposition of
wW.

PROOF. The result follows from existence and uniqueness of the canonical A-
decompositions. Indeed, if

W =B1oA" o Byo---0 By o A% o By
is the canonical A-decomposition of W, then
(BiR)(R™'AR)"(R™'B3R)--- (R™'ByR)(R™'AR)"(R™'By11)

is the canonical A*-decomposition of W. Indeed, since every A% is a stable occur-
rence, then every B; starts with A (if ¢ # 1) and ends with A (if ¢ = k + 1). Hence
R 'B.R=R 'oB;oR.
Conversely if
W =B1A* By -+ - By A™ % By 41
is an A*-representation of W then
W = (BiR Y 0oA% o (RB3R ) o--- 0 (RByR™ ') 0o A% o (RBj41)

is the canonical A-decomposition for W. (]

In the following lemma we collect various properties of words m‘fﬂy? L %L

1%
where L = K1 is a multiple of K.

LEMMA 4.34. Let X = {z;,yi,2; | ¢ = 1,...,n,5 = 1,...,m}, let K =
K(m,n), and L = Kl be a multiple of K. Then for any number N > 5 and
for any N-large tuple p € N¥ the following holds (below ¢ = ¢r,,, Aj = A;):

(1) Ifi < j < L then A? does not occur in A;;

(2) Leti < K, j =i+ L. There are positive integers s, 1 < j1,...,js < j,
integers €1,...,e5 with |e¢] < 3, and words wy,...,wsy; € F(X UCCg)
( which do not depend on the tuple p and do not contain any square of
leading terms) such that the leading term Aj; (A3) of ¢; has the following
form:

pj;te1 jstes
(14) wy o AT owgo---owsoAi{é * 0 Wsy1,

i.e., the "periodic structure” of A; (A}) does not depend on the tuple p.
(3) Leti < K, w € Wr,, such that

_ Pjyten Pjter
u=wvy0A; 0vg 0 0w, 0 AT 0wy,

where ji,...,Jr < i, and at least one of j; is equal to i, |e;| < 1, and
words vy, ..., vr41 € F(X UCg) do not depend on p. Then

oL _ L po10L 11 —1 (pjy +e1—201) o16L, dL
u®t =07 Aj1 Wi oAj1+L oI/VlAj1 vy

ér AoroLyy—1 (Pjr+er—20r) or¢r, oL
P AP WL 0 AL o Wy A" v, 1y,
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where Aj’f =w; ! 0Aj, 4L oWy o =1 if py is positive and oy = —1 if py

is negative. In addition, for each t = 1,... r the product
otpL, ¢ Ot19Lypr—1
WtAj: LvtilAjHl t+1

has form (14) with ji,...,js <i+ L.

(4) For any i < K and any x € X! there is a positive integer s and there
are indices 1 < ji,...,j5s < i, integers €1, ...,es with |e¢] < 1, and words
wi, ..., Wsr1 € F(X UCg) which do not depend on the tuple p such that
the element % can be presented in the following form:

ZC(pi = w1 © A§f1+61 OWg O+ 0WgO A?ZS+ES [e] ’LUS+1.

PROOF. Statement (1) follows from Lemmas 4.6-4.8.

Statements (2) and (3) will be proved by simultaneous induction on j =i+ L.
Case [ = 0 corresponds to ¢ < K. In this case statement (2) follows from Lemmas
4.6 - 4.8 and statement (3) is simply the assumption of the lemma. A; has form
(14) with j1,...,4s < i and |e1],...,|es| < 1.

We know that A;, contains an elementary square (actually, big power) for any
t=1,...s, Af:‘ = Rj_tl o0 Aj,+k o Rj,, where R;, does not contain big powers of Ay
for k > j; + 2. Then it follows from the second statement of Lemma 4.21 that

ox _ Ok p— Pjy te1—20 ¢ —0s5 A0s

APR = wiK R TVAT oo AT 0 AT L RTwER L wiR RS TAT

pjstes—20
oAk

where o, = 1 if p;, is positive and oy = —1 if p;, is negative.
When we apply ¢k, the images of elementary big powers in A;, by Lemma

s s s, DK
o Ajry g RjTwy,

4.21 are not touched by cancellations between w{*, and Af:‘ , and between Aﬁ“

and w? {1, therefore AP =

_ _ _ _ i +e1—20 _ _
wglﬁLleaﬂﬁL K fo1¢L KW1 1o APnte 1 OW1A01¢L KR;_Tllqu ngL

J1+K Jji+L j1+K
¢ P~ O0sPL—K A0sPL—K 11/ —1 Djs+Es—205 OsPL—K pOsPL—K, oL
Wyt R, AT TWo o A oW A Tk TR wi,
where Afﬁ:fg =W, oA 1 oW, o, = 1if pj, is positive and o, = —1 if pj,

is negative (t = 1,...,s,). We can now apply statement 3) for i1 + Kl,i; < i to
elements .
waR;UI¢L—KA;11ka—KW1 e WSA?:f;{KR;:(bLin?iy

To prove statement (3) for ¢ + K1, we use it for ¢; + K and statement (2) for
i+ KI.

(4) Existence of such a decomposition follows from Lemmas 4.6-4.8. O

COROLLARY 4.35. If L is a multiple of K, then the automorphism ¢r, satisfies
the Nielsen property with respect to Wr with exceptions E(n,m).

PRrROOF. The middles M, of elements from X and from E(m,n) with respect
to ¢ contain big powers of some A;, where j = 1,..., K. By Lemma 4.34 these big

powers cannot disappear after application of ¢;_ k. Therefore, M;? =K contains
the middle of = with respect to ¢r,. O

COROLLARY 4.36. Let u,v € Wrp. If the canceled subword in the product
u®kv?% does not contain Aé- for some j < K and l € 7Z then the canceled sub-

word in the product u?x+Lv?k+L does not contain the subword AlL+j.
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LEMMA 4.37. Let W € Wr 1. Suppose that 1 <r < K, Ly is a multiple of K,
and j =1+ Li. Then the following conditions are equivalent:

1) ranky (W) =r and
W =Dy0A% 0Dy...Dy oAl o Dy

is a stable 5-large A,.-decomposition of W ;
2) ranky(W®L) = j and

Wer: — (D1A;1)¢L1 o4 A;Q1—51—51 o4 (A§1D2A§2)¢L1

(AT Dy A5 )P0 0g AT % o (4B Dy yy)Pma

is a stable Aj-decomposition of WeL1 | where 85,65 € {0,41} depending
on the sign of qs and (3.

Proor. It follows from Lemmas 4.33 and 4.34. Indeed, let W € Wr 1, and
W =Di0A% 0 Dy...Dpo Al o D41
the canonical N-large A,-decomposition of W. Then by Lemma 4.34 (3)
WPt = (D1AZ )P w0 AP 0w, (A Do AZ?) %

(AT Dy AZ8 )Pt o AT 2% o, (AT Djyy) P51

where Ale = w,; ' o Ajow,, o € {1,—1}. This implies that the canonical A*-
decomposition of W?Z1 takes the form described in 2).

Conversely, suppose 2) is the canonical A*-decomposition of W%1, but 1) is not
the canonical A,.-decomposition of W. Then taking the canonical A,.-decomposition
of W and applying ¢z, by 1) we get another canonical decomposition of W®L1 -
contradiction with uniqueness of A*-decompositions. ([

LEMMA 4.38. Suppose p is an (N +3)-large tuple, ¢; = ¢;p,. Let L be a multiple
of K. Then:

(1) (a) a:f” has a canonical N-large A}-decomposition of size (N, 2) if either
j=m+4(Gi —1)(mod K), or j = m+ 4i — 2(mod K), or j =
m + 4i(mod K). In all other cases rank(x?j) <j.
(b) yf)j has a canonical N-large A}-decomposition of size (N, 2) if either
j=m+43¢ — 1)(mod K), or j = m + 4i — 3(mod K), or j =
m + 4i — 1(mod K), or j = m + 4i (mod K). In all other cases
rank(yf)j) <j.
(c) zfj has a canonical N-large A%-decomposition of size (N,2) if j =
i (mod K) and either 1 <i<m—1ori=m andn # 0. In all
other cases rank(zfj) <j.
(d) if n = 0 then zfﬁ{ has a canonical N -large A;f—decomposition of size
(N,2) if j=m—1 (mod K). In all other cases Tank‘(zf;j) <j.
2 Ifj=r+L 0<r <K, (w.. wp) € Subp(XTV&7r+1) then either
(wy...wg)® = (wy...wg)%-1, or (wy...ws)% has a canonical N -large
A3 -decomposition. In any case, (wy ... wg)?% has a canonical N -large A*-
decomposition in some rank s, 1 — K +1 < s < j.
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PrOOF. (1) Consider y¢L+m+4¢ :

%

P = (e g (e,
In this case A*(¢r4miai) = xfjf’"*“’l i_m*m*“’l.
To write a formula for xf“’”“i, denote §;_1 = yfff’"*“"”, T; = xfﬂ i = ny.
Then
x?L+m+4i _ (ji+1y;¢L+m+4i—l )qzlfl‘iﬂ_1
(@) ezl g) = (@, ) o wd g oy ey ™ (Giaz, ).

Similarly we consider 2%

(2) If in a word (wy - - - wy )% all the powers of A?j are cancelled (by Lemma 4.34
they can only cancel completely and the process of cancellations does not depend
on p) then if we consider an Aj-decomposition of (wy - - wy, )%, all the powers of
A% are also completely cancelled. By construction of the automorphisms v;, this
implies that (wy - -+ wg)%% -1 = (wy -+ - wg)%5-1. O

5. Generic solutions of orientable quadratic equations

Let G be a finitely generated fully residually free group and S = 1 a standard
quadratic orientable equation over G which has a solution in G. In this section we
effectively construct discriminating sets of solutions of S =1 in G. The main tool
in this construction is an embedding

A GR(S) — G(U, T)

of the coordinate group Gr(g) into a group G(U,T) which is obtained from G by
finitely many extensions of centralizers. There is a nice set Zp (see Section 1.4 in
[16]) of discriminating G-homomorphisms from G(U,T) onto G. The restrictions
of homomorphisms from Zp onto the image GE\%(S) of Gr(s) in G(U,T) give a
discriminating set of G-homomorphisms from Gj\%( ) into G, i.e., solutions of S =
1 in G. This idea was introduced in [12] to describe the radicals of quadratic
equations.

It has been shown in [12] that the coordinate groups of non-regular standard
quadratic equations S = 1 over G are already extensions of centralizers of G, so in
this case we can immediately put G(U,T) = Gg(s) and the result follows. Hence
we can assume from the beginning that S = 1 is regular.

Notice, that all regular quadratic equations have solutions in general position,
except for the equation [x1,y1][z2, y2] = 1 (see [13], Section 2).

For the equation [z1,y1][z2,y2] = 1 we do the following trick. In this case we
view the coordinate group G'r(s) as the coordinate group of the equation [x1,91] =
[y2, 2] over the group of constants G * F(x2,y2). So the commutator [y, 23] = d
is a non-trivial constant and the new equation is of the form [z,y] = d, where all
solutions are in general position. Therefore, we can assume that S = 1 is one of
the following types (below d, ¢; are nontrivial elements from G):

n
(15) H[xz,yz} =1, n>=3;

i=1
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n m

(16) H[xl,yz] Hz;lcizid =1, n=21,m>=0;
i=1 i=1
(17) Hz;lcizid =1, m2>=2

i=1

and it has a solution in G in general position.

Observe, that since S = 1 is regular then Nullstellenzats holds for S = 1, so
R(S) = ncl(S) and Gp(gy = G[X]/ncl(S) = Gs.

For a group H and an element v € H by H(u,t) we denote the extension of
the centralizer C'y(u) of u:

H(u,t) = (H,t |t 'at =2 (z € Cx(u))).
If
G =G <Gi(u,t1) =G <. < Gp(un, tn) = G

is a chain of extensions of centralizers of elements u; € G;, then we denote the
resulting group G,11 by G(U,T), where U = {u1,...,u,} and T = {t1,...,t,}.

Let 3 : Gr(sy — G be a solution of the equation S(X) = 1 in the group G such
that

o) =ai,y =bi,2) = e

d= He clelHaz,bi].
=1

Hence we can rewrite the equatlon S =1 in the following form (for appropriate m
and n):

Then

n

(18) sz ngzayz He Haza i

i=1 =1 =1

PROPOSITION 5.1. Let S = 1 be a regular quadratic equation (18) and ( :
Gr(sy — G a solution of S =1 in G in a general position. Then one can effectively
construct a sequence of extensions of centralizers

G = Gl < G1(U1,t1) = GQ < N < Gn(umtn) = G(U,T)

and a G-homomorphism A\ : Grsy — G(U,T).

ProOF. By induction we define a sequence of extensions of centralizers and a
sequence of group homomorphisms in the following way.

Case: m # 0,n = 0. In this event for each i = 1,...,m — 1 we define by
induction a pair (0;, H;), consisting of a group H; and a G-homomorphism 6; :

Before we will go into formalities let us explain the idea that lies behind this.
If 21 —e1,...,2m — €5, is a solution of an equation

(19) zflclzl . z;lcmzm =d,
then transformations
(20) e e (i) e = e () e e (GAGLITD),

produce a new solution of the equation (19) for an arbitrary integer ¢. This solution
is composition of the automorphism ~{ and the solution e. To avoid collapses
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under cancellation of the periods (c{'c;}')? (which is an important part of the
construction of the discriminating set of homomorphisms Zp in Section 1.4 in [16])
one might want to have number ¢ as big as possible, the best way would be to have
q = oo. Since there are no infinite powers in G, to realize this idea one should go
outside the group G into a bigger group, for example, into an ultrapower G’ of G,
in which a non-standard power, say ¢, of the element ¢{c;'"' exists. It is not hard
to see that the subgroup (G,t) < G’ is an extension of the centralizer Ce (¢ ;i)
of the element ¢{’¢;}%' in G. Moreover, in the group (G,t) the transformation (20)
can be described as

(21) €; — eit, €i+1 — 6i+1t, €j — €5 (] 7£ ’L,’L + 1),

Now, we are going to construct formally the subgroup (G, t) and the corresponding
homomorphism using (21).

Let H be an arbitrary group and 3 : Gs — H a homomorphism. Composition
of the canonical projection G[X] — Gg and 3 gives a homomorphism Sy : G[X] —
H. For ¢ =0 put

Ho=H, 6= 0
Suppose now, that a group H; and a homomorphism 6; : G[X]| — H; are already
defined. In this event we define H;1; and ;41 as follows

0; 0;
Hip = <Hz‘77“i+1 | {CHZ-(CZTCZEQ)WH} = 1>7
At =l Ay = lgri, A =20 A+ Li+2).
By induction we constructed a series of extensions of centralizers
G=Ho<H<...<Hju-1=H,u1(G)
and a homomorphism
Om-1,8=0m—1: G[X] = Hp_1(G).

Observe, that,

201 B0
i+1 Fi+2 _ €i+1Ti e;
Cit1 Cit2 = Ciy1 Cito
€i+1Ti €e;

so the element r;;1 extends the centralizer of the element c; "} *¢i 5. In particular,
the following equality holds in the group H,,—1(G) for each i =0,...,m — 1:

(22) [riv1, ey efia] = 1.

(where rg = 1). Observe also, that

(23) zf"”’l =eir, zf"”’l = e 1T, 20m Tt =eprmo1 (0 <i < m).

From (22) and (23) it readily follows that

m Om—1 m
(24) (H Z{lcizz) = e e,
i=1 i=1
80 O,,—1 gives rise to a homomorphism (which we again denote by 6,,—1 or 8g)
gmfl : GS — Hmfl(G)

Now we iterate the construction one more time replacing H by H,,—1(G) and 8 by
0,,—1 and put:

Hg(G) = Hyo1(Hp—1(G)), Mg =0, , : Gs — Hp(Q).
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The group Hg(G) is union of a chain of extensions of centralizers which starts at
the group H.
If H = G then all the homomorphisms above are G-homomorphisms. Now we
can write
Hp(G) = G(U,T)
where U = {u1,...,Um—1,81,. s Um-1}, T = {r1,..,"m-1,71,.-.,Fm—1} and
u;,7; are the corresponding elements when we iterate the construction:

. _ €it+1Ti €i+2 7. _ ei+lri7‘i+lfi €i12Ti417Ti42
Wit1 = Cip1 Cipar Wil = Cjyg Cit2 :

Case: m = 0,n > 0. In this case S = [z1,y1] " [Zn,yn]d" . Similar to the
case above we start with the principal automorphisms. They consist of two Dehn’s
twists:

(25) r—yPr, y—y;
(26) r—x, y— a2y

which fix the commutator [z, y], and the third transformation which ties two con-
sequent commutators [x;, y:|[Ti+1, Yitr1]:

(27) x; — (y¢$;ﬁ1)7q$iv Yi — (yimi_.é)iqyi(yix;h)q,

Tiv1 — Wiri ) @i (e ) v — Wir ) Wi

Now we define by induction on i, for ¢ = 0,...,4n — 1, pairs (G;, «;) of groups
G; and G-homomorphisms «; : G[X] — G;. Put
GO == G, Qp = ,3

For each commutator [z;,y;] in S = 1 we perform consequently three Dehn’s twists
(26), (25), (26) (more precisely, their analogs for an extension of a centralizer) and
an analog of the connecting transformation (27) provided the next commutator
exists. Namely, suppose G4; and ay; have been already defined. Then

Giis1 = (Guairtaiv1 | [Cay, (2511), taigr] = 1)

virr = taiyff, ST =M (s £ i),

Giive = (Gai1,taive | [Capp (Wiii™ ) taiza] = 1)

T = taigerp T, sMR = s (s £ @)

Guivs = (Gaiva,taivs | [Cayps(T51?), taigs] = 1);

Yird™ = taigsyigr s, ST =800 (s y);

Gaiva = <G4z'+3at4z‘+4 | [CG4i+3 (y?fiw%_i)‘z‘l”s) ’t4z+4} = 1>;
SR = G B = T, el = g,
Uity = bty

ST = SMS (8 # Tig1, Yig1, Tit2, Yit2)-

Thus we have defined groups G; and mappings «; for all i = 0,...,4n — 1. As
above, the straightforward verification shows that the mapping cu,—1 gives rise to
a G-homomorphism a4y, _1 : Gg — G4y,_1. We repeat now the above construction
once more time with Ga,—1 in the place of Gy, cupn—1 in the place of 3, and ¢; in
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the place of t;. We denote the corresponding groups and homomorphisms by G,
and @; : Gg — G;.
Put
GWU,T)=Gan-1, Ag= Qan-1,
By induction we have constructed a G-homomorphism
Ag:Gs — GU,T).

Case: m > 0,n > 0. In this case we combine the two previous cases together.
To this end we take the group H,,—1 and the homomorphism 6,1 : G[X] — Hy,—1
constructed in the first case and put them as the input for the construction in the
second case. Namely, put

Om—1

Go = (Hun1. oty (e 2" )] = 1)

and define the homomorphism «aq as follows

ag _ Om-1 ag T ag _ .—1 ag . Om—1
2yl =2y, 270 =ay™, Y1l =1, b1, s =s"m (s € X,8% zm,T1,Y1)-

Now we apply the construction from the second case. Thus we have defined groups
G; and mappings «; : G[X]| — G, for all i = 0,...,4n — 1. As above, the straight-
forward verification shows that the mapping ay,_1 gives rise to a G-homomorphism
04n_1:Gs — Gup_1.

We repeat now the above construction once more time with G4,,—1 in place of
Go and au,—1 in place of 3. This results in a group G4,,—1 and a homomorphism
Qgn-1:Gs — Gan—1.

Put

GWUT) = Gan-1, Ag=Qn-1-
We have constructed a G-homomorphism
Ag: Gs — GU,T).

We proved the proposition for all three types of equations (15), (16), (17), as
required. (I

PROPOSITION 5.2. Let S =1 be a regular quadratic equation (2) and
B:Gres) — G
a solution of S =1 in G in a general position. Then the homomorphism
As i Gresy — GU,T)
is a monomorphism.

PROOF. In the proof of this proposition we use induction on the atomic rank
of the equation in the same way as in the proof of Theorem 1 in [12].

Since all the intermediate groups are also fully residually free by induction it
suffices to prove the following:

1. n =1, m = 0; prove that ¢ = a3 is an embedding of Gg into G35.

2. n =2, m = 0; prove that ¢ = ay is a monomorphism on H = (G, z1,y1) .

3. n=1, m = 1; prove that ¢ = g is a monomorphism on H = (G, z1) .

4. n =0, m > 2; prove that #2605 is an embedding of Gg into Ho.

Now we consider all these cases one by one.



270 O. KHARALMPOVICH AND A. G. MYASNIKOV

Case 1. Choose an arbitrary nontrivial element h € Gg. It can be written in
the form
h =g vi(z1,91) 92 v2(T1,y1) g3 Vn(@1, Y1) Gnt1s
where 1 # v;(z1,y1) € F(x1,y1) are words in x1,y1, not belonging to the subgroup
([x1,91]), and 1 # g; € G,g; € {([a,b]) (with the exception of g; and g,41, they
could be trivial). Then

(28) h¢ = g1 U1 (tgtla,tgb) ga ’UQ(tgtla,th) gs - ’Un(tgtla,th) gn+1-

The group G(U,T) is obtained from G by three HNN-extensions (extensions of
centralizers), so every element in G(U,T') can be rewritten to its reduced form by
making finitely many pinches. It is easy to see that the leftmost occurrence of either
t3 or t; in the product (28) occurs in the reduced form of h¥ uncancelled.

Case 2. Tr1 — tthgal, Yy — t21t3t1b1t4, Ty — t21a2t4, Yo — t;lbz. Choose
an arbitrary nontrivial element h € H = G x F(x1,y1). It can be written in the
form

h = g1 vi(z1,91) g2 v2(x1,91) g5 - - Vn(21,Y1) Gnt1,
where 1 # v;(x1,y1) € F(x1,y1) are words in x1,y1, and 1 # g; € G (with the
exception of g1 and g1, they could be trivial). Then
(20)
hY = g1 v1(t; M taa, (t3t10)4) go va(t) Mtaa, (t3t10)4) g5 - - vn(ty Htaa, (t3t10)™) gni1.

The group G(U,T) is obtained from G by four HNN-extensions (extensions of cen-
tralizers), so every element in G(U,T) can be rewritten to its reduced form by
making finitely many pinches. It is easy to see that the leftmost occurrence of
either t4 or ¢; in the product (29) occurs in the reduced form of h¥ uncancelled.

Case 3. We have an equation ¢*[z,y] = c[a,b], z — zri71, © — (t2a™)™, y —
7 Matyry b, and [y, ca” ] = 1, [F1, (¢"a"1t; H)] = 1. Here we can always suppose,
that [c,a] # 1, by changing a solution, hence [r1,71] # 1. The proof for this case is
a repetition of the proof of Proposition 11 in [12].

Case 4. We will consider the case when m = 3; the general case can be
considered similarly. We have an equation c¢j*c3?c3® = cicecs, and can suppose
[Ci7ci+1] 7é L.

~ We will prove that ¢ = 620, is an embedding. The images of z1, 2, z3 under
00, are the following:

Z1 — C1riT1, Zg — CaT1TaT1, 23 — C3T2,

where
[r1,c102] =1, [ro,chtes] =1, [F1,ct ey ™] = 1.

Let w be a reduced word in G % F(z;,i = 1,2, 3), which does not have subwords
c;*. We will prove that if w¥ = 1 in Hy, then w € N, where N is the normal closure
of the element ¢;'c52c5*c; 'c; 'yt We use induction on the number of occurrences
of zlil in w. The induction basis is obvious, because homomorphism 1) is injective
on the subgroup < F) 29,23 > .

Notice, that the homomorphism 1 is also injective on the subgroup K =<
2122_1,23,F > .

Consider H; as an HNN-extension by letter 7,. Suppose w¥ = 1 in H;. Letter
71 can disappear in two cases: 1) w € KN, 2) there is a pinch between fl_l and 7
(or between 7, and 7, ) in w¥. This pinch corresponds to some element 27 %uz{Q

(or z12u(z] 5) '), where 219, 2] 5 € {21, 22}
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In the first case w¥ # 1, because w € K and w ¢ N.

In the second case, if the pinch happens in (21 2u(2] 5)™")¥, then 21 pu(2] 5) 7! €
K N, therefore it has to be at least one pinch that corresponds to (zf%uzb)d’ We
can suppose, up to a cyclic shift of w, that z; 5 is the first letter, w does not end with
some 24 5, and w cannot be represented as zf’%uzigvlzi’zvg, such that 2] 5v1 € K'N.
A pinch can only happen if zf;uzb €< ci'c5? >. Therefore, either z1 9 = #, or
21 o = 21, and one can replace ci' by cicaczes ¢y *?, therefore replace w by w; such
that w = wwy, where u is in the normal closure of the element ¢*c5>c5*cy ey ter?,
and apply induction. ]

The embedding Ag : Gg — G(U, T) allows one to construct effectively discrim-
inating sets of solutions in G of the equation S = 1. Indeed, by the construction
above the group G(U,T) is union of the following chain of length 2K = 2K (m,n)
of extension of centralizers:

G=Hy<H..<Hnp1<G <G <...<Gyp_1 =
=Hy<H <...<Hp 1=Gy<...<Gyp_1=GU,T).
Now, every 2K-tuple p € N?X determines a G-homomorphism
&, GUT) — G

Namely, if Z; is the i-th term of the chain above then Z; is an extension of the
centralizer of some element g; € Z;_1 by a stable letter ¢;. The G-homomorphism
&p is defined as composition

fp:wlo...owK

of homomorphisms ; : Z; — Z;_1 which are identical on Z;_; and such that
t;/’ = ¢g¥*, where p; is the i-th component of p.
It follows (see [16, Section 1.4]) that for every unbounded set of tuples P C N2
the set of homomorphisms
Ep={&{, |pe P}
G-discriminates G(U,T) into G. Therefore, (since Ag is monic), the family of G-
homomorphisms
Eps ={Nsép | & € Ep}

G-discriminates G g into G.

One can give another description of the set Zp 5 in terms of the basic automor-
phisms from the basic sequence I'. Observe first that

As&p = 2k ps
therefore
Epg = {2k pB| p€ P}

We summarize the discussion above as follows.

THEOREM 5.3. Let G be a finitely generated fully residually free group, S =1
a reqular standard quadratic orientable equation, and I' its basic sequence of auto-
morphisms. Then for any solution 5 : Gg — G in general position, any positive
integer J > 2, and any unbounded set P C N7K the set of G-homomorphisms Zp g
G-discriminates Gp(g) into G. Moreover, for any fived tuple p’ € NE the family

Epgy = {0k p 0|0 €Zpp}
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G-discriminates Gr(sy into G.
For tuples f = (f1,..., fx) and g = (g1, .., 9m) denote the tuple

fg: (f17"'7fk7gla"'7gm)~
Similarly, for a set of tuples P put

fPg={fpg|pec P}

COROLLARY 5.4. Let G be a finitely generated fully residually free group, S =1
a regular standard quadratic orientable equation, I' the basic sequence of automor-
phisms of S, and B : Gg — G a solution of S = 1 in general position. Suppose
P C N2K s unbounded set, and f € NX*, g € NK" for some r,s € N. Then there
exists a number N such that if f is N-large and s > 2 then the family

®ps rg = {0k (r+s+2),¢3 | 4 € fPg}
G-discriminates Gr(s) into G.

PRrROOF. By Theorem 5.3 it suffices to show that if f is N-large for some N
then Bf = ¢k ¢ is a solution of S = 1 in general position, i.e., the images of some
particular finitely many non-commuting elements from Gg(gy do not commute in
G. Tt has been shown above that the set of solutions {¢ax 3 | h € N?K} is a
discriminating set for G r(s). Moreover, for any finite set M of non-trivial elements
from Gr(s) there exists a number N such that for any N-large tuple h € N2K the
solution ¢ox 53 discriminates all elements from M into G. Hence the result. O

6. Small cancellation solutions of standard orientable equations

Let S(X) = 1 be a standard regular orientable quadratic equation over F'
written in the form (18):
m n m n
2tz H[l’uyz] = Hei_lciei H[aiabi]~
i=1 i=1 i=1 i=1

In this section we construct solutions in F' of S(X) = 1 which satisfy some small
cancellation conditions.

DEFINITION 6.1. Let S = 1 be a standard regular orientable quadratic equation
written in the form (18). We say that a solution § : Fg — F of § = 1 satisfies
the small cancellation condition (1/)\) with respect to the set Wr if the following
conditions are satisfied:

1) [ is in general position;
2) for any 2-letter word uv € Wr (in the alphabet {z;,v;, cj’}) cancellation
in the word u”v® does not exceed (1/\) min{|u?|, [v°|};
3) cancellation in a word u?v? does not exceed (1/)\) min{|u?|, [v?|} provided
u, v satisfy one of the conditions below:
a) u=z,v = (2161 %i-1),
b) u=c;,v =2z,
c) u=v=c,
(we assume here that u®,v? are given by their reduced forms in F).

NOTATION 6.2. For a homomorphism 3 : F[X]| — F by C3 we denote the set
of all elements that cancel in uﬁvﬁj (we assume here that u”,v? are given by their
reduced forms in F') where uv € Wr.
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LEMMA 6.3. Let u,v be cyclically reduced elements of GxH such that |ul,|v| > 2.
If for some m,n > 1 elements u™ and v"™ have a common initial segment of length
|ul+|v|, then u and v are both powers of the same element w € GxH. In particular,
if both u and v are not proper powers then u = v.

PROOF. The same argument as in the case of free groups.

COROLLARY 6.4. Ifu,v € F, [u,v] # 1, then for any A > 0 there exist mq,ng
such that for any m > mg,n > ng cancellation between u™ and v™ is less than
Lmax{fu, o]},

LEMMA 6.5. Let S(X) =1 be a standard regular orientable quadratic equation
written in the form (18):

m n m n
11z ez [ [lzi,wi] = [ ] i teie [ Jlai 03], n>1,
i=1 i=1 i=1 i=1

where all ¢; are cyclically reduced, and

Bi:xi — ai Y — bi, 2 — e

a solution of S =1 in F in general position. Then for any X\ € N there are positive
integers m;,n;, ki, q; and a tuple p = (p1,...pm) such that the map : F[X] — F
defined by

JI? — (6?1@1)[&1,51]7”17 ylﬁ — ((6?1@1)16161)[&1,51]77117 where dl — x?mﬁl7 61 _ yiémﬁl

= (0 ap) ety = (bra) )l =2,

B

_ 0i ,Pmb
Z;, =CZ 5

5 1=1,...m,
is a solution of S =1 satisfying the small cancellation condition (1/X) with respect
to WF.

Moreover, one can choose the solution 31 such that if u = ¢' oru = x;l and

v =c}", then the cancellation between uP and v® is less than (1/X\) min{|ul, |v|}.

Proor. The solution
T = iy Yi — biszi — €

i=1,...,n,7=1,...,m is in general position, therefore the neighboring items in
the sequence

Sty e lar, bl .. [an, bl
do not commute.

We have [¢f7, ci\}'] # 1.

There is a homomorphism s, : Fs — F = F(U,T) into the group F obtained
from F' by a series of extensions of centralizers, such that 8 = 63,1, where ¥, :
F — F. This homomorphism 63, is a monomorphism on F * F(z1,...,2,) (this
follows from the proof of Theorem 4 in [12], where the same sequence of extensions
of centralizers is constructed).

The set of solutions v, for different tuples p and numbers m;, n;, ks, ¢; is a dis-
criminating family for . We just have to show that the small cancellation condition
for 3 is equivalent to a finite number of inequalities in the group F.
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We have z =l z(z”"ﬁl such that B1(z;) = e;, and p = (p1,...,pm) is a large
tuple. Denote A; = Aﬁ?, ] = 1, ...,m. Then it follows from Lemma 4.6 that

B _ aitl,  ppi- 1 cEitL APi— .
zp =l e AL z+1A ! wherei=2,...,m—1
_ 1, gpm-1,—1 -1
2 = i lem AT ay A
where
A _ €1 .62
A = f'c?,
A — P1 €2 AP1
A2 = Al(pl) A Co A 03 ,
1 € .
A, = ApL1elApblchfll,2:2,...,m—1,
A _ Pm—-1_em pAPm—-1_—1
A, = A ey et AT ay

One can choose p such that [A;, A1) # 1, [Ai1, i '] # 1, [Ai1,¢f'] # 1 and
[Ap, [a1,b1]] # 1, because their pre-images do not commute in F. We need the
second and third inequality here to make sure that A; does not end with a power
of A;_1. Alternatively, one can prove by induction on i that p can be chosen to
satisfy these inequalities.

8 22 8
Then ¢;' and cl_fll have small cancellation, and c;* has small cancellation with
:i:ﬂ +3
Y1 -
Let

= (Bfa) Iyl = (0 ) ) =2,

for some positive integers m;,n;, k;, s; which values we will specify in a due
course. Let uv € Wr. There are several cases to consider.
1) wv = z;x;. Then

wPoP = (b a)le ™ (B gy lanbd ™

Observe that the cancellation between (b;"a;) and (b;“a;) is not more then |a;|.
Hence the cancellation in ©#v? is not more then |[a;, b;]™¢|+ |a;|. We chose n; > m;
such that

i bi]™ |+ fai] < (1/A)| (B aq)le0 ™|
which is obviously possible. Similar arguments prove the cases uv = xz;y; and
UV = Y; T;.
2) In all other cases the cancellation in u%v” does not exceed the cancellation
between [a;, b;]™ and [a;41,b;+1]™*, hence by Lemma 6.3 it is not greater than
@i, bs]| + [[aiv1, bita]l- )

Let v = zf U = c;zl '. The cancellation is the same as between AP? and

AP~ and, therefore, small.

Since ¢; is cyclically reduced, there is no cancellation between ¢; and ng .
The first statement of the lemma is proved.
We now will prove the second statement of the lemma. We can choose the

initial solution ei,...,em,a1,b1,...,an, b, so that [c7'c5?,¢5® ... ci'] #1 (i > 3),
[c5tcs?, [aq, bil] 7é 1,(i=2,...,n) and [¢{*c5?, by ta; ' b1] # 1. Indeed, the equations

[f1c5?, e ... ]: 1, [cflcgz,[:ﬂ“yz]] =1,(i=2,...,n) and [cflc§27y1 x] 1yl] =1
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are not consequences of the equation S = 1, and, therefore, there is a solution of
S(X) =1 which does not satisfy any of these equations.

To show that u = cfﬁ and v = ci?, have small cancellation, we have to show
that p can be chosen so that [A, A;] # 1 (which is obvious, because the pre-images
in G do not commute), and that /_li_l does not begin with a power of A;. The
period A; ! has form (et .. g™ AP ..)). It begins with a power of A; if and

only if [A1,c5® ... ¢§'] = 1, but this equality does not hold.

g
Similarly one can show, that the cancellation between u = x;B and v = ¢]' is
small. O

LEMMA 6.6. Let n =0, and let the equation S(X) =1 have form
m
Hz;lcizi =cit...epr =d.
i=1

We can suppose that c1,. .., c;,d are cyclically reduced and that z; = e; is a solution
in F in general position. Then for any X\ > 0 there is a tuple p and a positive number
s, such that the solution 3, where

B _ i PKbB1 s B _ .
zZp =ctz, "N, 2t = ey

satisfies the small cancellation condition for Wr with one exception: u = c¢3?, v =
d, w=c, ™", when in the product (udw)?, the element d is cancelled in w®, but
the cancellation between (u)® and dw® is less than min{|u®|, |dw®|}.

PROOF. Solution [ is chosen the same way as in the previous lemma (ex-
cept for the multiplication by d°) on the elements z;, ¢ # m. We do not take
s very large, we just need it to avoid cancellation between zg and d. Therefore

. B +2° . . ..
the cancellation between ¢;' and c; ;" is small for i < m — 1. Similarly, for
u=c? v=d, w= c,_nz_"i’l, we can make the cancellation between v? and dw?

less than min{|u?|, |dw?|}. O

LEMMA 6.7. Let U,V € Wr such that UV =U oV and UV € Wr.

1. Let n # 0. If u is the last letter of U and v is the first letter of V then
cancellation between UP and VP is equal to the cancellation between u® and vP.

2. Let n = 0. If uyus are the last two letters of U and vi,vs are the first
two letters of V then cancellation between UP and V? is equal to the cancellation
between (uiuz)® and (vivs)P.

Since B has the small cancellation property with respect to Wr, this implies
that the cancellation in UPV? is equal to the cancellation in u”v?, which is equal
to some element in Cj3. This proves the lemma.

Let w € Wp, W = w?®i. Let’s start with the canonical N-large A-representation
of W:

(30) W =DBjo0A%"o---0BoA% o By

where |g;| > N and max;(B;) < r.
Since the occurrences A% above are stable we have

By = BjoA®"(®) B, = A9(0-1)0 B0 A%™4) (2 < i < k), Bpyy = A" )oBy, .
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Denote A% = ¢71A’c, where A’ is cyclically reduced, and ¢ € Cj3. Then

Bf _ BIBC—I(A/)sgn(ql)C7 Bzﬂ _ c—l(14/)3971((11;1)CB?c—l(14/)8977,(%)07
BIEH = c_l(A')sg"(q")cB,fH.

By Lemma 6.7 we can assume that the cancellation in the words above is small,

i.e., it does not exceed a fixed number ¢ which is the maximum length of words

from Cjs. To get an N-large canonical A’-decomposition of W# one has to take

into account stable occurrences of A’. To this end, put &; = 0 if A”*"(%) occurs in

the reduced form of Bf c1(A)#97(4) a5 written (the cancellation does not touch

) occurs in the

it), and put &; = sgn(q;) otherwise. Similarly, put §; = 0 if Arsantai
reduced form of (A’)S-‘J”(qi)cBﬁ_1 as written, and put é; = sgn(q;) otherwise.

Now one can rewrite W# in the following form

(31) WB = E]_ e} (A/)(I1—81—51 e} E2 o (A/)qz—62—52 O:++0 (141/)(1’“_6]"_57C o Ek+17
where By = (B¢ (A)%1), B = ((A)%cByc Y (A))®2), By = ((A)%cBy, ).
Observe, that d; and €;, §; can be effectively computed from W and (3. It follows
that one can effectively rewrite W* in the form (31) and the form is unique.
The decomposition (31) of W# induces a corresponding A*-decomposition of
W. Namely, if the canonical N-large A*-decomposition of W has the form:
D1(A*)" Dg -+ D (A*)?* Dg1q
then the induced one has the form: W =
(32)
(DlA*el)A*qlfslfél (A*él DQA*EQ) . (A*5k—1DkA*€k)A*Qk*Ek*5k (A*éka+1).
We call this decomposition the induced A*-decomposition of W with respect to
( and write it in the form:

(33) W = Di(A")% D3 - Di(A") " Dj
where Df = (A*)%=1 Dy (A*)%, q = q¢;i — &; — 0;, and, for uniformity, §; = 0 and
Ek4+1 = 0.

LEMMA 6.8. For given positive integers j, M, N there is a constant C =
C(j,M,N) > 0 such that for any w € Wr if pi+1 — pi > C, then the canonical
N-large A*-decomposition (33) of W = w®i satisfies the following conditions:

(34)
(D})? = Brog(cR?), (D}) = (R~ )og Erop(cR?), (Dyy1)” = (B¢ )og By,
where 8 < |A| — M. Moreover, this constant C' can be found effectively.

ProOF. Applying homomorphism 3 to the reduced A*-decomposition of W,
(33) we can see that

Wy = (D} RPe) (A) (cRP(D3) R-Pe) (A)% ..
(cR¥(DY)PRPc™) (AN (R (D}11)°)

Observe that this decomposition has the same powers of A’ as the canonical N-large
A’-decomposition (31). From the uniqueness of such decompositions we deduce that

Ei = (D})°RPc, E;=cR°(D;)’R™Pc™!, Epy1 =cRP(Dj,y)?
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Rewriting these equalities one can get
(D})? = Erog(cR"), (D})? = (R Pc 1 )ogEi09(cR"), (Djy1)” = (R Pc 1 )opEyia

and § < |A|. Indeed, in the decomposition (31) every occurrence (A’)%~5i=% ig
stable hence E; starts (ends) on A’. The N-large rank of R is at most ranky(A),
and [ has small cancellation. Taking p;y; > p; we may assume that |[A’| >
lel, | R 0

Notice, that one can effectively write down the induced A*-decomposition of

W with respect to (.
We summarize the discussion above in the following statement.

LEMMA 6.9. For given positive integers j, N there is a constant C = C(j, N)
such that for any w € Wr if pir1 — pi > C, then the following is equivalent for
W = w?:

(1) Decomposition (30) is the canonical (the canonical N -large) A-decomposition
Of W7

(2) Decomposition (31) is the canonical (the canonical N -large) A’-decomposition
of WA,

(3) Decomposition (32) is the canonical (the canonical N -large) A*-decomposition
of W.

7. Implicit function theorem for quadratic equations

In this section we prove Theorem A for orientable quadratic equations over a
free group F' = F(A). Namely, we prove the following statement.

Let S(X,A) =1 be a regular standard orientable quadratic equation over F.
Then every equation T(X,Y, A) =1 compatible with S(X, A) = 1 admits an effec-
tive complete S-lift.

A special discriminating set of solutions £ and the corresponding cut
equation II.

Below we continue to use notations from the previous sections. Fix a solution
B of S(X,A) = 1 which satisfies the cancellation condition (1/X) (with A > 10)
with respect to Wr.

Put

Recall that

where j € N, I'; = (71, ...,7;) is the initial subsequence of length j of the sequence
') and p = (p1,...,p;) € N/. Denote by v, , the following solution of S(X) = 1:

%‘m = ¢j,pﬁ-
Sometimes we omit p in ¢; ,,;,, and simply write ¢;, ;.
Below we continue to use notation:
* * * —1
A:Aj :Aj, A ZA]» :A (¢j):Rj OAjORj, d:dj :|RJ|

Recall that R; has rank < j — K +2 (Lemma 4.32). By A’ we denote the cyclically
reduced form of A? (hence of (A*)?). Recall that Cjy is the finite set of all initial
and terminal segments of elements in (X*!)5.
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Let
®={¢;,|jeNpeN}
For an arbitrary subset £ of ® denote

£ ={¢B|¢€ L}

Specifying step by step various subsets of & we will eventually ensure a very
particular choice of a set of solutions of S(X)=11in F.

Let K = K(m,n) and J € N, J > 3, a sufficiently large positive integer which
will be specified precisely in due course. Put L = JK and define P; = N-,

Li={drp|pePi}

By Theorem 5.3 the set £, is a discriminating set of solutions of $(X) =1 in F.
In fact, one can replace the set P; in the definition of £; by any unbounded subset
Py C P1, so that the new set is still discriminating. Now we construct by induction
a very particular unbounded subset P, C N¥. Let a € N be a natural number and
h:Nx N — N a function. Define a tuple
0 0
p@ =@,....p)
where
0 0 0 ,

Similarly, if a tuple p(¥) = (pgi), . ,p(Li)) is defined then put p(it1) = (pgiH), . ,p(LiH)),

where
(i+1) (i+1)

P =l + hi +1,0), P41 =p; +hi+1,7).
This defines by induction an infinite set
Pon = {p¥ |i e N} C NE

such that any infinite subset of Py, is also unbounded.
From now on fix a recursive non-negative monotonically increasing with respect
to both variables function i (which will be specified in due course) and put

Py ="Pan, La=A{orp|pec P}

PROPOSITION 7.1. Let r > 2 and K(r + 2) < L then there exists a number ag
such that if a > ag and the function h satisfies the condition

(35) h(i+1,7) > h(i,j) foranyj=Kr+1,...,K(r+2),i=12,...;
then for any infinite subset P C Py the set of solutions
Lp” ={¢r,8|peE P}
is a discriminating set of solutions of S(X, A) = 1.
PrOOF. The result follows from Corollary 5.4. (]

Let v =, € ﬁg. Denote by Uy the solution X of the equation S(X) =1 in
F. Since T(X,Y’) = 1 is compatible with S(X) = 1 in F the equation T'(Uy,Y) =1
(in variables Y') has a solution in F, say Y = V;;. Set
A= {(Us, Vi) | v € £5}.
It follows that every pair (Uy, Vy) € A gives a solution of the system
RX,)Y)=(S(X)=1 A T(X,Y)=1).



ALGEBRAIC GEOMETRY OVER FREE GROUPS 279

By Theorem 3.4 there exists a finite set CE(R) of cut equations which describes all
solutions of R(X,Y) = 11in F, therefore there exists a cut equation Iz, » € CE(R)
and an infinite subset £3 C L5 such that IIz, o describes all solutions of the type
(Uy, Vi), where ¢ € L3. We state the precise formulation of this result in the
following proposition which, as we have mentioned already, follows from Theorem
3.4.

PRrROPOSITION 7.2. Let Lo and A be as above. Then there exists an infinite
subset Ps C Py and the corresponding set L3 = {¢r, | p € P3} C Lo, a cut
equation Iz, A = (€, fx, far) € CE(R), and a tuple of words Q(M) such that the
following conditions hold:

1) fx(&) c X*F;
2) for every ¢ € Eg there ezists a tuple of words Py = Py(M) and a solution
oy M — F of Iz, a with respect to v : F[X] — F such that:
e the solution Uy = XY of S(X) = 1 can be presented as Uy, =
Q(M**) and the word Q(M>¥) is reduced as written,
° Vw = Pw(Maw).
3) there exists a tuple of words P such that for any solution (any group
solution) (B,a) of Mz, A the pair (U, V), where U = Q(M®*) and V =
P(M®), is a solution of R(X,Y)=11n F.

Put
P=P3, E:£3, Hﬁznﬁg,A~
By Proposition 7.1 the set £? is a discriminating set of solutions of S(X) = 1in F.

The initial cut equation II;.

Now fix a tuple p € P and the automorphism ¢ = ¢, € L. Recall, that for
every j < L the automorphism ¢; is defined by ¢; :f?, where p; is the initial
subsequence of p of length j. Sometimes we use notation 1 = ¢3,¢; = ¢;0.

Starting with the cut equation IT; we construct a cut equation ILy = (&, fy.x, far)
which is obtained from I, by replacing the function fx : € — F[X] by a new func-
tion fy x : £ — F[X], where fy x is the composition of fx and the automorphism
¢. In other words, if an interval e € £ in I has a label z € X*! then its label in
II, is z?.

Notice, that II; and 114 satisfy the following conditions:

a) of/x98 = gle.xP for every o € &;

b) the solution of IT; with respect to ¢ is also a solution of I, with respect
to 3;

c) any solution (any group solution) of I, with respect to [ is a solution (a
group solution) of Il with respect to ¢5.

The cut equation Il has a very particular type. To deal with such cut equations
we need the following definitions.

DEFINITION 7.3. Let IT = (&, fx, fam) be a cut equation. Then the number
length(I1) = max{|far(co)| | o € &}
is called the length of TI. We denote it by length(IT) or simply by Nij.
Notice, by construction, length(Il,) = length(Ily ) for every ¢, ¢’ € L. Denote
N = length(Ily).



280 O. KHARALMPOVICH AND A. G. MYASNIKOV

DEFINITION 7.4. A cut equation II = (&, fx, far) is called a T'-cut equation in
rank j (rank(Il) = j) and size [ if it satisfies the following conditions:

1) let W, = fx(o) for 0 € £ and N = (I 4+ 2)Np1. Then for every o € £ one

of the following conditions holds:
1.1) W, has N-large rank j and its canonical N-large A;-decomposition
has size (N, 2) i.e., W, has the canonical N-large A;-decomposition

(36) W, = B, oAZlo...BkoAg’“oBk_,_l,

with max;(B;) < 2 and ¢; > N;
1.2) W, has rank j and max;(W,) < 2;
1.3) W, has rank < j.
Moreover, there exists at least one interval o € £ satisfying the condition
1.1).
2) there exists a solution « : F[M] — F of the cut equation IT with respect
to the homomorphism g : F[X] — F.

LEMMA 7.5. Letl > 3. The cut equation Il is a I'-cut equation in rank L and
size 1, provided
pr > (I +2)Nm, + 3.

PRroo¥F. By construction the labels of intervals from Il are precisely the words
of the type 2= and every such word appears as a label. Observe, that rank(m?L ) <
L for every i,1 <i < n (Lemma 4.38, 1a). Similarly, rank(:rfL) < Lforeveryi<mn
and rank(y?") = L (Lemma 4.38 1b). Also, rank(z’*) < Lunless n = 0 and i = m,
in the latter case 2%-) = L (Lemma 4.38 1c and 1d). Now consider the labels y$*
and 2%Z) (in the case n = 0) of rank L. Again, it has been shown in Lemma 4.38
1) that these labels have N-large Aj-decompositions of size (IV,2), as required in

1.1) of the definition of a I'-cut equation of rank L and size [.
O

Agreement 1 on P. Fix an arbitrary integer [, [ > 5. We may assume,
choosing the constant a to satisfy the condition

a2(l+2)Nn¢+3,

that all tuples in the set P are [(I + 2) Ny, + 3]-large. Denote N = (I 4 2) Ny, .
Now we introduce one technical restriction on the set P, its real meaning will
be clarified later.

Agreement 2 on P. Let r be an arbitrary fixed positive integer with Kr < L
and ¢ be a fixed tuple of length Kr which is an initial segment of some tuple from
P. The choice of r and ¢ will be clarified later. We may assume (suitably choosing
the function k) that all tuples from P have ¢ as their initial segment. Indeed, it
suffices to define h(i,0) = 0 and h(i,j) = h(i+1,7) foralli e Nand j = 1,..., Kr.

Agreement 3 on P. Let r be the number from Agreement 2. By Propo-
sition 7.1 there exists a number ag such that for every infinite subset of P the
corresponding set of solutions is a discriminating set. We may assume that a > ag.

Transformation T* of I'-cut equations.

Now we describe a transformation 7™ defined on I'-cut equations and their
solutions, namely, given a I'-cut equation I and its solution « (relative to the fixed
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map [ : F[X] — F defined above) T* transforms II into a new I'-cut equation
IT* = T*(II) and « into a solution a* = T*(a) of T*(II) relative to [.
Let I = (€, fx, far) be a I'-cut equation in rank j and size [. The cut equation

T = (€%, e fir-)
is defined as follows.
Definition of the set £*.
For o € £ we denote W, = fx (o). Put
Ein ={o €| W, satisfies 1.1)}.

Then £ = &; y U&j v where £ v is the complement of £; v in £.
Now let o € & y. Write the word W/ in its canonical A’ decomposition:

(37) WP =FEioA" ocEyo---0Eyo0 A" o Eyyy

where |¢;| > 1, E; # 1 for 2 < i < k.
Consider the partition
fu(o) =pa ... pin
of 0. By the condition 2) of the definition of I'-cut equations for the solution
B : F[X] — F there exists a solution « : F[M] — F of the cut equation II relative
to 3. Hence W2 = fp; (M%) and the element

I (M®) = pg .. .ul
is reduced as written. It follows that
(38) WP =FEoA" oEyo---0oEyo A" oEj 1 =pfo---opu

We say that a variable p; is long if AEED)

occurs in pf (ie., pu contains a
stable occurrence of A’ l)7 otherwise it is called short. Observe, that the definition
of long (short) variables u € M does not depend on a choice of o, it depends only
on the given homomorphism «. The graphical equalities (38) (when o runs over
&;.n) allow one to effectively recognize long and short variables in M. Moreover,
since for every o € £ the length of the word fy;(o) is bounded by length(II) = Ny
and N = (I 4 2)Nm, every word far(o) (o € &;) contains long variables. Denote by
Mghort, Miong the sets of short and long variables in M. Thus, M = Mgnore U Miong
is a non-trivial partition of M.

Now we define the following property P = Pj,,4, of occurrences of powers of
A’ in W8 a given stable occurrence A'? satisfies P if it occurs in u® for some
long variable 1 € Mjong and g > [. It is easy to see that P preserves correct
overlappings. Consider the set of stable occurrences Op which are maximal with
respect to P. As we have mentioned already in Section 4, occurrences from Op
are pair-wise disjoint and this set is uniquely defined. Moreover, W4 admits the
unique A’-decomposition relative to the set Op:

(39) W2 =Dyo(A) 0oDyo---0Dyo(A)% oDy,
where D; # 1 for i =2,... k. See Figure 1.
Denote by k(o) the number of nontrivial elements among Dy, ..., Dgy.

According to Lemma 6.9 the A’-decomposition 39 gives rise to the unique asso-
ciated A-decomposition of W, and hence the unique associated A*-decomposition
of W,,.



282 O. KHARALMPOVICH AND A. G. MYASNIKOV

D D D D,
1 D2 3 4
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V\f ‘—'nﬂ T, M/ariab\ew iy Niy Ng

FIGURE 1. Decomposition (39)

Now with a given o € £; we associate a finite set of new intervals E, (of the
equation 7 (II)):
E; = {517 ceey 61@(0‘)}

and put
£ =650 J Eo
o€E;
Definition of the set M*
Let 1 € Mjong and
(40) p =wuyo(A)* ougo---ougo(A)* oupyy

be the canonical I-large A’-decomposition of u®. Notice that if p occurs in fys(o)
(hence u® occurs in W2) then this decomposition (40) is precisely the A’-decomposition
of u® induced on p® (as a subword of W#) from the A’-decomposition (39) of W2
relative to Op.

Denote by t(u) the number of non-trivial elements among uy, . .., us41 (clearly,
u; £ 1 for 2 <i <t).

We associate with each long variable p a sequence of new variables (in the
equation T*(II)) S, = {v1,..., V() }. Observe, since the decomposition (40) of p*
is unique, the set S, is well-defined (in particular, it does not depend on intervals
o).

It is convenient to define here two functions vief and vyigne on the set Mopg: if
1€ Migng then

Viett (1) = V1, Vright (1) = Vi(p)-
Now we define a new set of variable M* as follows:
M* = Mgnort U U S/,L'
HEMiong

Definition of the labelling function f%.

Put X* = X. We define the labelling function f%. : £* — F[X] as follows.
Let 6 € £*. If § € £, then put

fx(6) = fx(6).

Let now 6 = §; € E, for some 0 € Mions. Then there are three cases to
consider.
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a) d corresponds to the consecutive occurrences of powers A’'“~' and A’% in
the A’-decomposition (39) of W/ relative to Op. Here j = i or j = i — 1 with
respect to whether D1 =1 or Dy # 1.

As we have mentioned before, according to Lemma 6.9 the A’-decomposition
(39) gives rise to the unique associated A*-decomposition of W,:

Wa‘ = DT Od (14*)(1r Od D; O©:--0yg D;: Od (A*)q’: Od DZ+1.

Now put

fx(6i) = Dj € F[X]
where j =14 if Dy =1 and j =14 —1if Dy # 1. See Figure 2.

q¥=q +¢€+ 0
1 1 1 1

A*— decomposition

i

Op— decomposition

FIGURE 2. Defining f%..

The other two cases are treated similarly to case a).
b) d corresponds to the interval from the beginning of o to the first A’ power
A’ in the decomposition (39) of W#. Put

fx(8) = Dy.

c) § corresponds to the interval from the last occurrence of a power A’ of A’
in the decomposition (39) of W/ to the end of the interval. Put

fx(8) = D1
Definition of the function f},..

Now we define the function f*: £* — F[M*].
Let § € £*. If § € £, then put

far+(8) = fa(6)
(observe that all variables in fy;(J) are short, hence they belong to M*).
Let 0 = 0; € E, for some 0 € Mjong. Again, there are three cases to consider.



284 O. KHARALMPOVICH AND A. G. MYASNIKOV

a) d corresponds to the consecutive occurrences of powers A’? and A’***' in
the A’-decomposition (39) of W2 relative to Op. Let the stable occurrence A’
occur in pg* for a long variable y;, and the stable occurrence A’ occur in g for
a long variable y;.

Observe that

Dy = right(p;) o pityq 0 -+ 0 puj_q o le ft(py),
for some elements right(u;),left(u;) € F.
Now put
Jar-(0) = Viright it - - - i1V e ft
See Figure 3.

d
45 9
A |AY] A A |(A)] A
al e T o
L Wiright o [V pleft M
I _— i+1 —I:
oo T short

FIGURE 3. Defining f;,., case a)

The other two cases are treated similarly to case a).
b)  corresponds to the interval from the beginning of o to the first A’ power
A’ in the decomposition (39) of WS. Put

fX/[* ((5) = M1 ... Njflyj,left-
c) § corresponds to the interval from the last occurrence of a power A’ of A’
in the decomposition (39) of W2 to the end of the interval.
The cut equation T*(IT) = (€*, fx, fi-) has been defined.
We define a sequence
(41) IS | PRI | &
of N-large I'-cut equations, where I, = IIy, and II,_; = T*(IL;).

CrLamM 1. Let II; be a cut equation from the sequence (41). Then there exists
an infinite subset P’ C P such that the cut equation I1;_y = T*(II;) satisfies the
following conditions:

(1) the words fx«(o) € F|X], as parametric words in the parameters from p,
are the same for every p € P’, i.e., they differ only in exponents corre-
sponding to components of the tuples p.

(2) the words fy« (o) are the same for every p € P'.

PrOOF. The claim follows from the construction of 7*(II). O
Agreement 4 on the set P: we assume (replacing P with a suitable infinite

subset) that every tuple p € P satisfies the conditions of Claim 1. Thus, every
IT = II; from the sequence (41) satisfies the conclusion of Claim 1 for P’ = P.
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CLAIM 2. The homomorphism o* : F[M*] — F defined as (in the notations
above):

o (M) = a(r“’) (:U’ € Mshort)a
a*(yi,Tight) = Riﬁcilright(ui) (Vi € S[L fOT’ we Mlong)

" (Vijest) = left(ui)cRﬁ
is a solution of the cut equation T*(IT) with respect to 3 : F[X] — F.

PRrOOF. Indeed, by Lemma 6.8
(D) = (R™Pc1) 0g Dy 0g (cRP)

where § << |A'|. Therefore, pf ;... u§_; occurs in Dy without cancellation. There-
fore a* is a required solution. (Il

Agreement 5 on the set P: we assume (by choosing the function h properly,
ie, h(i,j) > C(L,N + 3), see Lemma ) that every tuple p € P satisfies the
conditions of Lemma 6.8, so Claim 2 holds for every p € P. Thus, for every II = II;
from the sequence (41) with a solution « (relative to 3) the solution a* of the
equation T*(II) is defined as in Claim 2.

Cram 3. LetII = (&, fx, fm) be a T-cut equation in rank j > 1 from the se-
quence (41). Then for every variable p € M there exists a word M, (M), X%i-1 F)
such that the following equality holds in the group F

p = Mu(M%ZH)v X¢j71)ﬁ'

Moreover, there exists an infinite subset P' C P such that the words M, (Mpy, X)
depend only on exponents si,...,s; of the canonical l-large decomposition (40) of
the words p®.

PROOF. The claim follows from the construction. Indeed, in constructing T'(IT)
we cut out leading periods of the type (A})® from u® (see (40)). It follows that to
get p® back from Mzof(*n) one needs to put the exponents (A’)° back. Notice, that

Aj = Alyy)
Therefore,
(4))° = Alyy)? P
Recall that A;- is the cyclic reduced form of A]ﬁ- , SO
(47)° = uA(y;)? v

for some constants u,v € Cg C F. To see existence of the subset P’ C P observe
that the length of the words fas(o) does not depend on p, so there are only finitely
many ways to cut out the leading periods (A;)S from p®. This proves the claim. [

Agreement 6 on the set P: we assume (replacing P with a suitable infinite
subset) that every tuple p € P satisfies the conditions of Claim 3. Thus, for every
IT = II; from the sequence (41) with a solution « (relative to ) the solution a*
satisfies the conclusion of Claim 3.



286 O. KHARALMPOVICH AND A. G. MYASNIKOV

DEFINITION 7.6. We define a new transformation 7" which is a modified version
of T*. Namely, T transforms cut equations and their solutions « precisely as the
transformation 7™, but it also transforms the set of tuples P producing an infinite
subset P* C P which satisfies the Agreements 1-6.

Now we define a sequence

(42) m, 5, 5. 5m
of N-large I'-cut equations, where II;, = II,, and II,_y = T'(II;). From now on we
fix the sequence (42) and refer to it as the T-sequence.

CramM 4. Letl >3, pj—1 > (I +2)Nn + 3. The cut equation T(II) is a I'-cut
equation in rank < j — 1 of size l.

PRrROOF. The claim follows from the construction of T'(II). More precisely, we
show first that T'(II) has a solution relative to 5. It has been shown in Claim 1 that
T*(II) has a solution a* relative to §. This proves condition 2) in the definition of
the I'-cut equation.

Observe also, that to show 1) it suffices to show that 1.1) in rank j does not
hold for T*(II). It is not hard to see that it suffices to prove the required inequalities
for A’-decompositions (see Lemma 6.9).

Let § € £*. By the construction (A’)!*2 does not occur in pu® for any u € M*.
Therefore the maximal power of A’ that can occur in f3,.(0)® is bounded from
above by (I 4 1)|fx;-(0)| which is less then (I + 1)length(T*(II)), as required. Let ¢
be the rank of T'(IT), ¢ < j — 1. It follows from the construction that if conditions
1.1) and 1.3) for rank ¢ are not satisfied for an interval in T'(I), then condition 1.2)
is satisfied. O

CrLaM 5. Consider the cut equation M5 = (€, fx, far) with index L —iK
from the T-sequence (42). Then for any o € £ there exists a word w = w, € Wr 1,
without N -large powers of elementary periods such that fx (o) = w?t—ix.

PRrROOF. We prove the claim by induction on .

Let i = 1. For every x € X*! one can represent the element z%* as a product
of elements of the type y®=-,y € X*! (in this event we say that the element %~
is a word in the alphabet X?2-x). Indeed,

TP = (x¢K)¢L—K — w¢L—K’

where w = z?% is a word in X.
Now consider the first K terms in the T-sequence:

HLH...HHL_K.

We use induction on m to prove that for every interval o € I _,, = (£&=™), f)((L_m)
the label f)((L_m) (o) is of the form u®L-x for some u € Sub(X9x).
For m = 1 by Lemma 4.37 for j = L,r = K, there is a precise correspondence

between stable A} -decompositions of

x®r = oK = Df)L_K og A7™ oq4 DgL_K e D,fL_K og A7% o D,fiIK

and stable A-decompositions of w

w=D10Ag" 0Dy...Dyo Al o Diyq.

(L—m)
»J M

)
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By construction, application of the transformation 7" to Il removes powers A7% =
A%‘b’“’“ which are subwords of the word w®~* written in the alphabet X¢2-x_ By
construction the words D?L’K are the labels of the new intervals of the equation
IIz_q1. Suppose by induction that for an interval o of the cut equation II; (for
m =L —j) f)(g)(a) = u?2-% for some u € Sub(X*?x). Then either o does not
change under T or f)(g)(o) has a stable (I + 2)-large A;*-decomposition in rank
j=r+ (L — K) associated with long variables in f](\}) (0):
ubr-x — DfL—K 04 A;(h o4 Dg’L—K ...DIQ;L—K 04 A;Qk ODZ’JLFIK’

and o is an interval in II;. By Lemma 4.37, in this case there is a stable A,-
decomposition of w:

u=D;0A" 0Dy...Dy0 A% o Djyy.

The application of the transformation T to IT; removes powers AJ% = AOL-K

(since A;* = A" =% which are subwords of the word u®“~* written in the alphabet

X¢c-x By construction the words DZ*~* are the labels of the new intervals of
the equation II;_;, so they have the required form. By induction the statement

holds for m = K, so the label f)(foK) (o) of an interval o in IIj,_k is of the form
u®L-x for some u € Sub(X*¢x). Notice that Sub(X*¢x) C Wr , which proves
the Claim for ¢ = 1.

Suppose, by induction, that labels of intervals in the cut equation IT;,_ x; have
form wr-%i w € Wr, .. We can rewrite each label in the form vPr-xG+1) | where
v =wK Wr.r. In the T-sequence

Op ki — . = U _gy

each application of the transformation 7' removes subwords in the alphabet X ¢r-xG+1) .
The argument above shows that the labels of the new intervals in Iy, _ ;41 are of
the form v®r-xG+1)  where v € Wr, 1. This proves the first statement of the Claim.
Following the argument it is easy to see that the word v does not contain N-large
powers of e?L-kG+1) for an elementary period e. O

DEFINITION 7.7. Let IT = (&, fx, fur) be a cut equation. For a positive integer
n by ky,(II) we denote the number of intervals o € £ such that |fa(c)| = n. The
following finite sequence of integers

Comp(H) = (k2 (H)7 k3 (H)7 LR klength(l_[) (H))
is called the complexity of II.

We well-order complexities of cut equations in the (right) shortlex order: if II
and IT" are two cut equations then Comp(Il) < Comp(Il') if and only if length(II) <
length(Il') or length(I1) = length(II') and there exists 1 < @ < length(II) such that
k;(IT) = k;(IT") for all j > i but k;(II) < k;(IT').

Observe that intervals o € £ with | far(0)| = 1 have no input into the complexity
of a cut equation II = (&, fx, far). In particular, equations with |fys(o)] = 1 for
every 0 € £ have the minimal possible complexity among equations of a given
length. We will write Comp(IT) = 0 in the case when k;(II) = 0 for every i =
2,...,length(II).

CrLam 6. Let 11 = (&, fx, far). Then the following holds:
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(1) length(T(II)) < length(II);
(2) Comp(T(II)) < Comp(1I).

PROOF. By straightforward verification. Indeed, if o € €., then fi (o) =
fi=(0). If 0 € & and 6; € E, then

Far(6) = 13, iy 1 -+ 145, 40 i)s

where fi;, fii, 41 - - - i, 4r(s) 15 @ subword of juy ... py, and hence [fy.. (6;)| < [ far(o)],
as required. (Il

We need a few definitions related to the sequence (42). Denote by M; the set
of variables in the equation II;. Variables from II; are called initial variables. A
variable p from Mj is called essential if it occurs in some far, (o) with |far; (0)| = 2,
such occurrence of u is called essential. By n, ; we denote the total number of all
essential occurrences of p in II;. Then

Nr[j
SL) = ki) = > npy
=2 neM;j

is the total number of all essential occurrences of variables from M in II;.
CLAM 7. If1 < j < L then S(IT;) < 2S(I1y).

Proor. Recall, that every variable p in M; either belongs to M, or it is
replaced in M, by the set S, of new variables (see definition of the function f},.
above). We refer to variables from S, as to children of p. A given occurrence of 11 in
some fur,.,(0), 0 € Ej11, is called a side occurrence if it is either the first variable
or the last variable (or both) in fas, (o). Now we formulate several properties of
variables from the sequence (42) which come directly from the construction. Let
w € M;. Then the following conditions hold:

(1) every child of p occurs only as a side variable in IT;1;
(2) every side variable p has at most one essential child, say p*. Moreover, in
this event n,« j411 < 1y 53
(3) every initial variable p has at most two essential children, say g and
Hright- Moreover, in this case 1y, i+1 + My it1 < 20
Now the claim follows from the properties listed above. Indeed, every initial variable
from II; doubles, at most, the number of essential occurrences of its children in the
next equation II;;, but all other variables (not the initial ones) do not increase
this number. ([

Denote by width(Il) the width of IT which is defined as
width(IT) = max k; (II).
CLAIM 8. For every 1 < j < L width(Il;) < 25(I11)
PRrROOF. It follows directly from Claim 7. ([

Denote by (IT) the number of all (length(I1)—1)-tuples of non-negative integers
which are bounded by 25(I1y,).

CrLAamM 9. Comp(Ily,) = Comp(Ilz).
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ProOOF. The complexity Comp(I1;) depends only on the function fps in IIj,.
Recall that II;, = Il is obtained from the cut equation II; by changing only the
labelling function fx, so Iz and II;, have the same functions fj;, hence the same
complexities. O

We say that a T-sequence has 3K -stabilization at K (r+2) , where 2 < r < L/K,
if
Comp(Il(py2y) = ... = Comp(Ilg(r_1))-
In this event we denote

Ko=K(r+2), K =K(r+1), Ky=Kr, Kz=K(r—1).

For the cut equation Ilg, by Myeryshort We denote the subset of variables from
M (g, ) which occur unchanged in I, and are short in I, .

CrLAM 10. For a given I'-cut equation 11 and a positive integer rq > 2 if L >
Kro+ w(IT)4K then for some r > rq either the sequence (42) has 3K -stabilization
at K(r+2) or Comp(Ilg(r41y) = 0.

PROOF. Indeed, the claim follows by the “pigeon hole” principle from Claims
6 and 8 and the fact that there are not more than x(II) distinct complexities which
are less or equal to Comp(II). O

Now we define a special set of solutions of the equation S(X) = 1. Let L =
4K + k(I1)4K, p be a fixed N-large tuple from NL=4K ¢ be an arbitrary fixed
N-large tuple from N2£ and p* be an arbitrary N-large tuple from N2K. In fact,
we need N-largeness of p* and ¢ only to formally satisfy the conditions of the claims
above. Put

Bp.q,8 = {¢L—4K,p¢2x,p* b2r,4B | P € N*K pp*q € P} .

It follows from Theorem 5.3 that B, ; g is a discriminating family of solutions
of S(X) =1

Denote By = ¢ak,q © . Then 3, is a solution of S(X) =1 in general position
and

Byg = {2k, By | p* € N*F}

is also a discriminating family by Theorem 5.3.

Let

B = {le = ¢K(r—2),p’¢2K,p*¢2K,qﬂ | p* S NzK},
where p’ is a beginning of p.

PROPOSITION 7.8. Let L = 2K + w(II)4K and ¢r € Bpq3. Suppose the T-
sequence of cut equations (42) has 3K -stabilization at K(r +2),r > 2. Then the
set of variables M of the cut equation g (1) can be partitioned into three disjoint
subsets

M = Mveryshort U Mfree U Museless
for which the following holds:

(1) there exists a finite system of equations A(Myeryshort) = 1 over F' which
has a solution in F;

(2) for every p € Muyseless there exists a word V), € F[X U Mpee U Myeryshort)
which does not depend on tuples p* and q;
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(3) for every solution 6 € B, for every map e : Mpee — F, and every
solution ag : F[Myeryshort) — F of the system A(Myeryshort) = 1 the map
a: FIM]) — F defined by

’u/afree Zf//[/ S Mfree;
ue = u()ﬂs . Zf e Mveryshort ;
Vv, (X‘S, M Gfree | [ ) if b € Myseless-

free ’ *"“veryshort
is a group solution of Uy, 41y with respect to (3.
PROOF. Below we describe (in a series of claims 11-22) some properties of
partitions of intervals of cut equations from the sequence (42):

T T T
HKl — HK1,1 — ... HKQ.

Fix an arbitrary integer s such that Ky > s > Ko.

Cramm 11. Let fpr(o) = p1--- pg be a partition of an interval o of rank s in
II,. Then:

(1) the variables pa, ..., uk—1 are very short;
(2) either puy or ug, or both, are long variables.

PROOF. Indeed, if any of the variables us, ..., ur—1 is long then the interval
o of Tl is replaced in T'(Il;) by a set of intervals E, such that |fa(0)] < |far(o)]
for every § € E,. This implies that complexity of T'(Il;) is smaller than of Il -
contradiction. On the other hand, since ¢ is a partition of rank s some variables
must be long - hence the result. (Il

Let far(o) = p1 ... pg be a partition of an interval o of rank s in IT;. Then the
variables p; and py, are called side variables.

Cram 12. Let fpr(o) = py ... ux be a partition of an interval o of rank s in
IT,. Then this partition will induce a partition of the form pips ... pg—11}, of some
interval in rank s — 1 in Us_q such that if py is short in rank s then p) = py, if
w1 is long in Il then p) is a new variable which does not appear in the previous
ranks. Similar conditions hold for ug.

PROOF. Indeed, this follows from the construction of the transformation 7. [
CrLaM 13. Let oy and o9 be two intervals of ranks s in Il such that fx(o1) =
fx(o2) and
fM(U'l) = H1V2 ...V, fM(O'g) = Nl)\Q oo /\l-
Then for any solution o of Il5 one has
S VN V) SR VT
i.e, vy can be expressed via Aj* and a product of images of short variables.

Cram 14. Let fpr(o) = p ... ux be a partition of an interval o of rank s in
II;. Then for any u € X UE(m,n) the word u3 ... u%_, does not contain a subword
of the type C]_(M:?KI)BCQ7 where c1,¢c2 € Cg, and Mle is the middle of u with
respect to ¢, .
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PrOOF. By Corollary 4.22 every word Mle contains a big power (greater than

(I +2)Nq,) of a period in rank strictly greater than Ks. Therefore, if (M,le)ﬁ
occurs in the word p$ ... ug_,; then some of the variables po, . . ., tx,—1 are not short
in some rank greater than K5 - contradiction. O

CLAM 15. Let o be an interval in Uk, and ¢x, = ¢k, p. Then fx(o) =W,
written in the form
W, = w1,
and the following holds:

(1) the word w can be uniquely written as w = vy ...ve, where vy,...v, €
XHL U E(m,n)*, and vivi1 € E(m,n)*.

(2) w s either a subword of a word from the list in Lemma 4.16 or there
exists © such that vy ---v;, Vi41--- Ve are subwords of words from the list
in Lemma 4.25. In addition, (v;v;41)%% = ’U?K ov?fl.

(3) if w is a subword of a word from the list in Lemma 4.16, then at most
for two indices i,j elements v;,v; belong to E(m,n)*!, and, in this case
j=i+1.

PrROOF. The fact that W, can be written in such a form follows from Claim
5 for 7 = K. Indeed, by Claim 5, W, = w®%1, where w € Wr 1, therefore it is
either a subword of a word from the list in Lemma 4.16 or contains a subword from
the set Ezc from Lemma 4.25. Tt can contain only one such subword, because two
such subwords of a word from X*9% are separated by big (unbounded) powers of
elementary periods. The uniqueness of w in the first statement follows from the fact
that ¢, , is an automorphism. Obviously, w does not depend on p. Property (3)
follows from the comparison of the set E(m,n) with the list from Lemma 4.16. O

We say that the decomposition w = vy - - - ve, above is the canonical decompo-
sition of w and (v; ...vs)?%1 is a canonical decomposition of w?®x1.

CLAM 16. Let I, = (€, fx, far) and € M be a long variable (in rank K;)
such that far(6) # p for any 6 € €. If u occurs as the left variable in fyr(o) for
some § € & then it does not occur as the right variable in fpr(5) for any 6 € €
(however, u=' can occur as the right variable). Similarly, If . occurs as the right
variable in far(o) then it does not occur as the right variable in any far(9).

PROOF. Notice, that in this case if p; is not a single variable, it cannot be a
right side variable of fj;(5) for some interval 7. Indeed, suppose W; ends with
pr. I vepr # zi,y, ', W, begins with a big power of some period A;ﬁ, 7 > Ko,
therefore p1 begins with this big power, and the complexity of & would decrease
when we apply T to the cut equation in rank j. If vje s = 2;, 1 cannot be the right
side variable, because ¢’ can occur only in the beginning of labels of intervals. If
Vieft = Yp L then W5 = -+ 2, 1oy, !, and the complexity would also decrease when
T is applied in rank Ko + m + 4n — 4. (I

Our next goal is to transform further the cut equation Ilx, to the form where
all intervals are labelled by elements 251, x € (X U E(m,n))*!. To this end we
introduce several new transformations of I'-cut equations.

Let I = (&, fx, fur) be a T-cut equation in rank K; and size I with a solution
a: F[M] — F relative to 8 : F[X] — F. Let 0 € £ and

WO':(’Ul""Ue)d)Kla 622,
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be the canonical decomposition of W,. For i,1 <i < e, put
Vo,ileft = V1" Vi, Voiright = Vi1 Ve
Let, as usual,
fulo) = pa-- e
We start with a transformation T1 left. For 0 € £ and 1 < i < e denote by
0 the boundary between vffflfﬁ and v”

o, B KB
vo,i,left Ucf,i,right .
conditions hold:

o.imight 11 the reduced form of the product

Suppose now that there exist ¢ and 7 such that the following two

C1) pf almost contains the beginning of the word Ufflle 74 till the boundary 0
(up to a very short end of it), i.e., there are elements uq,ug,us,uqs € F
. ¢K15 ¢ 1B _ .1 —
such that Vg ifept = U1 OU20UZ, ;1 { = Uz Oy, ULlUlg = Ug O Ug O Uy,
and p§ begins with uy, and ug is very short (does not contain Af(lz) or
trivial.

C2) the boundary € does not lie inside u§.

In this event the transformation 77 ;cf; is applicable to II as described below.
We consider three cases with respect to the location of 6 on fyr(o).

Hl HZ uk—] )\/

FIGURE 4. T2, Case 1)

Case 1) 6 is inside pf (see Fig. 4). In this case we perform the following:

a) Replace the interval o by two new intervals oy, 02 with the labels
DK, DK, .
o,,leftr Yo,i,right’

b) Put far(o1) = g1 ... pk—1v, far(o2) = v=1u), where X is a new
very short variable, v is a new variable.
c) Replace everywhere py, by Auj.. This finishes the descr1pt1on of the
cut equation T ;e (IT).
d) Define a solution a* (with respect to 3) of T1 jc+(II) in the natural
way. Namely, a*(u) = a(u) for all variables p which came unchanged from

v

o are defined in the natural way, that is z’ z

is the whole end part of ¢ after the boundary 6, (v='u,)* = vff’lriiht,

X = g (')
Case 2) 6 is on the boundary between pf and uf'y; for some j. In this case we
perform the following:

II. The values \* , u's , v



ALGEBRAIC GEOMETRY OVER FREE GROUPS 293

a) We split the interval o into two new intervals o and oo with labels

b) We introduce a new variable A and put far(o1) = pi...p5A,
Sa(o2) = A g o g
¢) Define A\*™ naturally.
Case 3) The boundary 6 is contained inside p¢ for some (2 < ¢ <r —1). In this
case we do the following:
a) We split the interval o into two intervals o7 and o2 with labels

OK, 3 .
Vie st and Vg i rights respectively.

b) Then we introduce three new variables u, u7/, A, where p’;, pf are
“very short”, and add equation p; = pp} to the system Averyshort-

¢) We define fas(o1) = pur -+~ phA, far(on) = ANl iy - - .

d) Define values of o on the new variables naturally. Namely, put A®"

to be equal to the terminal segment of v;if;iﬁ that cancels in the product

vf:;}tﬁ fflfght Now the values u}a* and u;’“* are defined to satisfy the
equalities

*

fx(01)? = far(01)*, fx(02)? = far(o2)™ .

We described the transformation 77 jc¢+. The transformation 77 ,ign: is defined
similarly. We denote both of them by T7.

Now we describe a transformation 715 j. ;.

Suppose again that a cut equation II satisfies C1). Assume in addition that for
these o and 7 the following condition holds:

C3) the boundary 6 lies inside p§.
Assume also that one of the following three conditions holds:

C4) there are no intervals § # o in II such that fu;(d) begins with pq or ends
on

C5) Uojiteft # Zn (i.e., either ¢ > 1 or ¢ = 1 but v; # x,) and for every
§ € £in ILif f3,(8) begins with iy (or ends on p;') then the canonical

decomposition of fx(§) begins with vf};lleft (ends with v;ffelft),

C6) Voiteft = Tn (¢ = 1 and v1 = x,,) and for every § € £ if far(d) begins
with 4, (ends with p; ') then the canonical decomposition of fx () begins

—bKy ;451(1 )

1 or with yjikl (ends with or y

with xi
In this event the transformation 75 .y, is applicable to II as described below.

Case C4) Suppose the condition C4) holds. In this case we do the following.

@ ®
G,Ii(,lleft’ Uafi(,l'r‘ight;
b) Replace pq with two new variables pf, uf and put far(o1) = pf,

Ja(oe) = pipa .. .
¢) Define (1)) and (p/)®" such that fas(o1)® = vff}lfft and fp(o2)®
¢, B
va,i,right‘
Case C5) Suppose vjeft # 2. Then do the following.
a) Transform o as described in C4).

a) Replace o by two new intervals o1, o4 with the labels v
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b) If for some interval § # o the word fys(d) begins with p; then
replace pq in far(9) by the variable pf and replace fx (§) by v;f’ﬁlﬁfx (9).
Similarly transform intervals § that end with ul_l.

Case C6) Suppose vjeft = 2. Then do the following.

a) Transform o as described in C4).

b) If for some § the word fys(d) begins with g and fx(d) does not
begin with y,, then transform § as described in Case C5).

¢) Leave all other intervals unchanged.

We described the transformation 75 j.¢+. The transformation T3 ,igne is defined
similarly. We denote both of them by T5.

Suppose now that II = Ilg,. Observe that the transformations 77 and 75
preserve the properties described in Claims 6-9 above. Moreover, for the homo-
morphism 3 : F[X] — F we have constructed a solution o* : F[M] — F of T,,(Tlg, )
(n = 2,3) such that the initial solution « can be reconstructed from o* and the
equations IT and T, (IT). Notice also that the length of the elements W, correspond-
ing to new intervals o are shorter than the length of the words W, of the original
intervals o from which ¢’ were obtained. Notice also that the transformations 77,75
preserves the property of intervals formulated in the Claim 11.

CLAIM 17. Let 11 be a cut equation which satisfies the conclusion of the Claim 11.
Suppose o is an interval in 11 such that W, satisfies the conclusion of Claim 15. If
for some i

(’Ul v Ue)¢K = (Ul “ee ’Ui)¢K o] (Ui+1 R Ue)d)K

then either Ty or Ty is applicable to given o and 1.

PROOF. By Corollary 4.35 the automorphism ¢k, satisfies the Nielsen property
with respect to Wr with exceptions E(m,n). By Corollary 12, equality

(Ul ces Ue)¢K = (’Ul cee ’l}i)d)K o] (Ui+1 .o Ue)d)K

implies that the element that is cancelled between (v ... v;)?%? and (v;1; ... v.)?%P
is short in rank K5. Therefore either p$ almost contains (v; ... v;)?%” or u¢ almost
contains (viy1 - .. v.)?*A. Suppose u§ almost contains (vy . ..v;)?5?. Either we can
apply 11 icft, or the boundary 6 belongs to pf. One can verify using formulas from
Lemmas 4.6-4.9 and 4.21 directly that in this case one of the conditions C4) — C6)
is satisfied, and, therefore 75 ;. f; can be applied. O

LEMMA 7.9. Given a cut equation i, one can effectively find a finite sequence
of transformations Q1,...,Qs where Q; € {T1,Ta} such that for every interval o of
the cut equation Iy = Qs ...Q1(Ilk,) the label fx (o) is of the form u® 1, where
u€ XT U E(m,n).

Moreover, there exists an infinite subset P’ of the solution set P of g, such
that this sequence is the same for any solution in P’.

PROOF. Let o be an interval of the equation Ilx,. By Claim 15 the word W,
can be uniquely written in the canonical decomposition form
W, = w1 = (v1. ..ve)‘i’Kl7

so that the conditions 1), 2), 3) of Claim 15 are satisfied.
It follows from the construction of IIx, that either w is a subword of a word
between two elementary squares x # ¢; or begins and (or) ends with some power
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> 2 of an elementary period. If u is an elementary period, u??% = u®% ou®x | except
U = T,, when the middle is exhibited in the proof of Lemma 4.21. Therefore, by
Claim 17, we can apply 77 and T5 and cut o into subintervals o; such that for any
i fx(o;) does not contain powers > 2 of elementary periods. All possible values of
u®x for u € E(m,n)*! are shown in the proof of Lemma 4.21. Applying T and T
as in Claim 17 we can split intervals (and their labels) into parts with labels of the
form 2%x1, z € (X U E(m, n)) except for the following cases:

1. w = uv, where u is x ,i<mn, veEkE,,, and v has at least three letters,

2. w= zn—2yn—2xni1$"xn—lyn—ngL—Zv

3. w= x%—lyn—lxglxn—ly;ier_LE%

4. yraxty v <o,

5. w = uv, where u = (cflcgg) , v € E(m,n), and v is one of the following: v =
m z¢ . +1 _ m +1 7zt —Zt( 21 22\ —2
[LZi i, v=1L2 ¢'ny Ht sv=1[ ¢ fUlHtm (c7'e3®) ™
6. w = uv, where u = (cflcgz)z, v € E(m,n), and v is one of the following:
_ t.—1, —1
v=IIL, ety b oro = [, ey 'y
7. w= z.

Consider the first case. If fas(0) = p1 - - g, and p$ almost contains

DKy px —Pmtaitky+1, KD
o (Appairr,) PR T

(which is a non-cancelled initial peace of ; 2051 P up to a very short part of it), then

either 17 1t or T 1o is applicable and we split o into two intervals o7 and oo with
20, and v?xK1 .

Suppose p§ does not contain x A s k,) pm+4f‘+K2+1xfff’8 up to a very
short part. Then u$ contains the non-cancelled left end E of v?%+18 and p¢E~*
is not very short. In this case T3 ight is applicable.

We can similarly consider all Cases 2-6.

Case 7. Letter z; can appear only in the beginning of w (if zfl appears at the
end of w, we can replace w by w=!) If w = 2;t; - - - t, is the canonical decomposition,
then t;, = cj % for each k. If u$ is longer than the non-cancelled part of (¢} 2;)?, or

labels x;

the difference between p§ and (c? 2;)? is very short, we can split o into two parts,
o1 with label fx(o1) = 2?51 and oy with label fy(02) = (t1...ts)%%1.

If the difference between p$ and (cfz;)? is not very short, and u§ is shorter
than the non-cancelled part of (c}2;)?, then there is no interval § with f(8) # f(o)
such that fy/(d) and fa(0o) end with ug, and we can split o into two parts using
Ty, T5 and splitting puy.

We have considered all possible cases. ([l

Denote the resulting cut equation by

COROLLARY 7.10. The intervals of I_I’K1 are labelled by elements u®%1, where
forn=1

1
—z
'U/E{Z»“ Tiy Yiy HC , L1 Hct ta}
t=m
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formn =2

1 m 1
Zg —z z -1 j:l
u € {Zia Tiy Yis HCS‘, Y171 H Cy t7 Y1y, Hcttxl H ct Hct Zq 5
t=m t=1 t=m
m m 1 1
Hcftacflxgxl, Hcftxflxgxl H e xflxgxl H e 7ty xaxq H [
t=1 t=1 t=m t=m t=m

-1
Xy T2, 372131}7

and for n > 3,
3 1
Zs —zt
u e {Zia Tiy Yi, Cs s Y171 H Ct HC Ty 1‘2 sy YrZy, T1 H Cy
t=m t=m

11 11— —1 1
Yr—2T,. 1Ty Yr—2Tp_1, xr71xr y Yr—1Zp , T <Ny Ty 1 TnTn—1,

—1 —1 —1 +1 —1
Yn—2Tp 1TnTn-1Yp_2, Yn—2T, 1Ty 5, Tjp_1Tn, TnTn—1,
—1 —1 —1 -1, —1
Yn—1Ty Tn-1Yp_9s Yn-1Ty »Yr—1T, Yy }-

PROOF. Direct inspection from Lemma 7.9. U

Below we suppose n > 0. We still want to reduce the variety of possible labels
of intervals in H/Kl. We cannot apply 11, 1o to some of the intervals labelled by
z?%1 2 € X U E(m,n), because there are some cases when x®%1 is completely
cancelled in y?<1, x,y € (X U E(m,n))*L.

We will change the basis of F(X UCg), and then apply transformations Ty, Ts
to the labels written in the new basis. Replace, first, the basis (X U Cg) by a new
basis X U Cg obtained by replacing each variable z, by u, = xsys__ll for s > 1, and
replacing z; by u; = zic,*™.

Consider the case n > 3. Then the labels of the intervals will be rewritten as
u®x1 | where

zj -1 -1 —1
S {Zza UilYi—1, Yi, Hcs , Y1ul H C Touy Ty ug
Jj=n—1

-1, -1, -1 2. )
YrUrYr—1, Ur, U’r—lyr—lur sy UrYr—1Ur—1Yr—2, U2Y1U71 H Cj Ja r< n;
j=n—1

—1 —1 —1 —1
Yn—oUp_1UnYn—1Un—1Yn—2, Uy _1UnYn—1Un—1, Up_1UnYn—1,

-1, -1 -1 -1, -1 —1
Up_1Yp—1Up 5 Yp—oUp _1UnYn—1, UnYn—1Un—1Yn—2, U, Un—1, un} .

In the cases n = 1,2 some of the labels above do not appear, some coincide.
Notice, that 225 = u$% oy®™,, and that the first letter of 5>, is not cancelled in the
products (Yn_12Zn_19, "5)?%, (Yn_17n_1)?* (see Lemma 4.8). Therefore, applying
transformations similar to 77 and T to the cut equation H’K1 with labels written
in the basis X, we can split all the intervals with labels containing (u,y,_1)?%
into two parts and obtain a cut equation with the same properties and intervals
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labelled by u?%1, where

k2 -1, -1 -1
UG{ZZ, WUilYi—1, Yiy HCS , Y1ur H C ) ul yl U2 9

Jj=n—1
1

-1, -1, -1 —Zj .
YrUrYr—1,Ury, Up_1Yp_1Up s UrYr—1Ur—1Yr—2, U2Y1U] H Cj , T <Ny
j=n—1
-1, -1 —1
Yp_oUp_1Un, Yn—-1Un—1Yn—2, U, _1Un, Yn—1Un—-1, un}

Consider for 7 < n the expression for

o \PK Pm+aitl . —Pmtdi—a
(yiuy) = A7 owip1 0 A, 5"y
o APmai- 2 1

Dm+4i—3 |
ow oyio ATs T omio gt

S

Formula 3.a) from Lemma 4.21 shows that u; ™ is completely cancelled in the

product y¢K ?K This implies that yi ?K owu, —Px
Consider also the product
y:¢K u; -
(Amljrn‘irm a+1 OXiOSﬁ 10, 1A;Z$:£ZL a— 1)
mtdi—at1 m4i— i—1—1Pm+ai— — m+ai—1
(Am}-)+4:r4 g o (xpHH Ty L k) Pt TIPSy 1+11A§1+J§141 )’
where the non-cancelled part is made bold.
Notice that (y,—1u,— 1)¢Kyff (Yr—1up—1)%% o yr 5, because ule is com-

pletely cancelled in the product y¢K Ok

Therefore, we can again apply the transformations similar to T} and 75 and
split the intervals into the ones with labels u®*1, where

1
) . 2. —z; 1 =
u e {287 Yi, Uq, Cs™y YrlUr, YruU1 Cj s Up_1Up = Un,
s j=m-—1

1<i<n, 1<j<m, 1<r<n}

We change the basis again replacing yr, 1 <17 < n by a new variable v, = y,u,,
and replacing y;uq H 7 by v1. Then y®x = v o u; 9%, and y?* = U¢K

¢K
Vo ouy ¢ (if n # 1), Formula 2.¢) shows that u®% = u®, o (u; L u,)?%.

Apply transformations similar to 77 and 75 to the intervals with labels written
in the new basis

Jmlj

X = {2}, i, Vi, Y, Un = Un-1tn, 1 <j<m, 1<i<n, j<m},
and obtain intervals with labels u®%:, where
ue X U{cr}.

Denote the resulting cut equation by Hx, = (&, fg, fi1)- Let a be the correspond-
ing solution of I, with respect to j3. B B B B
Denote by Mgiqe the set of long variables in Il , then M = Muyeryshort U Meide-
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Define a binary relation ~jep on Midle as follows. For pui,p) € Msﬁe put

p1 ~efe p1y if and only if there exist two intervals 0,0’ € E with fg(0) = fx (o)
such that

fi(o) = ppa - pry frip(o’) = pyps - gy
and either pi, = pl, or pr, ptl, € Myeryshort- Observe that if pg ~iege 1) then

#1:#/1/\1"'/\t

for some A1,..., \; € M\iiyshort. Notice, that p ~eee p-
Similarly, we define a binary relation ~yign, on M. For p,,ul, € Mi} put

Hr ~right tr. if and only if there exist two intervals 0,0’ € E with fg(0) = fx(o')
such that

fu(o) = papa - py  fir(o’) = phpy -
and either 11 = pj or p1, ) € Myeryshors. Again, if f, ~yigne ). then

My = )\1 )\t,u;/
for some Aq,..., A\, € ME!

veryshort*
Denote by ~ the transitive closure of

{0 pt") |t ~ree 1 UL (s 1) | e ~vigne /2O { (™) | o € Mg}

Clearly, ~ is an equivalence relation on M. Sﬂf(}c. Moreover, u ~ ' if and only if there
exists a sequence of variables

(43) ,LL:,U,(),Ml,...,,LLk:,U/

from Msj.fdle such that either p;—1 = p;, or pi—1 = ui_l, Or [i—1 ~left [i, O
Mi—1 ~right H; for ¢ = 1,... k. Observe that if ;1 and p; from (43) are side
variables of “different sides” (one is on the left, and the other is on the right) then
i = u;_ll. This implies that replacing in the sequence (43) some elements u; with
their inverses one can get a new sequence

(44) =, v, = (1)°

for some € € {1,—1} where v;_; ~ v; and all the variables v; are of the same side.
It follows that if u is a left-side variable and p ~ u’ then

(45) (1) =pA-- N

for some \; € M=E!

veryshort*

It follows from (45) that for a variable v € ]\Zfsfdle all variables from the equiva-
lence class [v] of v can be expressed via v and very short variables from Myeryshort -
So if we fix a system of representatives R of M Sﬂc relative to ~ then all other vari-
ables from Mgqe can be expressed as in (45) via variables from R and very short
variables.

This allows one to introduce a new transformation 75 of cut equations. Namely,
if a set of representatives R is fixed then using (45) replace every variable v in
every word fpr(o) of a cut equation II by its expression via the corresponding
representative variable from R and a product of very short variables.

Now we repeatedly apply the transformation T35 till the equivalence relations
~ert and ~rignt become trivial. This process stops in finitely many steps since the
non-trivial relations decrease the number of side variables.

Denote the resulting equation again by I, .
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Now we introduce an equivalence relation on partitions of Ilx,. Two partitions
fu(o) and fr(9) are equivalent (fas(o) ~ far(0)) if fx (o) = fx(6) and either the
left side variables or the right side variables of fy(0) and fa(0) are equivalent.
Observe, that fx (o) = fx(0) implies fas(0)® = far(6)®, so in this case the parti-
tions far(o) and fas(6) cannot begin with g and p~! correspondingly. It follows
that if fas(o) ~ far(9) then the left side variables and, correspondingly, the right
side variables of fys(0) and fys(9) (if they exist) are equal. Therefore, the relation
~ is, indeed, an equivalence relation on the set of partitions of T, .

If an equivalence class of partitions contains two distinct elements fas (o) and
far(8) then the equality

fu(0)® = far ()"
implies the corresponding equation on the variables Mveryshom which is obtained by
deleting all side variables (which are equal) from fp;(o) and fas(d) and equalizing
the resulting words in very short variables.

Denote by A(Mveryshort) =1 this system.

Now we describe a transformation Ty. Fix a set of representatives R, of parti-
tions of I, with respect to the equivalence relation ~.

Let t be an element in the set

{2100y Zim, C UL, V1, ey Wiy Uy e ooy Uy Yn )
where n > 0.

For the class of equivalent partitions we take as representative an interval o
with far(0) = fese - - - fright and fx (o) = tx, and the shortest fuigne and fueg in
the equivalence class. To obtain such a partition, we can take an interval with
the shortest left side variable, and cut the right side variable if needed introducing
formally a new short variable.

Below we say that u® almost contains v if u® contains a subword c;ufcy for
some cy,cp € Cg.

Principal variables A long variable pief; O firight for the interval o which
represents a class of equivalent partitions is called principal in o in the following
cases.

1) t = u; (i #n). We computed z;y;—1 in Lemma 4.21. Therefore

U?Kl :A*—Q4+1 Ky —PK, _*Q1¢K2

Kot+m+4ili+1 Yi z;
-1
—PKy %qo *(—gq2+1) Pry —q1dK, P *qo
(mi AK2+m+4i—4AK2+m+4i—2i L; AK2+m+4i—4'

A right variable piyign is principal if Pyight almost contains a cyclically reduced
part of

—YKy 4xqof3 #(—qe+1)B VK, —a19K,\?
(xi 2A1g3+m+4i—4‘4m+4§72 (A 2)
*3 — -1 —
= (x;'zlllz')7’b‘t(2 (AK2+m+4i—1) Wy, ", ql)wKza
q > 2. If pigne is not principal, then pueg is principal.

2) t =wv; (i #n). Formula 3.a) from Lemma 4.21 gives

Pr1 _ gx(—qatl) PKy 4*(—qo0) 1Pk, Ky 4#(g2—1) %—1

U = AR, fmdiTirt Ak amaaiaTi Vi AR rmiaio2 Ak tmdi-ao

if i # 1, and

dry _ px(—qatl) PKry 4x(—qo) | D1PKy PKy 4x(q2—1) 1 —zj
U1 *AK2+m+4=T2 AK2+2m:C1 Y1 AK2+m+1x1Hj:ncj )
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ifi=1.
A side variable fiyight Or puest is principal if u?ight (correspondingly, it ) almost
contains (Ai2+m+4i)_q, q>2.

3) t = U,. Formula 3.c) from Lemma 4.21 gives aps = Kotmtdn—8

—g2+1 -1 _—q1\PK, A*90 qs K, A*%6—1 x—1
AK2+m+4n76(yn71mn ) 1AKngm,Jr4n78(‘wn yn) 1"41(24»m+47172AI(2JrrnJrélnféL'

A side variable fiyight OF ftier, is principal if Hright (correspondingly, ufe, ) almost

contains (A’?(2+m+4n,2)qa q>2.

4) t = yn. A side variable piright Or ey is principal if Hright (pftg) almost

contains (A%2+m+4n_1)q, 29 > pg, — 2.

5)t ==z, j=1,...,m—1. A side variable iy Or firight is principal if Pyight
(correspondingly, pufig) almost contains (Agé i j) , |lg| > 2. Both left and right side

variables can be principal.

If t = 2y, pefs is principal if it is not very short, otherwise fiyign; is principal.

Therefore puigne is principal only if pgi,p,, = )\O‘zf:f{lﬁ for a very short A.

-1 _ *—pm+1 oK *Dim,
6) t = 2, cnzm. Then tP51 = Ay AR

A side variable puigne is principal if p,,, almost contains (A%g +m) , gl > 2

and it is not a principal variable for some interval with the label zflKl. A side
variable fuer; is principal if g, almost contains (A%i2 +m)> gl > 2 and it is not

a principal variable for some interval with the label z;iKl Therefore, both side

variables can be principal. There is also one case, when both are not principal. In

oK, B PK, B
1 1 )\(11

this case pgign, = A%2m ' for a very short A and pjgg = zm for a very short

1

A, and the side variables are expressed in terms of zf,b,K and very short variables.

CLAIM 18. FEvery partition has at least one principal variable, unless this par-
tition is of that particular type from Case 6).

CrAam 19. If both side variables of a partition of g, are non-principal, then
they are non-principal in every partition of Ik, .

CrLAM 20. Let n # 0. Then a side variable can be principal only in one class
of equivalent partitions.

PRrROOF. Follows from the definition of principal variables. O

For the cut equation Ilx, we construct a finite graph I' = (V, E). Every vertex
from V' is marked by variables from M:.ﬁile and letters from the alphabet {P, N}.
Every edge from E is colored either as red or blue. The graph I' is constructed
as follows. Every partition fas(o) = py --- s of g, gives two vertices Vo lefs and
Vo right into I', so

V= U{Ua,lefta Uo,right}~
o

We mark v, 1ot by p11 and vg right by pi. Now we mark the vertex v, 10¢ by a letter
P or letter N if p; is correspondingly principal or non-principal in ¢. Similarly, we
mark vg right by P or N if py, is principal or non-principal in o.
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For every o the vertices vy jef¢ and ve righe are connected by a red edge. Also,
we connect by a blue edge every pair of vertices which are marked by variables pu, v
provided = v or u = v~!. This describes the graph T.

Below we construct a new graph A which is obtained from I' by deleting some
blue edges according to the following procedure. Let B be a maximal connected
blue component of T', i.e., a connected component of the graph obtained from I' by
deleting all red edges. Notice, that B is a complete graph, so every two vertices in
B are connected by a blue edge. Fix a vertex v in B and consider the star-subgraph
Starp of B generated by all edges adjacent to v. If B contains a vertex marked
by P then we choose v with label P, otherwise v is an arbitrary vertex of B. Now,
replace B in I' by the graph Starp, i.e., delete all edges in B which are not adjacent
to v. Repeat this procedure for every maximal blue component B of I'. Denote the
resulting graph by A.

In the next claim we describe connected components of the graph A.

Cram 21. Let C be a connected component of A. Then one of the following
holds:

(1) there is a vertex in C marked by a variable which does not occur as a
principal variable in any partition of Ik, . In particular, any component
which satisfies one of the following conditions has such a vertex:

a) there is a vertex in C marked by a variable which is a short variable
in some partition of I, .

b) there is a red edge in C' with both endpoints marked by N (it corre-
sponds to a partition described in Case 6 above);

(2) both endpoints of every red edge in C are marked by P. In this case C is
an isolated vertex;

(3) there is a vertex in C marked by a variable ;v and N and if p occurs as a
label of an endpoint of some red edge in C then the other endpoint of this
edge is marked by P.

ProOF. Let C be a connected component of A. Observe first, that if u is a
short variable in I, then u is not principle in ¢ for any interval o from Ilg,, so
there is no vertex in C' marked by both p and P. Also, it follows from Claim 19 that
if there is a red edge e in C with both endpoints marked by N, then the variables
assigned to endpoints of e are non-principle in any interval o of Ilg,. This proves
the part “in particular” of 1).

Now assume that the component C' does not satisfy any of the conditions (1),
(2). We need to show that C' has type (3). It follows that every variable which
occurs as a label of a vertex in C is long and it labels, at least, one vertex in C'
with label P. Moreover, there are non-principle occurrences of variables in C.

We summarize some properties of C' below:

e There are no blue edges in A between vertices with labels N and N (by
construction).

e There are no blue edges between vertices labelled by P and P (Claim 20).

e There are no red edges in C' between vertices labelled by N and N (oth-
erwise 1) would hold).

e Any reduced path in A consists of edges of alternating color (by construc-
tion).
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We claim that C'is a tree. Let p = e; ... ey be a simple loop in C (every vertex
in p has degree 2 and the terminal vertex of ey, is equal to the starting point of eq).

We show first that p does not have red edges with endpoints labelled by P and
P. Indeed, suppose there exists such an edge in p. Taking cyclic permutation of p
we may assume that e; is a red edge with labels P and P. Then ey goes from a
vertex with label P to a vertex with label V. Hence the next red edge e3 goes from
N to P, etc. This shows that every blue edge along p goes from P to N. Hence
the last edge e; which must be blue goes from P to N -contradiction, since all the
labels of e are P.

It follows that both colors of edges and labels of vertices in p alternate. We
may assume now that p starts with a vertex with label V and the first edge e; is
red. It follows that the end point of ey is labelled by N and all blue edges go from
N to P. Let e; be a blue edge from v; to v;41. Then the variable p; assign to
the vertex v; is principal in the partition associated with the red edge e;—; , and
the variable p;41 = uiil associated with v; 1 is a non-principal side variable in the
partition fas(o) associated with the red edge e; 1. Therefore, the the side variable
Wito associated with the end vertex v, is a principal side variable in the partition
far(o) associated with e;y1. It follows from the definition of principal variables
that the length of ugY 5 is much longer than the length of uf, ,, unless the variable
; is described in the Case 1). However, in the letter case the variable p;42 cannot
occur in any other partition fys(J) for § # o. This shows that there no blue edges
in A with endpoints labelled by such p;1o. This implies that v;;2 has degree one in
A - contradiction wit the choice of p. This shows that there are no vertices labelled
by such variables described in Case 1). Notice also, that the length of variables
(under «) is preserved along blue edges: |u$, | = |(uF1)*| = |u$|. Therefore,

|| = it < lpdyol
for every i.

It follows that going along p the length of || increases, so p cannot be a loop.
This implies that C' is a tree.

Now we are ready to show that the component C has type (21). Let u; be a
variable assigned to some vertex v; in C' with label N. If y; satisfies the condition
(21) then we are done. Otherwise, p; occurs as a label of one of P-endpoints, say
vg of a red edge es in C such that the other endpoint of es, say vs is non-principal.
Let ug be the label of vs. Thus vy is connected to ve by a blue edge and vy is
connected to vs by a red edge. If u3z does not satisfy the condition (21) then we
can repeat the process (with u3 in place of u1). The graph C is finite, so in finitely
many steps either we will find a variable that satisfies (21) or we will construct a
closed reduced path in C. Since C is a tree the latter does not happen, therefore
C satisfies (21), as required.

O

Cram 22. The graph A is a forest, i.e., it is union of trees.

PRrROOF. Let C be a connected component of A. If C has type (3) then it is
a tree, as has been shown in Claim 21 If C' of the type (2) then by Claim 21 C is
an isolated vertex — hence a tree. If C' is of the type (1) then C is a tree because
each interval corresponding to this component has exactly one principal variable,
and the same long variable cannot be principal in two different intervals. Although
the same argument as in (3) also works here.
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]

Now we define the sets Mygeless; Mpee and assign values to variables from
M = Myseless U Mfree U Myeryshort- To do this we use the structure of connected
components of A. Observe first, that all occurrences of a given variable from Mgjes
are located in the same connected component.

Denote by Mt subset of M which consists of variables of the following types:

(1) variables which do not occur as principal in any partition of (I, );

(2) one (but not the other) of the variables u and v if they are both principal

side variables of a partition of the type (21) and such that v # u~1.

Denote by Museless = Mside — Mivee-
CLAIM 23. For every ji € Myseless there exists a word
V, € FIX U Mpree U Myeryshort]
such that for every map Qpee : Miee — F, and every solution

(67 F[Mveryshort] — F
of the system A(Mverysho,.t) =1 the map o : F[M] — F defined by

uaﬁ'ee Zf 12 S ]\:41“1"667'

Ma — /_LO‘S Z.f,u € Mveryshort;
[/ 8 N fQfree )\ s ) ]
VM (X ’Mfr(ie ’Mveryshort> qu € MuseleSS'

is a group solution of I, with respect to 3.

PrROOF. The claim follows from Claims 21 and 22. Indeed, take as values of
short variables an arbitrary solution «; of the system A(Mveryshort) = 1. This sys-
tem is obviously consistent, and we fix its solution. Consider connected components
of type (1) in Claim 21. If p is a principal variable for some ¢ in such a component,
we express p® in terms of values of very short variables ]\vaeryshort and elements
t¥x1, t € X that correspond to labels of the intervals. This expression does not
depend on «y, B and tuples g, p*. For connected components of A of types (2) and
(3) we express values u® for p € Mygseless in terms of values v¥, v € My and ¥
corresponding to the labels of the intervals. (I

~ We can now finish the proof of Proposition 7.8. Observe, that Myeryshort <
Myeryshort- If A is an additional very short variable from My, ... that appears

when transformation T3 or 75 is performed, A* can be expressed in terms Mg - 4.
Also, if a variable A belongs to Moo and does not belong to M, then there exists
a variable y € M, such that u® = u¥%1 \*, where u € F(X,Cs), and we can place
@ into Mee.

Observe, that the argument above is based only on the tuple p, it does not
depend on the tuples p* and g. Hence the words V,, do not depend on p* and g.

The Proposition is proved for n # 0. If n = 0, partitions of the intervals

with labels zf’_“l and 22%1 can have equivalent principal right variables, but in this
case the left variables will be different and do not appear in other non-equivalent
partitions. The connected component of A containing these partitions will have

only four vertices one blue edge.
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In the case n = 0 we transform equation Ilg, applying transformation 77 to
the form when the intervals are labelled by u®%1, where

u € {21, ey Zm, cZ":ll,zmc;z_"’i_l} )
If et is very short for the interval § labelled by (z,c,, "™ )?K1 . we can apply
_0m
Ts to 6, and split it into intervals with labels zn, ' and cmzj"i_l. Indeed, even if we

had to replace fiight by the product of two variables, the first of them would be
very short.
If pee is not very short for the interval ¢ labelled by

—Zm—1 o OKy p¥Pm—_1—1
(ZmCon )50 = Cnzm AT,

we do not split the interval, and pery will be considered as the principal variable

for it. If pest is not very short for the interval ¢ labelled by zﬁfl = zf,fz APt it
is a principal variable, otherwise piight is principal.
_ PK
If an interval 4 is labelled by (c:m)#x1 = A% Pmo1itlemzn™ 5ot e con-

*Pm—2

P =2)8 and the difference is not

YK
sider fiyight principal if Hright ends with (c*m 2 A
very short. If up; is almost z;ﬁ’“'@ and Pyight 18 almost z?+?, we do not call any of

the side variables principal. In all other cases st is principal.
Definition of the principal variable in the interval with label zf B
2 is the same as in 5) for n # 0.
A variable can be principal only in one class of equivalent partitions. All the

rest of the proof is the same as for n > 0.

yi=1,...,m—

O

Now we continue the proof of Theorem A. Let L = 2K + x(I1)4K and
H¢:HL—>HL,1 — .. T .

be the sequence of I'-cut equations (42). For a I'-cut equation II; from (42) by M;
and o; we denote the corresponding set of variables and the solution relative to (.
By Claim 10 in the sequence (42) either there is 3K-stabilization at K (r + 2)
or Comp(Ilg(r41)) = 0.
Case 1. Suppose there is 3K -stabilization at K (r 4 2) in the sequence (42).
By Proposition 7.8 the set of variables M (,41) of the cut equation Ilg (. 1)
can be partitioned into three subsets

MK(rJrl) = Mveryshort U Miree U Myseless

such that there exists a finite consistent system of equations A(Myeryshort) = 1
over F' and words V,, € F[X, Mtee, Myeryshort), Where f1 € Mygeless, such that for
every solution § € B, for every map Qsee : Mfree — F', and every solution agport :
F[Myeryshort] — F' of the system A(Myeryshort) = 1 the map ag 41y : F[M] — F
defined by

[iCivee if 1 € Mpee
MOLK(NA) = purehort if ue Mveryshort
4 Qfree os ;
VH (X ’ Mfree ’ Mveryshort) if K e Museless

is a group solution of g ,.41) with respect to 3. Moreover, the words V,, do not
depend on tuples p* and gq.
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By Claim 3 if IT = (&, fx, fa) is a -cut equation and p € M then there exists
a word M, (Mpm), X) in the free group F[Mypy U X] such that

8
pem =M, (M?(Tﬁ?’,X“ﬁK“*“)

where arr and ap(rr) are the corresponding solutions of II and T'(II) relative to 3.
Now, going along the sequence (42) from Il (1 1) back to the cut equation ITg,
and using repeatedly the remark above for each p € M we obtain a word
M/u,L(MK(rJrl)a X¢K(1v+1)) = M/M7L(Museless; Mfreea Mveryshorta X¢K(T+1))
such that
= M (M (5), X)),
Let 0 = ¢k (r4+1) € B and put

Mu L(X¢K(r+1))
= M/H L(VM (X¢K(r+1) , Mafree Mashm-t ), M(Xfree Masho'r't X¢K(T+1)).

free 7 “"“veryshort free ’ “"“veryshort’
Then for every u € My,
ILLQL _ Mﬂ L(X¢K(r+1))/8
If we denote by M (X) a tuple of words

ML(X) - (MMLL(X)7 ce ’MM\MLML(X)%
where g1, ..., par, | is some fixed ordering of My, then
My = ML(X¢K(T+1))ﬁ.

Observe, that the words M,, 1,(X), hence My (X) (where X?xt+ is replaced by
X) are the same for every ¢r, € B 4.

It follows from property c) of the cut equation Il that the solution «y, of II,
with respect to 3 gives rise to a group solution of the original cut equation II, with
respect to ¢, o 3.

Now, property c) of the initial cut equation Il = (&, fx, far, ) insures that for
every ¢r, € B, the pair (U, 3, Vg, ) defined by

Upp = QM) = Q(Mp(XPxe+0))5,

Voop = P(Mp*) = P(Mp(X?xei0))P,
is a solution of the systemS(X) =1AT(X,Y) = 1.
We claim that
Y(X) = P(My (X))
is a solution of the equation T'(X,Y’) = 1 in Fg(g). By Theorem 5.3 B, 45 is a
discriminating family of solutions for the group Fg(s). Since

T(X,Y(X))? = T(X?, Y (X)) = T(X?", M1(X?")) = T(Us,p, Vior.6) = 1

for any ¢ € B, 4,3 we deduce that T'(X,Y, (X)) = 1 in Fgg).

Now we need to show that T(X,Y) = 1 admits a complete S-lift. Let W (X,Y) #£
1 be an inequality such that T(X,Y) = 1 A W(X,Y) # 1 is compatible with
S(X) = 1. In this event, one may assume (repeating the argument from the begin-
ning of this section) that the set

A={(Uy,Vyp) [ € Lo}
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is such that every pair (Uy, Vi;) € A satisfies the formula T'(X,Y) = IAW(X,Y) #
1. In this case, W(X, Y} 4(X)) # 1 in Fg(g), because its image in F' is non-trivial:

W(Xv YP>Q(X))¢ﬂ = W(UTZM Vd)) # 1.

Hence T(X,Y) = 1 admits a complete lift into generic point of S(X) = 1.

Case 2. A similar argument applies when Comp(Ilk (,42)) = 0. Indeed, in this
case for every o € Ex(r12) the word fary ., ,, (o) has length one, so far, ., (o) = p
for some p € M (y42). Now one can replace the word V,, € F[X U Mpee U Myeryshort]
by the label fx, ., (o) where far,,,, (o) = p and then repeat the argument.

(Il

8. Implicit function theorem for NTQ systems

In this section we prove Theorems B, C, D from Introduction.

We begin with the proof of Theorem B. To this end let U(X,A) = 1 be a
regular NTQ-system and V(X,Y, A) = 1 an equation compatible with U = 1. We
need to show that V(X,Y, A) = 1 admits a complete effective U-lift.

We use induction on the number n of levels in the system U = 1. We construct
a solution tree Ty (V(X,Y, A) AU(X,Y)) with parameters X = X; U---U X,,. In

the terminal vertices of the tree there are generalized equations €, , ..., {},, which
are equivalent to cut equations II,,, ..., IL,, .
If S1(X4,...,X,) =1 is an empty equation, we can take Merzljakov’s words

(see Introduction ) as values of variables from X7, express Y as functions in X; and
a solution of some W (Y7, Xo, ..., X,,) = 1 such that for any solution of the system

SQ(X27"'3XTL>A) =1

|
—_

Sn(Xn, A)

equation W =1 has a solution.
Suppose, now that S1(Xi,...,X,) = 1 is a regular quadratic equation. Let
I be a basic sequence of automorphisms for the equation S1(Xy,...,X,,A4) = 1.
Recall that
] P
QSj,p = ’Yj‘)] e '7?1 :Pja
where j € N, T'; = (v1,...,7;) is the initial subsequence of length j of the sequence
) and p = (p1,...,p;) € N. Denote by 1;, the following solution of
Si(X1) =1
Vip = 0jp®,
where « is a composition of a solution of S; = 1 in G5 and a solution from a generic
family of solutions of the system

So(Xo,. o, Xp, A) = 1

Sn(Xn,A) = 1
in F(A). We can always suppose that « satisfies a small cancellation condition with

respect to T'.
Set

®={¢jp|jeNpeN}
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and let £ be an infinite subset of ®* satisfying one of the cut equations above.
Without loss of generality we can suppose it satisfies II;. By Proposition 7.8
we can express variables from Y as functions of the set of I'-words in X7, coef-
ficients, variables Mg and variables Mieryshort, satisfying the system of equations
A(Myeryshort) The system A(Myeryshort) can be turned into a generalized equation
with parameters X, U ---U X, such that for any solution of the system

So(Xa,... Xp, A) = 1

Sp(Xn, A) = 1

the system A(Myeryshort) has a solution. Therefore, by induction, variables
(Myeryshort) can be found as elements of Go, and variables Y as elements of G.
Theorem B is proved. t

In order to prove Theorem C we need some auxiliary results.

LEMMA 8.1. All stabilizing automorphisms (see [9]) of the left side of the equa-
tion

(46) e (crer) =1

have the form z{ = ¢z (2, 20 = e'za(cc22)™. All stabilizing automor-
phisms of the left side of the equation

(47) 22 (a®c)"t =1

:E2C2)n

have the form z® = x , 2% = cFz(x2c*)™. All stabilizing automorphisms of the

left side of the equation
(48) aizj(afa3) ' =1
have the form x‘f = (ml(xlxg)m)(f”?wg)"7 :pg’ = ((xle)*mxz)(ﬁw%)".

PROOF. The computation of the automorphisms can be done by software “Mag-
nus”. The statement of the lemma also follows from the fact that punctured surfaces
corresponding to QH subgroups corresponding to these equations (see [16], Sec-
tion 5) do not contain two intersecting simple closed curves that are not boundary-
parallel. Therefore if G is a freely indecomposable finitely generated fully residually
free group that has a QH subgroup @ corresponding to one of these equations, then
G does not have two intersecting cyclic splittings with edge groups conjugated into

Q. O

If a quadratic equation S(X) = 1 has only commutative solutions then the
radical R(S) of S(X) can be described (up to a linear change of variables) as
follows (see [12]):

Rad(S) = ncl{[x;, x;], [x;,b],| 4,7 =1,...,k},

where b is an element (perhaps, trivial) from F. Observe, that if b is not trivial
then b is not a proper power in F. This shows that S(X) = 1 is equivalent to the
system

(49) Ueom(X) = {[zi,z;] =1, [x;,0] =1,] i,5=1,...,k}.

The system Ugom(X) = 1 is equivalent to a single equation, which we also denote
by Ucom(X) = 1. The coordinate group H = Fgy,,,,) of the system Ueom = 1, as
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well as of the corresponding equation, is F-isomorphic to the free extension of the
centralizer Cp(b) of rank n. We need the following notation to deal with H. For a
set X and b € F by A(X) and A(X,b) we denote free abelian groups with basis X
and X U {b}, correspondingly. Now, H ~ F %, A(X,b). In particular, in the case
when b =1 we have H = F' x A(X).

LEMMA 8.2. Let F = F(A) be a non-abelian free group and V(X,Y,A) = 1,
W(X,Y,A) =1 be equations over F. If a formula

® =VX (Ueom(X) =1 — Y (V(X,Y,A) = LAW(X,Y, A) # 1))

is true in F then there exists a finite number of extensions ¢r on H of (b)-
embeddings A(X,b) — A(X,b) (k € K) such that:

(1) every formula
Oy =Y (V(X Y,A) = 1AW (XY, A) #1)

holds in the coordinate group H = F #p—p, A(X,D);
(2) for any solution \ : H — F there exists a solution \* : H — F such that
A = A" for some k € K.

PROOF. We construct a set of initial parameterized generalized equations
GE(S) ={D,...,0:}

for V(X,Y, A) = 1 with respect to the set of parameters X. For each 2 € GE(S),
in [16, Section 8], we constructed the finite tree Ty (§2) with respect to parameters
X. Observe, that non-active part [jy,, pv,] in the root equation Q,, of the tree
Ts01(Q) is partitioned into a disjoint union of closed sections corresponding to X-
bases and constant bases (this follows from the construction of the initial equations
in the set GE(S)). We label every closed section o corresponding to a variable
x € X*! by x, and every constant section corresponding to a constant a by a. Due
to our construction of the tree T, (£2) moving along a brunch B from the initial
vertex vy to a terminal vertex v we transfer all the bases from the non-parametric
part into parametric part until, eventually, in €, the whole interval consists of
the parametric part. For a terminal vertex v in T,1(€2) equation 2, is periodized
(see Section 5.4). We can consider the correspondent periodic structure P and
the subgroup Z,. Denote the cycles generating this subgroup by z1,...,zm. Let
x; = b¥ and z; = b%. All z;’s are cycles, therefore the corresponding system of
equations can be written as a system of linear equations with integer coefficients in

variables {ki,...,k,} and variables {s1,..., s} :
(50) kizzaijsj-l-,@i,i:l,...,n.
j=1

We can always suppose m < n and at least for one equation {2, m = n, because
otherwise the solution set of the irreducible system U.om = 1 would be represented
as a union of a finite number of proper subvarieties.

We will show now that all the tuples (kq,..., k) that correspond to some
system (50) with m < n (the dimension of the subgroup H, generated by k — 3 =
k1 —p1,...,kn — By, in this case is less than n), appear also in the union of systems
(50) with m = n. Such systems have form k — 3, € H,, q runs through some finite
set @), and where H, is a subgroup of finite index in Z™ = (s1) x -+ X (s,). We
use induction on n. If for some terminal vertex v, the system (50) has m < n,
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we can suppose without loss of generality that the set of tuples H satisfying this
system is defined by the equations k. = ..., k, = 0. Consider just the case k, = 0.
We will show that all the tuples kg = (ki,...,kn_1,0) appear in the systems (50)
constructed for the other terminal vertices with n = m. First, if N, is the index of
the subgroup Hy, qu_c € H, for each tuple k. Let N be the least common multiple
of N1,...,Ng. If a tuple (ki,...,k,_1,tN) for some t belongs to 3, + H, for some
q, then (ky,...,k,—1,0) € B, + Hy, because (0,...,0,tN) € H,. Consider the set
K of all tuples (ki,...,kn_1,0) such that (ki,...,k,_1,tN) & B, + H, for any
g=1,...,Qand t € Z . The set {(k1,...,kn—1,tN) | (k1,...,kn-1,0) € K,t € Z}
cannot be a discriminating set for Ugomm = 1. Therefore it satisfies some proper
equation. Changing variables ki, ..., k,_1 we can suppose that for an irreducible
component the equation has form k,,_; = 0. The contradiction arises from the fact
that we cannot obtain a discriminating set for Ucomm = 1 which does not belong to
Bq—i—Hq forany ¢ =1,...,Q.

Embeddings ¢, are given by the systems (50) with n = m for generalized
equations €2, for all terminal vertices v. O

Below we describe two useful constructions. The first one is a normalization
construction which allows one to rewrite effectively an NTQ-system U(X) = 1 into
a normalized NTQ-system U* = 1. Suppose we have an NTQ-system U(X) = 1
together with a fundamental sequence of solutions which we denote V' (U).

Starting from the bottom we replace each non-regular quadratic equation S; = 1
which has a non-commutative solution by a system of equations effectively con-
structed as follows.

1) If S; = 1 is in the form

e = e,
where [c1, c2] # 1, then we replace it by a system
{zi1 = z1c123, Tiz = 2caz3, [21,01] = 1, [20,c0] = 1, [23,c100] = 1}

2) If S; =1 is in the form
z? "2 = a’c,
where [a, ] # 1, we replace it by a system

{zi = 0™, @i = 2921, [20,d] = 1, [21,0°¢] = 1}
3) If S; =1 is in the form
2 2 2 2
Ti1lip = A103
then we replace it by the system
{1 = (0121)7, wio = (21 "a2)™, [z1,0102] = 1, [22,a3a3] = 1}.

The normalization construction effectively provides an NTQ-system U* = 1
such that each solution in V/(U) can be obtained from a solution of U* = 1. We
refer to this system as to the normalized system of U corresponding to V(U).
Similarly, the coordinate group of the normalized system is called the normalized
coordinate group of U = 1.

LEMMA 8.3. Let U(X) =1 be an NTQ-system, and U* =1 be the normalized
system corresponding to the fundamental sequence V(U). Then the following holds:
(1) The coordinate group Fry canonically embeds into Fry«y;
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(2) The system U* =1 is an NTQ-system of the type

S1(X1, Xo,. o, X, A) = 1
So(Xa,. ., X, A) = 1
Sp(Xp, A) = 1

in which every S; = 1 is either a regular quadratic equation or an empty
equation or a system of the type

Ucom(X7 b){[xl,x]] = 1, [l'“b} =1 ‘ Z,j = ].,. . ,k}

where b € Giy1.
(3) Ewvery solution Xo of U(X) = 1 that belongs to the fundamental sequence
V(U) can be obtained from a solution of the system U* = 1.

PROOF. Statement (1) follows from the normal forms of elements in free con-
structions or from the fact that applying standard automorphisms ¢; to a non-
commuting solution (in particular, to a basic one) one obtains a discriminating
set of solutions (see Section 7.2). Statements (2) and (3) are obvious from the
normalization construction. (]

DEFINITION 8.4. A family of solutions ¥ of a regular NTQ-system U(X, A) =1
is called generic if for any equation V(X,Y, A) = 1 the following is true: if for any
solution from W there exists a solution of V(X¥,Y, A) = 1, then V = 1 admits a
complete U-lift.

A family of solutions © of a regular quadratic equation S(X) = 1 over a group
G is called generic if for any equation V(X,Y, A) = 1 with coefficients in G the
following is true: if for any solution # € © there exists a solution of V(X% Y, A) = 1
in G, then V' =1 admits a complete S-lift.

A family of solutions ¥ of an NTQ-system U(X,A) = 1 is called generic if
U = U,...¥,, where U; is a generic family of solutions of S; = 1 over G;4; if
S; = 1 is a regular quadratic system, and ¥; is a discriminating family for S; = 1
if it is a system of the type Ucom-

The second construction is a correcting extension of centralizers of a normalized
NTQ-system U(X) = 1 relative to an equation W(X,Y, A) = 1, where Y is a tuple
of new variables. Let U(X) = 1 be an NTQ-system in the normalized form:

S1(Xy,Xo, ..., X, A) = 1
So(Xa,..., Xn, A) = 1
Sn(Xn,A) = L

So every S; = 1 is either a regular quadratic equation or an empty equation or a
system of the type

Ucom(X,b) = {[mi,xj] = 1,[.1%‘,[)] = 1,| i,j = 1,...,k}

where b € G;41. Again, starting from the bottom we find the first equation S;(X;) =
1 which is in the form Ugm, (X) = 1 and replace it with a new centralizer extending
system Ucom(X) = 1 as follows.
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We construct Ty, for the system W(X,Y) = 1 AU(X) = 1 with parame-
ters X;,...,X,. We obtain generalized equations corresponding to final vertices.
Each of them consists of a periodic structure on X; and generalized equation on
Xi41...X,. We can suppose that for the periodic structure the set of cycles
C® is empty. Some of the generalized equations have a solution over the ex-
tension of the group G;. This extension is given by the relations Ucom(XZ-) =
1,8i+1(Xix1,-- -, Xn) = 1,...,5,(X,) = 1, so that there is an embedding ¢y, :
A(X,b) — A(X,b). The others provide a proper (abelian) equation E;(X;) = 1
on X;. The argument above shows that replacing each centralizer extending sys-
tem S;(X;) = 1 which is in the form Ueom(X;) = 1 by a new system of the type
Ucom(Xi) = 1 we eventually rewrite the system U(X) = 1 into finitely many new
ones U1(X) =1,...,U,,(X) = 1. We denote this set of NTQ-systems by Cy (U).
For every NTQ-system U,,(X) = 1 € Cw(U) the embeddings ¢, described above
give rise to embeddings ¢ : F r(U) — Freo)- Finally, combining normalization and
correcting extension of centralizers (relative to W = 1) starting with an NTQ-
system U = 1 and a fundamental sequence of its solutions V(U) we can obtain a
finite set

NCw (U) =Cw(U")
which comes equipped with a finite set of embeddings ¢; : Frw) — Fg(g,) for each
U; € NCw(U). These embeddings are called correcting normalizing embeddings.
The construction implies the following result.

THEOREM 8.5. Let U(X,A) = 1 be an NTQ-system with a fundamental se-

quence of solutions Viuna(U). If a formula
d=VYX({UX)=1—IVW(X,Y,A) =1 AW(X,Y,A) £ 1)
is true in F. Then for every U; € NCw (U) the formula
Yy (W (X% Y, A) =1 AW (X%,Y, A) #1)
is true in the group Fp g,y for every correcting normalizing embedding
i : Fraw) — Fro,)-
Furthermore, for every fundamental solution ¢ : Fry — F there exists a

fundamental solution v of one of the systems U; = 1, where U; € NCw(U) such
that ¢ = ;1.

COROLLARY 8.6. Theorem C holds.

Now we are ready to prove Theorem D.

PROOF OF THEOREM D. By [16, Theorem 11.1] for a finite system of equations
U = 1 over F one can effectively find NTQ systems U; = 1, i = 1,...,k and
homomorphisms ¢; : Fr) — Fgr,) such that for every solution ¢ of U = 1
there exists ¢ such that ¢ = 0;4, where ¥ € Viyna(U;). Now the result follows from
Theorem C. ([l

9. Groups that are elementary equivalent to a free group

In this section we prove Theorem E from the introduction.

Let C (C*) be the class of finite systems U(X) = 1 over F' such that every
equation T'(X,Y) = 1 compatible with U(X) = 1 admits U-lift (complete U-lift).
We showed in Section 2, Lemma 2.9, that these classes are closed under rational
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equivalence. Denote by K the class of the coordinate groups Fg(yy of systems
U(X) = 1 over F such that every equation T'(X,Y) = 1 over F' compatible with
U(X) =1 admits a U-lift. It follows that every finite set of defining relations of a
group from K gives rise to a system from C .

By Theorem B the class K contains the coordinate groups of regular NTQ
systems.

Below, in the case of a coefficient-free system S(X) = 1 we put G.fr(s) =
F(X)/R(S), then Gr(s) = G * G.sRr(s)- In this case the group G.sr(s) can be also
viewed as the coordinate group of V(.S). It is usually clear from the context which
groups is considered in the case of the coefficient-free system.

LEMMA 9.1. The class K is closed under retracts. Namely, if H is a finitely
generated subgroup of G such that there exists a retract ¢ : G — H. Then:

(1) if F < H then H = Fgry for some system U = 1 over F' and every
equation compatible with U = 1 admits a U-lift;

(2) if FNH =1 then H = Fgqyy for some coefficient-free system U = 1
over F and every coefficient-free equation compatible with U = 1 admits
a U-lift into F,zRr(s)-

PRrROOF. We show only (1), but a similar argument proves (2). Let H = (FUX;)
be a finitely generated subgroup of G generated by F' and a finite set X;. Then
H is residually free, so H = Fpr( for some system U(X;) = 1 over F. Since
H is a subgroup of G it follows that X; = P(X) for some word mapping P. If
T(X;1,Y) = 1 is compatible with U(X;) = 1 then T(P(X),Y) = 1 is compatible
with S(X) = 1. Therefore T(P(X),Y) = 1 admits an S-lift, so T(P(X), V(X)) =1
in G for some V(X) € G. It follows that

T(P(X),V(X))? =T(P(X)?,V(X?) = T(P(X),V(X?)) = T(X1,V(X?)) =1
so T(X1,Y) = 1 admits a U-lift. O

COROLLARY 9.2. The class K is closed under free factors. Namely, if G € K
then every factor in a free decomposition of G modulo F belongs to K.

Theorem E. Let F be a free non-abelian group and S(X) = 1 a consistent
system of equations over F. Then the following conditions are equivalent:

(1) The system S(X) =1 is rationally equivalent to a reqular NTQ system.

(2) Ewery equation T(X,Y) = 1 which is compatible with S(X) = 1 over F
admits an S-lift.

(3) Every equation T(X,Y) = 1 which is compatible with S(X) = 1 over F
admits a complete S-lift.

PRrROOF. (1) = (3). It follows from Lemma 2.9 which states that the class C*
is closed under rational equivalence and the fact that C* contains all regular NTQ
systems (Theorem B).

(3) = (2). Obvious.

(2) = (1). Suppose that every equation which is compatible with S = 1 over
F admits an S-lift. Consider G = Fg(g).

LEMMA 9.3. The group G does not have non-cyclic abelian subgroups.
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PROOF. Suppose G has a non-cyclic abelian subgroup, let =,y be two basis
elements in this subgroup. Consider their expressions in generators of G: x = u(X),
y = v(X). Then the system of equations

S1(X,z,y)=(SX)=1Az=uX)Ay=v(X)A[z,y] =1)

is rationally equivalent to S(X) = 1, therefore every system of equations compatible
with S1(X,z,y) = 1 admits an S-lift. The formula

VXVaYyFu(Sy (X, z,y) =1 — (u* = 2 Vu® =y Vu? = zy))

is true in every free group, because in a free group the images of x,y are powers of
the same element. But this formula is false in G. Therefore the system

u? =z Vu? :y\/u2 =2y
does not admit an S-lift. This gives a contradiction to the assumption. O

By Corollary 9.2 we may assume that G is freely indecomposable. There are
two cases to consider, F' < G and F NG = 1. Since the same argument gives a
proof for both of them we consider only one case, say F' < G.

If G does not have a non-degenerate JSJ Z-decomposition [16] then G is either
a surface group, or G is an infinite cyclic group (in the case F NG = 1). In both
cases G is the coordinate group of a regular NTQ system, as required.

Suppose now, that G has a non-degenerate JSJ Z-decomposition of G, say D.
Denote by (X | U) the canonical finite presentation of G as the fundamental group
of the graph of groups D. By Lemma 2.9 the class C, of systems V = 1 over
F for which every compatible equation admits an V-lift, is closed under rational
equivalence. Hence U = 1 belongs to C. Since G'= Fg(y) we may assume from the
beginning that S = U, so G = (X | S) is the canonical finite presentation of G as
the fundamental group of D.

Let Ag be the group of automorphisms (F-automorphisms, in the case F' < G)
of G generated by Dehn’s twists along the edges of D. The group Ag is abelian by
Lemma 2.25 [16]. Recall, that two solutions ¢; and ¢o of the equation R(X) =1
are Ap-equivalent if there is an automorphism o € Ag such that o¢; = ¢o.

Recall, that if A is a group of canonical automorphisms of G then the the
maximal standard quotient of G with respect to A is the quotient G/R4 of G by
the intersection R4 of the kernels of all solutions of S(X) = 1 which are minimal
with respect to A (see [16] for details).

By [16, Theorem 9.1] the maximal standard quotient G/R,4,, of with respect
to the whole group of canonical automorphisms Ap is a proper quotient of G, i.e.,
there exists an equation V(X) = 1 such that V ¢ R(S) and all minimal solution
of S(X) =1 with respect to the canonical group of automorphisms Ap satisfy the
equation V(X) = 1. Now, compare this with the following result.

LEMMA 9.4. The mazimal standard quotient of G with respect to the group Ag
is equal to G, i.e., the set of of minimal solutions with respect to Ag discriminates

G.

PROOF. Suppose, to the contrary, that the standard minimal quotient G/R4,,
of G is a proper quotient of G, i.e., there exists V € G such that V # 1 and V? =1
for any minimal solution of S with respect to Ag. Recall that the group Ag is
generated by Dehn twists along the edges of D. If ¢, is a given generator of the
cyclic subgroup associated with the edge e, then we know how the Dehn twists
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o = o, associated with e acts on the generators from the set X. Namely, if x € X
is a generator of a vertex group, then either ° = x or 2° = ¢ 'xc. Similarly, if
x € X is a stable letter then either 7 = x or % = xc. It follows that for z € X
one has 27" = x or 27 = ¢ "ac" [z°" = xc"] for every n € Z. Now, since the
centralizer of ¢, in G is cyclic (Lemma 9.3) the following equivalence holds:

— -1 — ; o _ .—1 .
El?’l c Z($U — Z) <:’>{ Hy([yvcE] - lAy ZZ?y—Z) lfl’ *ce IL’CQ,

r=z if 279 = .
Similarly, since the group Apg is finitely generated abelian one can write down
a formula which describes the relation

Ja € A (z* = 2)

One can write the elements c. as words in generators X, say ¢, = c.(X). Now the
formula

m
vX3y3z <S(X) =1- </\[yi,ci(X)] =1ANZ=XYAV(Z)= 1))
i=1
holds in the group F. Indeed, this formula tells one that each solution of S(X) =1
is Ag-equivalent to (a minimal) solution that satisfies the equation V(X) = 1.
Since S(X) =1 1is in C the system

m
(/\[ynci(X)] =1NZ=X""ANV(Z) = 1)
i=1
admits an S-lift. Hence there is an automorphism « € Ag such that V(X*) =1 in
G, so V(X) =1 — contradiction. O

LEMMA 9.5. There exist QH subgroups in D.

PrROOF. By Theorem 9.1 [16] the maximal standard quotient G/R4,, of G with
respect to the whole group Ap of the standard automorphisms of G is a proper
quotient of G. Let Fj be the set of edges between non-QH vertex groups. By [16,
Lemma 2.25] the group Ap is a direct product of Ag, and the group generated by
the canonical automorphisms corresponding to QH vertices and abelian non-cyclic
vertex groups. By Lemma 9.3 there are no abelian non-cyclic groups in D, so Ap is
a direct product of Ag, and the group generated by the canonical automorphisms
of QH vertices. Since the maximal standard quotient of G with respect to Ag is
not proper (Lemma 9.4) then Ap # Ag hence (see Section 2.20 in [16]) D has QH
subgroups. (I

Let K = (X2) be the fundamental group of the graph of groups obtained from
D by removing all QH subgroups.

LEMMA 9.6. The natural homomorphism G — G/Rp is a monomorphism on
K.

ProOF. This follows from Lemma 9.4 and the fact that canonical automor-
phisms corresponding to QH subgroups fix K. O

LEMMA 9.7. There is a K-homomorphism ¢ from G into itself with the non-
trivial kernel.
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PROOF. The generating set X of G corresponding to the decomposition D can
be partition as X = X; U X5. Consider a formula

VX1VXo3Y3ITAZ (S(X1, Xo) =1

— </\[ti,ci(X2)] =1ANZ=X3"ANSY,X2)=1AV(Y,Z) = 1)) .
i1

It says that each solution of the equation S(X7, X5) = 1 can be transformed by a
canonical automorphism into a solution Y, Z that satisfies V(Y, Z) = 1. It is true
in a free group, therefore the system

m
(/\[ti,ci(X2)] =INZ=X"ANSY,X2)=1AV(Y,Z) = 1)
i=1
can be lifted in G. Elements Z generate the same subgroup K as X, because
t; = ¢, for a fixed number n;, ¢ = 1,...,m in G. Therefore, there is a proper
K-homomorphism ¢ from G into itself. ]

For a QH subgroup @ we denote by Pg the fundamental group of the graph
of groups obtained from D by removing the QH-vertex vg and all the adjacent
edges. In the following lemma, the second statement in not needed for the proof of
Theorem F, but we included it for completeness.

LEMMA 9.8.

1. There exists a QH subgroup Q in D such that Pq is a retract.

2. The mazimal standard quotient G/Ra,, of G, with respect to the group
Ag of the canonical automorphisms of G corresponding to Q, is a proper
quotient of G.

ProOOF. 1. The image H = ¢(G) cannot contain conjugates of finite index
subgroups of all the QH subgroups of D. Indeed, suppose it does. Let Q1,...,Qs be
QH subgroups with minimal number of free generators. There is no homomorphism
from a finitely generated free group onto a proper finite index subgroup. Therefore
the family @q,...,Qs has to be mapped onto the same family of QH subgroups.
Similarly, the family of all QH subgroups would be mapped onto the conjugates
of subgroups from the same family, and different QH subgroups would be mapped
onto conjugates of different QH subgroups. In this case H would be isomorphic to
G. This is impossible because G is hopfian. Therefore there is a QH subgroup @
such that H does not intersect any conjugate @9 in a subgroup of finite index.

By construction, G is the fundamental group of the graph of groups with vertex
vg and vertices corresponding to connected components Y7, ..., Y} of the graph for
Pg. Let Py, ..., P, be the fundamental groups of the graph of groups on Y7, ...,Y.
Then Py = Py *---% P,. Let Dg be a JSJ decomposition of G modulo K. Then it
has two vertices vg and the vertex with vertex group Fg.

By [16, Lemma 2.13] applied to D¢ and the subgroup H, one of the following
holds:

(1) H is a nontrivial free product modulo K;
(2) H < P for some g € G.

Moreover, the second statement of this lemma is the following. If Hy = HNQ) is
non-trivial and has infinite index in @), then Hy is a free product of some conjugates



316 O. KHARALMPOVICH AND A. G. MYASNIKOV

of p*, ..., pEm, p* and a free group F; (maybe trivial) which does not intersect any
conjugate of (p;) fori =1,... ,m.

In the case (2) one has H < Pg?, and, conjugating, we can suppose that H < Fp.

Suppose now that the case (1) holds. For any g the subgroup Q9 N H is either
trivial or has the structure described in the second statement of Lemma 2.13, [16].
Consider now the decomposition Dy induced on H from Dg. If the group F; is
nontrivial, then H is freely decomposable modulo K, because the vertex group Qg
in Dy is a free product, and all the edge groups belong to the other factor. If at
least for one subgroup @9, such a group Fj is non-trivial, then H is a non-trivial
free product and the subgroup K belongs to the other factor. Hence H = Hy = T,
where K € Hi. In this case we consider ¢y = ¢, where 1 is identical on H; and
Y(x) =1 for x € T. Now each non-trivial subgroup H; N Q9 is a free product of
conjugates of some elements p;*, a; € Z, in Q9.

According to the Bass-Serre theory, for the group G and its decomposition Dg
one can construct a tree such that G acts on this tree, and stabilizers correspond to
vertex and edge groups of Dg. Denote this Bass-Serre tree by Tp,. The subgroup
H, also acts on Tp,. Let Ty be a fundamental transversal for this action. Either
H; < Pg or H; is not conjugated into Pg. The amalgamated product of the
stabilizers of the vertices of T7 is a free product of subgroups H; N Pg. Therefore
H, is either such a free product or is obtained from such a free product by a sequence
of HNN extensions with associated subgroups belonging to distinct factors of the
free product. In both cases H; is freely decomposable modulo K. Conjugating, we
can suppose that one of the factors of ¢1(G) is contained in Pgy. We replace now ¢
by ¢ which is a composition of ¢; with the homomorphism identical on the factor
that is contained in Py and sending the other free factors into the identity. Then
¢2(G) = Hy < Py, where Hj is freely indecomposable modulo K.

A mapping 7 defined on the generators X of G as

| ¢pax) ifze@;
”(x)_{ 332 ifrdQ

can be extended to a proper homomorphism 7 from G onto Pg. Then 7 is a
Pg-homomorphism, and Pg is a retract.

2. Let X = X3 U X4 be a partition of X such that X, are generators of Fgp.
Then the following formula is true in G

VX3VX4E|Y(S(X3,X4) =1— (S(Y, X4) =1AY = ’/‘()(4)))7

where Y = r(X,) = 7(X3). This formula is also true in F.

For a homomorphism 7 : G — F' there are two possibilities:

a) 7y can be transformed by a canonical automorphism from A into a homomor-
phism 3 : G — F, such that there exists o : G — Pg*F(Z) and ¢ : Po*F(Z) — F
such that 8 = a1. Here F(Z) is a free group corresponding to free variables of the
quadratic equation corresponding to Q.

b) v is a solution of one of the finite number of proper equations that correspond
to the cases v(Q) is abelian or v(Ge) = 1, where e is an edge adjacent to vg.

Since ker(a) = (Nker(ay), where v € Hom(Pg * F(Z),F), the statement
follows. O

By Lemma 9.1 the group P = Py belongs to K. If P is freely undecomposable
[modulo F] and does not have a non-degenerate JSJ decomposition [modulo F]
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then H is either F' or a cyclic group, or a surface group. In this event, G is a
regular NTQ (since only regular quadratic equations belong to the class C). If P
is freely decomposable modulo F' or it has a non-degenerate JSJ decomposition we
put Gy = G, Qy = @ and repeat the argument above to the group G; = P. Thus,
by induction we construct a sequence of proper epimorphisms:

G—->G1 —>Gyg— ...

and a sequence of QH subgroups @; of the groups G; such that G; is the fun-
damental group of the graph of groups with two vertices @); and G;1 and such
that @; is defined by a regular quadratic equation S; = 1 over G;41 and such that
S; = 1 has a solution in G;41. Since free groups are equationally Noetherian this
sequence terminates in finitely many steps either at a surface group, or the free
group F, or an infinite cyclic group. This shows that the group G is F-isomorphic
to a coordinate group of some regular NTQ system.

This proves the theorem. O

As a corollary one can obtain the following result. To explain we need few
definitions. Let F be a free group and L be a group theory language with constants
from the group F, and ® be a set of first order sentences of the language Lp.
Recall, that two groups G and H are ®-equivalent if they satisfy precisely the same
sentences from the set ®. In this event we write G =¢ H. In particular, G =y3 H
(G =3v H) means that G and H satisfy precisely the same V3-sentences (existsV-
sentences ). Notice that G =y3 H <= G =3y H. We have shown in [13] that for a
finitely generated group G G =y3 H implies that G is torsion-free hyperbolic. Now
we can prove Theorem F from the introduction:

Theorem F. Every finitely generated group which is Y3-equivalent to a free
non-abelian group F is isomorphic to the coordinate group of a reqular NTQ system
over F.

PrOOF OF THEOREM F. Let G be a finitely generated group which is V3-
equivalent to a free non-abelian group F. In particular, G is V-equivalent to F,
hence by Remeslennikov’s theorem [25] the group G is fully residually free. It
follows then that G is the coordinate group of some irreducible system S = 1 over
F (see [2]), so G = Fg(s). We claim that every equation compatible with S(X) = 1
admits an S-lift over F. Indeed, if T(X,Y) = 1 is compatible with S(X) = 1 over
F then the formula

VXYV (S(X)=1—-T(X,Y)=1)
is true in F, hence in G. Therefore, the equation T(X*,Y) = 1 has a solution in
G for any specialization of variables from X in G, in particular, for the canonical
generators X of G. This shows that every equation compatible with S = 1 admits
S-lift. By Theorem E, the group G is isomorphic to the coordinate group of a
regular NTQ system, as required. O
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