
Irreducible affine varieties over a free group. I:
Irreducibility of quadratic equations and

Nullstellensatz
O. Kharlampovich, A. Myasnikov1

0. Introduction

The object of this paper (which consists of two parts) is to describe irreducible vari-
eties over free groups and to characterize finitely generated fully residually free groups.
We prove that any variety over a free group F can be defined by a finite number of
systems of equations S = 1 in triangular form where quadratic words play the role of
leading terms. Algebraically, irreducible varieties are exactly the varieties whose co-
ordinate groups are fully residually F . The crucial point of the classification of fully
residually free groups is to prove that the coordinate groups of irreducible varieties
are embeddable into Lyndon’s free Z[x]-group FZ[x]. Since every finitely generated fully
residually free group is a free factor of the coordinate group of an irreducible variety, and
the group FZ[x] is fully residually F , we obtain a characterization of finitely generated
fully residually free groups as subgroups of FZ[x].

The group FZ[x] and its subgroups have been studied extensively during the last
several years. In particular, every finitely generated subgroup of FZ[x] (hence, every
finitely generated fully residually free group) can be obtained from free abelian groups
of finite rank by finitely many free products with amalgamation and HNN-extensions of
the type, where amalgamated and associated subgroups are free abelian of finite rank. In
particular, this implies that every finitely generated fully residually free group is finitely
presented.

There are three parts to this paper: algebraic geometry over free groups, the theory
of free exponential groups, and Makanin-Razborov’s machinery to deal with equations
over free groups [11],[14],[13].

The algebraic geometry approach has been shown to be very usefull in dealing with
equations over groups. It provides necessary topological means and a method to tran-
scribe geometric notions into pure group-theoretic language. Following Baumslag, Myas-
nikov, Remeslennikov [1] we use the standard algebraic geometry notions such as variety,
Zariski topology, irreducibility of varieties, radicals and coordinate groups. Some of the
ideas of the algebraic geometry approach go back to R. Lyndon [9], E. Rips, J. Stallings
[16].

1The first author was supported by NSERC grant; the second author was supported by the NSF
Grant DMS-9103098
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The theory of exponential groups (i.e. groups admitting exponents in some ring A)
starts with results of P. Hall, A. Malcev, G. Baumslag and R. Lyndon. It provides a
technique to deal with noncommutative modules over the ring A. R. Lyndon gave an
axiomatic description of the notion of an exponential group. He described and studied
the group FZ[x] ( free exponential group over the ring of integral polynomials Z[x]) and
showed the crucial importance of this group in the study of equations over free groups.
A modern treatment of exponential groups was given by Myasnikov and Remeslennikov
in [12] . In particular, they showed that FZ[x] can be described using HNN-extensions of
a very special type, namely extensions of centralizers. Basically, to obtain FZ[x] from F
one needs just to extend all centralizers of F up to free Z[x]-modules of rank 1. Namely,
FZ[x] is the union of groups:

F < G1 < G2 < . . . ,

where Gi+1 =< Gi, t|ut
i = ui, ui ∈ C(ui) >, where C(ui) is some proper centralizer in

Gi.
The groups FZ[x] happen to be fully residually F [8]. Basically there exists only one

known method of proving that a group is fully residually free. This method is due to G.
Baumslag who showed that the surface groups (except the non-orientable case of genus
1,2,3) are embeddable into an extension of a centralizer of a free group, and hence they
are fully residually free. B. Baumslag gave other examples of fully residually free groups
using the same method.

In 1992 Myasnikov and Remeslennikov while studying ultrapowers of free groups
came to the following conjecture: every finitely generated fully residually free group is
a subgroup of Lyndon’s group FZ[x].

In the paper [4], the conjecture was proved for 3-generated fully residually free groups;
moreover it was proved that there are just three types of 3-generated fully residually free
groups: free groups, free abelian groups, and extensions of centralizers < x, y, t|ut = u >,
where u is an arbitrary element in F (x, y) that is not a proper power.

In the second part of this paper we shall prove the conjecture and will discuss the
applications.

In the first part we concentrate on quadratic equations over a free group F . Quadratic
equations have been widely studied, see for example [6],[5],[3],[2], [10].

We shall prove that the coordinate group FR(S) of the quadratic equation S = 1 is
embeddable into FZ[x]. This implies that the variety V (S) is irreducible in the Zariski
topology over F n. Moreover, we completely describe the radical of the quadratic system
S = 1. It turns out that the radical Rad(S) coincides (with a few exceptions) with the
normal closure of S in the group F ∗F (X). In particular, this implies the Nullstellensatz
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for the system S = 1. The group theoretic formulation of the Nullstellensatz was first
given by E. Rips. He actually announced in New York in the fall of 1995, the joint result
with Z. Sela about the Nullstellensatz for quadratic equations over a free group.

We should mention that G. Baumslag and V. Remeslennikov took part in different
stages of the discussions leading to the proof of Theorem 1 in the first paper, and in
a sense they could be considered as coauthors of that theorem. We will follow the
terminology given in [1].

Let G be a group, F = F (X) the free group with basis X = {x1, x2, . . . xn}, G[X] =
G ∗ F the free product of G and F .

An element s from G[X] is called an equation over the group G. We write this as
s = 1. As an element of the free product, s can be written as a product of some elements
x1, . . . , xn from X ∪ X−1 (which are called variables) and elements g1, . . . , gm from G
(constants). We will write, sometimes, s(x1, . . . , xn, g1, . . . , gm) = 1 or, simply, s(x, g) =
1. A system of equations over a group G is an arbitrary set of equations S = {si = 1 | i ∈
I} (we shall denote this as S = 1). A solution of a system S (x1, . . . , xn, g1, . . . , gm) = 1
over a group G is a tuple of elements a1, . . . , an ∈ G such that after replacement of
each xi by ai in every equation s(x, g) = 1 from S one gets the trivial element in the
group G. On the other hand, a solution of the system S = 1 over G can be described
as a G-homomorphism (i.e. a homomorphism which is identical on G) φ : G[X] −→ G
such that φ(S ) = 1. These definitions are equivalent. By V (S ) we denote the set of all
solutions in G of the system S = 1.

Let S be a subset of G[X]. Then V (S) is called an algebraic subset or an (affine)
variety in Gn. Two systems S = 1 and T = 1 are equivalent over G if V (S) = V (T ).
For any S ⊆ G[X] we have V (S) = V (ncl(S)), where ncl(S) is the normal closure of S
in G[X].

A group G is called CSA-group if every maximal abelian subgroup M of G is mal-
normal, i.e. M g ∩M = 1 for any g 6∈ M .

It was shown in [1] that for a nonabelian CSA-group G all algebraic sets in Gn define
a topology on Gn in which they are exactly the closed sets. The topology defined by
algebraic sets as closed subsets is said to be a Zariski topology.

Below G is always a nonabelian CSA-group.

Definition 1 Let Y ⊆ Gn. Define a set

I(Y ) = {s ∈ G[X] | s(g1, . . . , gn) = 1∀(g1, . . . , gn) ∈ Y }
The set I(Y ) has a nice description in terms of homomorphisms. Any tuple g =

(g1, . . . , gn) ∈ Y defines a G-homomorphism fg : G[X] −→ G by the condition xi −→ gi.
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Then
I(Y ) =

⋂

g∈Y

ker(fg)

Let us recall that a subgroup N is an isolated subgroup in a group H if for any x ∈ H
and any nonzero integer n inclusion xn ∈ N implies that x ∈ N . For any set S ⊂ H the
intersection of all normal isolated subgroups containing S is denoted by

√
S.

Lemma 1 [1]

1) I(Y ) is a normal subgroup of G[X];

2) If G is a torsion-free group then I(Y ) is an isolated normal subgroup of G[X], in
particular I(V (S)) contains

√
S.

Definition 2 Let V (S) be a variety defined by S ⊂ G[X]. Then I(V (S)) is called
the radical of the system S = 1 and is denoted by Rad(S). The quotient group GR(S) =
G[X]/Rad(S) is called the affine coordinate group of the variety V (S).

Systems S = 1 and T = 1 define the same variety over G iff Rad(S) = Rad(T ).
Let S = 1 be a system of equations over a torsion-free group G. Then the quotient

group of G[X] by the
√

S is denoted by G√
S.

A system S = 1 over G is called consistent if there is a G-homomorphism π : G[X] →
H ≥ G such that S ∈ ker(π). Otherwise, it is inconsistent over G. If a system S = 1
over G is consistent then the canonical homomorphism G → G[x]/Rad(S) is monic.
Therefore, for non-empty varieties V (S) we will assume that G is a subgroup of GR(S).

Let G be a torsion-free group, V (S) is an algebraic set in Gn defined by a system
S = 1. Then by Lemma 1 Rad (S) contains

√
S.

Definition 3 A system of equations S = 1 over a torsion-free group G satisfies the
Nullstellensatz if

Rad (S) =
√

S

Definition 4 Let H be a group and G be a family of groups.

1) A homomorphism of groups ψ : H −→ G separates a nontrivial element h ∈ H if
ψ(h) 6= 1;
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2) A family of homomorphisms Ψ = {ψ : H −→ G | G ∈ G} is called a separating
(discriminating ) family of homomorphisms if any nontrivial h ∈ H (any finite
number of nontrivial elements h1, . . . , hn ∈ H) can be separated by some ψ ∈ Ψ.
In this case H is called a residually G group (ω-residually G group or fully residually
G group).

In the case when G consists of a single group G, which is also a subgroup of H and if
the separating (discriminating) homomorphisms in Ψ are all G-homomorphisms we say
that H is separated (discriminated) by G-homomorphisms.

Lemma 2 [1] A system of equations S = 1 over a torsion-free group G satisfies the
Nullstellensatz in G if and only if G√

S is separated in G by G-homomorphisms.

Denote by GS the factor group G[X]/ncl(S).

Lemma 3 If G is torsion-free and GS is separated in G by G-homomorphisms, then
ncl(S) =

√
S = Rad(S).

The proof is straightforward.
A group G is called Equationally Noetherian (EN) [1] if for every system S of equa-

tions over G there is a finite subsystem S0 such that V (S) = V (S0). For example, a free
group is EN group [7].

A closed set in a topological space is called irreducible if it is not a union of two proper
closed subsets. Zariski topology over an EN CSA-group is noetherian, and consequently,
every closed subset is a finite union of its irreducible components.

Lemma 4 [1] Let G be an EN CSA-group. Then V (S) is irreducible if and only if
GR(S) is discriminated in G by G-homomorphisms.

Proof Suppose V (S) is not irreducible and V (S) =
⋃n

i=1 V (Si) is its decomposition
into irreducible components. Then Rad(S) = ∩n

i=1Rad(Si), and hence there exist si ∈
Rad(Si) \ {Rad(S), Rad(Sj), j 6= i}. The set si, i = 1, . . . n cannot be separated in G by
G-homomorphisms.

Suppose now s1, . . . , sn are elements such that for any retract f : GR(S) −→ G there
exists i such that f(si) = 1; then V (S) =

⋃m
i=1 V (S ∪ si). 2

Definition 5 Let K be a group, C(u) the centralizer of an element u ∈ K. Suppose
C(u) is abelian. Then the following group is called a free extension of a centralizer in
K:

K(u, t) = 〈K, t | [C(u), t] = 1〉.
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Note, that K(u, t) can be obtained from K by an HNN-extension with respect to the
identity isomorphism C(u) → C(u) :

K(u, t) = 〈K, t | t−1at = a, a ∈ C(u)〉.
We introduce the following notation. Let

G = G0 ≤ G0(u0, t0) = G1 ≤ . . . ≤ Gn(un, tn) = Gn+1

be a finite sequence of extensions of centralizers of elements ui ∈ Gi. Then we denote
the resulting group Gn+1 by G(U, T ), where U = {u0, . . . , un}, T = {t0, . . . , tn}.

Let A be an arbitrary associative ring with identity and G a group. Fix an action of
the ring A on G, i.e. a map G× A → G. The result of the action of α ∈ A on g ∈ G is
written as gα. Consider the following axioms:

1. g1 = g, g0 = 1, 1α = 1 ;

2. gα+β = gα · gβ, gαβ = (gα)β;

3. (h−1gh)α = h−1gαh;

4. [g, h] = 1 =⇒ (gh)α = gαhα.

Definition 6 Groups with A-actions satisfying axioms 1)–4) are called A–groups.

In particular, an arbitrary group G is a Z-group. We now recall the definition of an
A-completion from [12].

Definition 7 Let G be a group . Then an A–group GA together with a homomor-
phism G → GA is called a tensor A–completion of the group G, if GA satisfies the
following universal property: for any A–group H and a homomorphism ϕ : G → H
there exists a unique A–homomorphism ψ : GA → H (a homomorphism that commutes
with the action of A) such that the following diagram commutes:

G GA

H

-

?

¡
¡

¡
¡

¡
¡

¡
¡ª

ϕ ψ

λ
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By Z[x] we denote, as usual, the ring of polynomials of one variable with integer
coefficients. Z[x]-completion of a free group F is called Lyndon’s free Z[x]-group.

Lemma 5 [12] Every group obtained from a CSA group G by a sequence of free
extensions of centralizers is embeddable into GZ[x].

1. Quadratic equations over groups

Notation: Let S ∈ G[X], then the set of all variables which occur in S is denoted by
var(S).

Two systems S = 1 and T = 1 over G are termed to be disjoint if var(S)∩var(T ) =
∅. A system S = 1 is splittable if it is a union of two nonempty disjoint subsystems:
S = S1 ∪ S2, and var(S1) ∩ var(S2) = ∅.

Definition 8 A set S ⊂ G[X] is called quadratic, if every variable from var(S)
occurs in S not more then twice. The set S is strictly quadratic if every letter from
var(S) occurs in S exactly twice.

A system S = 1 over G is quadratic (strictly quadratic), if the corresponding set S is
quadratic (strictly quadratic).

The main result of this paper is the following

Theorem 1 Let G be a fully residually free group and let S = 1 be a consistent
quadratic equation over G, then GR(S) is G-embeddable into G(U, T ) for some finite U
and T , and hence into GZ[x].

Definition 9 Let G be a group, c̄ a tuple of elements from G, x̄1, . . . , x̄n disjoint
tuples of variables.

A system
⋃m

i=1 Si(c̄, x̄i, . . . , x̄m) = 1 is said to be triangular quasi-quadratic if for
every i the equation Si(c̄, x̄i, . . . , x̄m) = 1 is quadratic in the variables from x̄i

Such a system is said to be nondegenerate if for each i the equation Si = 1 over Gi−1 =
G[x̄i+1, . . . , x̄m]/R(

⋃i−1
j=1 Sj) (with elements x̄i considered as variables and elements from

c̄, x̄i+1 . . . x̄m as coefficients from Gi−1) has a solution.

The following result is a corollary of Theorem 1.

Theorem 2 If S is a nondegenerate triangular quasi-quadratic system over a fully
residually free group G, then GR(S) is a subgroup of G(U, T ) for some U and T and hence
a subgroup of GZ[x].
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Corollary 1 Algebraic sets corresponding to triangular quasi-quadratic systems of
equations are irreducible sets in the Zariski topology on Gn for fully residually free group
G.

To formulate Theorem 3 we need a few more definitions. Every quadratic equation
over G can be transformed into a standard equation:

Definition 10 A standard quadratic equation over the group G is an equation of the
one of the following forms:

n∏

i=1

[xi, yi] = 1, n > 0; (1)

n∏

i=1

[xi, yi]
m∏

i=1

z−1
i cizi = d, n, m ≥ 0,m + n ≥ 1; (2)

n∏

i=1

x2
i = 1, n > 0; (3)

n∏

i=1

x2
i

m∏

i=1

z−1
i cizi = d, n, m ≥ 0, n + m ≥ 1; (4)

where d, ci are nontrivial elements from G.

Lemma 6 Let S be a strictly quadratic word over G. Then there is a G-automorphism
f ∈ AutG(G[X]) such that Sf is a standard quadratic word over G.

Proof See [2].
In this case we say that S is equivalent to Sf over G[X].

Definition 11 Strictly quadratic words of the type

[x, y], x2, z−1cz

where c ∈ G, are called atomic quadratic words or simply atoms.

Definition 12 Any standard quadratic equation S = 1 over G can be written (see
above) as a product of atoms ri:

r1 r2 . . . rk = g.

The minimal such number k is called the atomic rank of S. We denote this as k = r(S).
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Definition 13 A solution φ of a quadratic equation r1r2 . . . rk = g of atomic rank
k ≥ 2 is called commutative if [rφ

i , rφ
i+1] = 1 for all i = 1, . . . , k− 1, otherwise it is called

noncommutative.

The following theorem describes the radical of a standard quadratic equation.

Theorem 3 Let G be a fully residually free group and let S = 1 be a standard
quadratic equation over G. Then

1. If either the atomic rank of S = 1 is greater than one and S = 1 has a noncom-
mutative solution, or S = 1 is one of the following two equations: [x, y]d−1 = 1,
or [x, y][z, t] = 1, then Rad(S) = ncl(S);

2. If either all solutions of S = 1 are commutative and S 6= [x, y][z, t], or S = czd−1 =
1, then up to some linear transformation of old variables into new variables ui’s
Rad(S) = ncl{[ui, bi] = 1|i = 1, . . . , k}, where bi’s are constants from G.

3. In the following cases S = 1 always has a noncommutative solution, hence Rad(S) =
ncl(S):

(a) S = 1 is of type 1, n > 2,

(b) S = 1 is of type 2, n > 0, n + m > 1 (in case n = 1,m = 0 the notion of
noncommutative solution is not defined, but Rad(S) = ncl(S)),

(c) S = 1 is of type 3, n > 3,

(d) S = 1 is of type 4, n > 2.

The proof of Theorem 1 will be given in Sections 2-6. In the remaining part of Section
1 it will be shown that characterizing the solutions of an arbitrary quadratic system of
equations can be reduced to stadying a system of standard quadratic equations with the
disjoint sets of variables. In Section 2 we will show that for every standard quadratic
equation either there is a so-called solution in general position, or all solutions are
commutative. We will also describe the radical in the case of all commutative solutions.
In Sections 3-6 it will be proved by induction on the atomic rank that for every standard
quadratic equation S = 1 that has a solution in a general position the group GS is
embeddable into G(U, T ), and hence GS = GR(S).

Lemma 7 Let S be a quadratic system over G. Then there exists a system S ′ =
{s1, . . . sn} of strictly quadratic pairwise disjoint equations s1, . . . sn such that

GS 'G GS′ .
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Proof Suppose a letter x ∈ var(S) occurs in some equation s ∈ S exactly once. Then
we can rewrite the equation s = 1 in the form x = s′. Hence the group GS can be Tietze
transformed to the G-isomorphic group GS∗ , where S∗ is obtained from S by deleting
the equation s = 1 and replacing all other occurrences of x by s′. After a finitely many
transformations of this type we arrive to a system S ′ with GS G-isomorphic to GS′ and
every variable from var(S ′) occurring in one and only one equation from S ′ exactly
twice. It follows that S ′ is a system of pairwise disjoint strictly quadratic equations over
G. 2

The following result can be deduced from Lemma 6 and Lemma 7.

Lemma 8 Let S be a quadratic system over G. Then there exists a system S ′ =
{s1, . . . sn} of standard quadratic pairwise disjoint equations s1, . . . sn and a free group
F such that

GS 'G GS′ ∗ F.

A system S ′ = 1 from the lemma above splits over G in such a way that

GS 'G (. . . (Gs1)s2 . . .)sn ∗ F.

Hence we have

Corollary 2 Let S = 1 be a quadratic system over G. Then

GS 'G (. . . (Gs1)s2 . . .)sn ∗ F,

where si is a standard quadratic equation over G and F1 is some finitely generated free
group.

Let S : r1 r2 . . . rkg
−1 = 1 be a standard quadratic equation of atomic rank k over

the group G. Denote:
Si = r1 . . . ri, Ri = ri+1 . . . rk.

Let Qi = var(Si) and Pi = var(Ri); then X = Qi ∪ Pi.
Notation: Let H(i) denote the subgroup of GS generated by G and Qi, i.e. H(i) =

gp(G,Qi).

Lemma 9 Let S = 1 be a standard quadratic equation over a torsion free group G,
and rk(S) = k ≥ 2. Then H(i) ' G ∗ F (Qi) for any i < k.
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Proof It is sufficient to prove the lemma just for i = k− 1. The equation S = 1 has the
following form

r1r2 . . . rkg
−1 = 1

which can be written as
rk = S−1

k−1g.

Obviously,
GS ' 〈G,X | rk = S−1

k−1g〉.
Now we claim that GS is either a free product with amalgamation or an HNN-extension
with respect to the form of rk. Notice that the element Sk−1 (and hence S−1

k−1) is in a
reduced form as an element of G ∗ F (Qk−1). It begins and ends with different letters
from Qk−1, unless either Sk−1 = z−1cz or Sk−1 = y2. Therefore, we have just two
possibilities for the element S−1

k−1g : either it is of length more then 1 in the free product
G ∗ F (Qk−1), or it equals either z−1c−1zg or y−2g. In any case, S−1

k−1g is of infinite order
in the G ∗ F (Qk−1). Now, if rk = [xk, yk], or rk = x2

k , then GS is a free product with
amalgamation

GS ' 〈F (Pk) ∗ (G ∗ F (Qk−1)) | rk = S−1
k−1g〉

over two infinite cyclic subgroups gp(rk) in F (Pk), and S−1
k−1g in G ∗ F (Qk−1). In this

event H(k−1) ' G ∗ F (Qk−1). If rk = z−1
k ckzk, then GS is an HNN-extension

GS ' 〈G ∗ F (Qk−1), zk | z−1
k ckzk = S−1

k−1g〉
with associated infinite cyclic groups gp(ck) in G (notice that G is a torsion free group
and c 6= 1) and gp(S−1

k−1g) in G∗F (Qk−1). Again, from the properties of HNN-extensions
we know that H(k−1) ' G ∗ F (Qk−1). 2

Let S = 1 be a standard quadratic equation of atomic rank k over group G, i.e.

r1r2 . . . rk = g.

We can rewrite it in the form SiRi = g or Ri = S−1
i g. The element h = S−1

i g belongs
to the group G ∗ F (Qi) ' H(i). Hence we can consider the initial equation S = 1 also
as an equation Ri = h over the group H(i) and denote this equation by Rih

−1 = 1; it
is a standard quadratic equation of atomic rank k − i. It turns out that the group GS

of the equation S = 1 over G is G-isomorphic to the group H
(i)
Rih−1 of Ri = h over H(i).

Indeed, we have

Proposition 1 Let S = 1 be a standard quadratic equation over G with atomic rank
k > 1. Then using the notation above GS 'G H

(i)
Rih−1, where Ri = h is the quadratic

equation of atomic rank k − i over the group H(i) = G ∗ F (Qi).
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Proof The proposition follows immediately from the fact that the groups GS and H
(i)
Rih−1

have exactly the same presentations. 2

To be able to freely manipulate quadratic equations we shall need the following

Proposition 2 Let H ≤ G be arbitrary torsion-free groups, and S = 1 a standard
quadratic equation over H. Then HS is canonically H-embeddable into GS.

Proof Let S = 1 be a standard quadratic equation of atomic rank k; say

r1r2 . . . rkg
−1 = 1.

As in Lemma 9 we can decompose GS, as well as HS, into a free product with amal-
gamation or an HNN-extension. Namely, if rk = [xk, yk] or rk = x2

k and S−1
k−1g 6= 1

(this means that either k > 1, or k = 1; but then g 6= 1), so GS is a free product with
amalgamation

GS ' 〈F (Pk) ∗ (G ∗ F (Qk−1)) | rk = S−1
k−1g〉

along two infinite cyclic subgroups gp(rk) in F (Pk), and S−1
k−1g in G ∗ F (Qk−1). If rk =

[xk, yk], or rk = x2
k and S−1

k−1g = 1, then

GS ' 〈F (Pk) | rk = 1〉 ∗ (G ∗ F (Qk−1)).

If rk = z−1
k ckzk, then S−1

k−1g 6= 1 and, consequently, GS is an HNN-extension

GS ' 〈G ∗ F (Qk−1), zk | z−1
k ckzk = S−1

k−1g〉.
It is clear that HS has a similar decomposition; one just has to replace G by H. The
embedding H ↪→ G gives rise to a H-homomorphism f : HS → GS which is identical
on X. Since the groups HS and GS have similar decompositions into free product or
HNN-extensions, it follows that every reduced form in HS will have a reduced form as
its image under f. Hence f is monic. 2

2. Splitting

Let G be a group, X a finite set of variables, and S ∈ G[X].

Definition 14 An equation S = 1 is termed separable if there exists a nontrivial
partition of X into k > 1 pairwise disjoint subsets X = X1 ∪ . . . ∪ Xk and elements
wi(Xi) ∈ G[Xi] such that S can be written as

S = w1(X1) . . . wk(Xk).
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By the definition a separable equation has the form w1(X1) . . . wk(Xk) = 1. Sometimes
it is convenient to write it also in the form w1(X1) . . . wk(Xk) = g, where g ∈ G.

Notice that any standard quadratic equation over G is separable.
We now need some more definitions.

Definition 15 Let φ : H[X] −→ H[X] be an H-endomorphism of the group H[X].
We say that an element w ∈ H[X] is an eigenvector of φ if there exists an element
g ∈ H such that

wφ = wg.

We term g an eigenvalue of w with respect to φ.

This definition of an eigenvector becomes more natural if one thinks of H[X] as a
noncommutative H-space over the “ground field” H, in which case H-endomorphisms
play the role of linear transformations. Let EndH(H[X]) be the set of all such H-
endomorphisms.

Definition 16 An element w ∈ G[X] is termed to be of complete spectrum if every
g ∈ G is an eigenvalue of w with respect to a suitable φ ∈ EndG(G[X]).

Any word w ∈ F (X) (considered as an element from G[X]) is an element of complete
spectrum. All quadratic atoms are elements of complete spectrum; for example, the
G-homomorphism z → zg maps cz onto (cz)g. On the other hand, the quadratic word
xbx has no eigenvalue a in the group F [x], where F = F (a, b) is the free group on a, b.
This follows from the fact that the equation yby = a−1ba with one variable y has no
solutions in F.

Definition 17 Let w1(X1) . . . wk(Xk) = g be a separable equation over the group G.
We say that a solution φ of this equation is:

a) in general position if [wφ
i , wφ

i+1] 6= 1 for every i = 1, . . . , k − 1;

b) commutative, if [wφ
i , wφ

i+1] = 1 for every i = 1, . . . , k − 1;

c) degenerate, if wφ
i0 = 1 for some 1 ≤ i0 ≤ k.

One may think of solutions in general position as those which give linearly independent
neighbors in the sequence wφ

1 , . . . , wφ
k as elements in the Lie algebra associated to the

group G. The commutative solutions result in all neighbors in the sequence as above
being “ collinear to each other”.

13



Proposition 3 Let S : w1(X1) . . . wk(Xk) = g, k ≥ 2, be a nondegenerate separable
equation over a CSA-group G, and let all elements wi be of complete spectrum in G[Xi].
Then either S = g has a solution in general position, or every nondegenerate solution of
S = g is commutative.

Proof For k = 2 the statement of the proposition is obvious. Let k = 3 and suppose
that both statements a) and b) do not hold for some equation of the type

S : w1(X1)w2(X2)w3(X3) = g.

That would imply that there exists a nondegenerate solution φ : GS −→ G such that
either

[wφ
1 , wφ

2 ] = 1 and [wφ
2 , wφ

3 ] 6= 1

or
[wφ

1 , wφ
2 ] 6= 1 and [wφ

2 , wφ
3 ] = 1.

Lemma 10 Let S : w1(X1)w2(X2)w3(X3) = g be a separable equation over a CSA-
group G and the words wi be of complete spectrum in G[Xi]. If φ : GS −→ G is a
nondegenerate solution of this equation such that either

[wφ
1 , wφ

2 ] = 1 and [wφ
2 , wφ

3 ] 6= 1 (5)

or
[wφ

1 , wφ
2 ] 6= 1 and [wφ

2 , wφ
3 ] = 1, (6)

then there exists a solution ψ : GS −→ G in general position.

Proof Suppose we have the condition ( 5):

[wφ
1 , wφ

2 ] = 1 and [wφ
2 , wφ

3 ] 6= 1

for some nondegenerate solution φ. To simplify the formulas we will use the following
notation u−φ = (u−1)φ.

Let t = (wφ
2wφ

3 )N , where N is a big positive integer which will be specified in due
course. Define ψi ∈ EndG(G[Xi]) (i = 2, 3)to be a G- endomorphism such that wi is the
eigenvector of ψi with the eigenvalue t. Define ψ1 ∈ EndG(G[X1]) to be equal to φ on
X1. This ψi exists because wi is of complete spectrum.

wψ2
2 = t−1w2t, wψ3

3 = t−1w3t.

14



Since the equation S = g is separable the sets of variables X1, X2, X3 are pairwise
disjoint, therefore we can construct a G- endomorphism ψ∗ ∈ EndG(G[X1 ∪X2 ∪X3])
such that the restriction of ψ∗ on each G[Xi] is equal to ψi (i = 1, 2, 3). Now let
ψ = φ ◦ ψ∗ be the composition of φ and ψ∗, in particular ψ : G[X1 ∪X2 ∪X3] −→ G is
a G-homomorphism.

Compute the image of w1w2w3 under ψ :

(w1w2w3)
ψ = wφ

1 t−1(wφ
2wφ

3 )t =

(w1w2w3)
φ = g

hence ψ induces a solution ψ : GS −→ G. Moreover,

[wψ
2 , wψ

3 ] = [wφ
2 , wφ

3 ]t 6= 1

since [wφ
2 , wφ

3 ] 6= 1. We claim that [wψ
1 , wψ

2 ] 6= 1. Suppose to the contrary, that [wψ
1 , wψ

2 ] =
1. Then:

[wψ
1 , wψ

2 ] = [(wφ
1 ), (wφ

2 )t] = 1,

therefore by malnormality of abelian subgroups in a CSA group G one has [wφ
2 , t] = 1.

This implies that [wφ
3 , t] = 1, and by the transitivity of commutation [wφ

2 , wφ
3 ] = 1. This

is a contradiction.
In case (6) we can consider the inverse equation w3(X3)

−1w2(X2)
−1w1(X1)

−1 = g−1

for which φ is a solution too, and in this case φ satisfies the condition ( 5), but for the
new equation. Now, according to the argument above, we can construct the solution α
in general position to the new equation. This α is a solution of the initial equation too,
and clearly α is still in general position. 2

Now suppose that k > 3, and let φ : GS −→ G be a nondegenerate solution which is
neither in general position nor commutative. Then there exists an index 1 ≤ i ≤ k − 3
such that the triple wi, wi+1, wi+2 satisfies either ( 5) or ( 6) (after replacing index
i by 1). But then, according to Lemma 10, we can construct a G-homomorphism
ψ : G[Xi ∪Xi+1 ∪Xi+2] −→ G such that ψ(wi) = wφ

i ,ψ(wi+1) = wφt
i+1, ψ(wi+2) = wφt

i+2;

here t = (wφ
i+1w

φ
i+2)

N ,
(wi+1wi+2)

ψ = (wi+1wi+2)
φ

and moreover,
[wψ

i , wψ
i+1] 6= 1, and [wψ

i+1, w
ψ
i+2] 6= 1.

Extending ψ to G[X1 ∪ . . . ∪Xk] by

xψ = xφ, for all x ∈ Xj, where j 6= i, i + 1, i + 2;

15



we see that

(w1 . . . wk)
ψ = wφ

1 . . . wφ
i (wi+1wi+2)

φwφ
i+3 . . . wφ

k = (w1 . . . wk)
φ = g,

and hence ψ is a solution of S = g. Notice that

[wψ
j , wψ

j+1] = [wφ
j , wφ

j+1] for j 6= i, i + 1, i + 2,

and
[wψ

i , wψ
i+1] 6= 1, [wψ

i+1, w
ψ
i+2] 6= 1.

We have to show that [wφt
i+2, w

φ
i+3] 6= 1 if [wφ

i+2, w
φ
i+3] 6= 1. Suppose on the contrary that

[wφ
i+2, w

φ
i+3] 6= 1 and [wφt

i+2, w
φ
i+3] = 1.

Rewrite this equality

t−1w−φ
i+2tw

−φ
i+3t

−1wφ
i+2tw

φ
i+3 = 1.

If N is big enough we have to have either [wφ
i+2, t] = 1, or [wφ

i+3, t] = 1 . If [wφ
i+2, t] = 1

holds, then [wφ
i+1, t] = 1 and [wφ

i+2, w
φ
i+1] = 1, a contradiction.

If [wφ
i+3, t] = 1, then by commutation transitivity [wφt

i+2, t]=1 and hence [wφ
i+2, t] = 1,

and [wφ
i+2, w

φ
i+3] = 1, a contradiction.

Thus we refine the solution φ to a solution ψ which has less then φ commuting
neighbors of the type wψ

j , wψ
j+1. Repeating the process we arrive at a solution in general

postion. It follows that the equation S = g either has a solution in general postion or
all nondegenerate solutions are commutative. 2

Now we can formulate several corollaries for standard quadratic equations and their
radicals. We will consider all three cases separately: orientable of genus ≥ 1, genus =
0, and non-orientable of genus ≥ 1.

Proposition 4 Let S :
∏i=m

i=1 [xi, yi]
∏j=n

j=1 c
zj

j = g (m ≥ 1, n ≥ 0) be a nondegenerate
standard quadratic equation over a residually free group G. Then S = g has a solution
in general position unless S = g is the equation [x1, y1][x2, y2] = 1 or [x, y]cz = 1.

Proof Let n = 0. In this event we have a standard quadratic equation of the type

[x1, y1] . . . [xk, yk] = g,

which we will sometimes write as r1 . . . rk = g, where, as before, ri = [xi, yi].

16



Lemma 11 Let S : [x1, y1][x2, y2] = g be a nondegenerate equation over a nonabelian
fully residually free group G. Then S = g has a solution in general position unless S = g
is the equation [x1, y1][x2, y2] = 1.

Proof Suppose S = g has a solution φ such that rφ
1 = 1 and rφ

2 = 1. Then g = 1 and
our equation takes the form

[x, y][x2, y2] = 1. (7)

From now on we assume that for all solutions φ either rφ
1 6= 1 or rφ

2 6= 1.
Suppose now that just one of the equalities rφ

i = 1 (i = 1, 2) takes place, say rφ
2 = 1.

Write xφ = a, and yφ = b. Then the equation is in the form

[x, y][x2, y2] = [a, b] 6= 1.

This equation has other solutions for example,

ψ : x → ab−1a, y → aba−1, x2 → ab−1aba−1 = a[b, a−1], y2 → ab−1a (8)

for which
rψ
1 = [a2, b]a

−1 6= 1 and rψ
2 = [b, a]a

−1 6= 1.

We claim, that for this particular solution ψ we have [rψ
1 , rψ

2 ] 6= 1. Indeed, [rψ
1 , rψ

2 ] = 1 if
and only if [[a2, b], [b, a]] = 1, but the elements a, b freely generate a free subgroup in G,
and [[a2, b], [b, a]] 6= 1 in F (a, b).

Thus, just one case is left to consider. Suppose that [rφ
1 , rφ

2 ] = 1 and rφ
i 6= 1 (i = 1, 2)

for all solutions φ. To treat this case we need some facts about commutators in a fully
residually free group, which will also be of use later. 2

Lemma 12 Let G be a fully residually free group. If two nontrivial commutators
[a, b] and [c, d] commute in G, then

[a, b] = [c, d] or [a, b] = [c, d]−1.

Proof A nontrivial commutator in a free group is never a proper power, this is a result of
Schutzenberger [15]. Hence, in a free group any two nontrivial commuting commutators
should be in the same cyclic subgroup and, since they are not proper powers, they should
be generators of the cyclic subgroup. Consequently, they satisfy one of the equalities
from the lemma. Now, suppose there are two nontrivial commuting commutators in G
which do not satisfy any of the equalities from the lemma; then we could approximate
these inequalities into a free group – this is a contradiction. 2
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According to Lemma 12 a priori we have two possibilities for the solution φ. But
if at least for one solution φ we have rφ

1 = (rφ
2 )−1, then g = 1, and we have just the

exceptional equation [x1, y1][x2, y2] = 1. So, now we can make an auxiliary assumption
that rφ

1 = rφ
2 for all solutions φ. In this event g = [a, b]2 for some a, b ∈ G and the

equation actually takes the form

[x1, y1][x2, y2] = [a, b]2.

Consider the map ξ :

xξ
1 = ab−1a, yξ

1 = aba−1, xξ
2 = ab−1aba−1, yξ

2 = a.

Then:
rξ
1 = [x1, y1]

ξ = [ab−1a, aba−1] = a−1b−1a2ba−1;

and
rξ
2 = [x2, y2]

ξ = [ab−1aba−1, a] = ab−1a−1b[a, b].

It follows, that

rξ
1r

ξ
2 = a−1b−1a2ba−1ab−1a−1b[a, b] = a−1b−1ab[a, b] = [a, b]2,

i.e. ξ is a solution of the equation. We claim, that [rξ
1, r

ξ
2] 6= 1. Indeed, as we saw

rξ
1r

ξ
2 = [a, b]2, but

rξ
2r

ξ
1 = ab−1a−1b[a, b]a−1b−1a2ba−1.

Taking a homomorphism from G into a free group in such a way that the images of a
and b do not commute, we can assume from the beginning that a and b freely generate
a free subgroup in G. Then the condition [rξ

1, r
ξ
2] = 1 would imply that

[a, b]2 = ab−1a−1b[a, b]a−1b−1a2ba−1

in the free group F (a, b). That is not the case since the two words are reduced and
graphically different.

Thus, we have proved that either S = 1 has the form [x1, y1][x2, y2] = 1, or there is
a solution ψ such that [rψ

1 , rψ
2 ] 6= 1. 2

Lemma 13 Let S : [x1, y1] . . . [xk, yk] = g be a nondegenerate equation over a non-
abelian fully residually free group G and assume that k ≥ 3. Then S = g has a solution
in general position.
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Proof The proof will follow by induction on k.
Let k = 3. Assume first that g = 1. This means we have the equation

[x1, y1][x2, y2][x3, y3] = 1.

It has a solution φ : GS −→ G such that

xφ
1 = a, yφ

1 = b, xφ
2 = b, yφ

2 = a, xφ
3 = yφ

3 = 1,

where a, b are arbitrary noncommuting elements from G. Therefore the equation

[x2, y2][x3, y3] = [b, a]

is nondegenerate of atomic rank 2; hence by the lemma above it has a solution ξ such
that [rξ

2, r
ξ
3] 6= 1. Now we can combine the solutions φ and ξ to get the solution θ, namely,

let
xθ

1 = a, yθ
1 = b, xθ

i = xξ
i , yθ

i = yξ
i , for i = 2, 3.

We have proved that the equation S = g has a solution θ such that rθ
i 6= 1 (i = 1, 2, 3)

and [rθ
2, r

θ
3] 6= 1. Now we are in a position to apply Proposition 3. It follows that there

exists a solution ψ to S = g in general position.
Assume now that g 6= 1. Then there exists a solution φ such that for at least one i

we have rφ
i 6= 1. Renaming variables we can assume that exactly rφ

3 = [a, b] 6= 1. Then
the equation

r1r2 = g[b, a]

has a solution in G. Again we have two cases: if g[b, a] 6= 1 then we can argue as above;
if g[b, a] = 1 then g = [a, b] and the initial equation S = g actually has the form

r1r2r3 = [a, b].

In this event, consider a solution ξ : GS −→ G such that:

xξ
1 = a2, yξ

1 = b, xξ
2 = b, yξ

2 = a2, xξ
3 = a, yξ

3 = b.

We see that rξ
i 6= 1 for all i = 1, 2, 3, and

[rξ
2, r

ξ
3] = [[b, a2], [a, b]] 6= 1

in the free group generated by a, b. By Proposition 3 there exists a solution ψ to S = g
in general position. We are done.
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Let k > 3. The equation
r1 . . . rk = g

has a solution φ such that at least for one i, say i = k (by renaming variables we can
always assume this), we have rφ

k = [a, b] 6= 1. Then the equation

r1 . . . rk−1 = g[b, a]

is nondegenerate and by induction (notice that k ≥ 3) there is a solution ξ such that
[rξ

i , r
ξ
i+1] 6= 1 for all i = 1, . . . , k − 1. Extend this ξ to a solution of the initial equation

S = g defining xξ
k = a, yξ

k = b. Now by Lemma 10 we can refine ξ on the last three
atoms rk−2, rk−1, rk and get a solution ψ such that [rψ

i , rψ
i+1] 6= 1 for all i = 1, . . . , k − 1,

i.e. a solution in general position.
Let n ≥ 1.
Let m = 1. In the event when n = 1 we have the following

Lemma 14 The equation S : [x, y]cz = g over a nonabelian fully residually free
group G always has a solution in general position provided g 6= 1.

Proof Let x → a, y → b, z → d be an arbitrary solution of [x, y]cz = g, where g 6= 1.
Then g = [a, b]cd and the equation takes the form

[x, y]cz = [a, b]cd.

We can assume that [a, b] 6= 1. Indeed, suppose [a, b] = 1. If [c, d] 6= 1, then we can write
the equation as

[x, y]cz = cd = [d, c−1]c

which has the solution x → d, y → c−1, z → 1 such that [x, y] → [d, c−1] 6= 1. So we
can assume now that [c, d] = 1, in which case we have the equation

[x, y]cz = c or equivalently [x, y] = [c−1, z].

The group G is a nonabelian CSA-group; hence the center of G is trivial. In particular,
there exists an element g ∈ G such that [c, g] 6= 1. We see that x → c−1, y → g, z → g
is a solution φ for which [x, y]φ 6= 1.

Thus we have the equation [x, y]cz = [a, b]cd, where [a, b] 6= 1. Consider the map ψ
defined as follows:

xψ = (bcd)−1a, yψ = (bcd)−1b(bcd), zψ = d(bcd).
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Strightforward computations show that

[x, y]ψ = [a, b][b, cd], and (cz)ψ = [cd, b]cd;

hence
[xψ, yψ]czψ

= [a, b][b, cd][cd, b]cd = [a, b]cd

and consequently, ψ is a solution.
We claim that [rψ

1 , rψ
2 ] 6= 1. Indeed, suppose [rψ

1 , rψ
2 ] = 1; then we have

[[x, y]ψ, czψ

] = 1, [[a, b], cd] = 1, and [xψ, yψ]czψ

= [a, b]cd

which implies that in the following sequence of elements in G all neighbors commute

czψ

, czψ

[x, y]ψ, [a, b]cd, cd.

The group G is commutative transitive; so all elements in this sequence pairwise com-
mute, in particular, [czψ

, cd] = 1. This implies [czψd−1
, c] = 1, and consequently, [zψd−1, c] =

1 (the last implication comes from the malnormality of centralizers in G). Thus,

[zφd−1, c] = 1,

which implies that

1 = [dbcdd−1, c] = [dbd−1c, c] = [dbd−1, c] =⇒ [b, cd] = 1.

From transitivity of commutation we obtain that [[a, b], b] = 1, but this contradicts the
fact that the subgroup gp(a, b) is freely generated by a and b. Hence, we have found the
solution ψ such that [rψ

1 , rψ
2 ] 6= 1. 2

Now suppose that n > 1. Let φ : GS −→ G be an arbitrary solution of S = g. Write

h = g(
n∏

j=3

c
zj

j )−φ

and consider the equation
[x, y]cz1

1 cz2
2 = h. (9)

If this equation satisfies the conclusion of the proposition, then by Proposition 3 the
equation S = g will satisfy the conclusion. So we need to prove the proposition just for
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the equation ( 9). There are now just two possibilities. Case a) There exists a solution
ξ of the equation ( 9) such that (cz2

2 )ξ 6= h. In this event by Lemma 14 the equation

[x, y]cz1
1 = h(cz2

2 )−ξ 6= 1

has a solution θ in general position. Hence we can extend this θ to a solution of ( 9) in
such a way that rθ

i 6= 1 for i = 1, 2 and [rθ
1, r

θ
2] 6= 1. Consequently, by Proposition 3 we

can construct a solution ψ in general position.
Case (b) Assume now, that cz2φ

2 = h for all solutions φ of the equation ( 9). Then
we actually have

[x, y]cz1
1 = 1, and cz2

2 = h,

and this system of equations has a solution in G. It follows that c1 = [a, b] 6= 1 for some
a, b ∈ G. Therefore the equation ( 9) is in the form

[x, y][a, b]z1cz2
2 = h,

and has a solution ψ of the type

xψ = bf , yψ = af , zψ
1 = f, zψ

2 = zφ
2

where f is an arbitrary element in G and φ is an arbitrary solution of ( 9). The two
elements [a, b] and h are nontrivial in the CSA-group G hence there exists an element
f ∗ ∈ G such that [[a, b]f

∗
, h] 6= 1. But this implies that if we take f = f ∗ then the

solution ψ will have the property [rψ
2 , rψ

3 ] 6= 1. Now it is sufficient to apply Proposition
3.

The case m = 2. In this event we have the equation

[x1, y1][x2, y2]
j=n∏

j=1

c
zj

j = g.

Again, if there exists a solution φ of this equation such that

(
j=n∏

j=1

c
zj

j )φ 6= g,

then we can write

h = g(
j=n∏

j=1

c
zj

j )−φ,
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and consider the equation
[x1, y1][x2, y2] = h

which according to Proposition 3 has a solution ξ in general position. We can extend
it to a solution of S = g and by Proposition 3 we can construct a solution ψ in general
position.

Let assume now that

(
j=n∏

j=1

c
zj

j )φ = g

for all solutions φ of the equation S = g. This implies that an arbitrary map of the type

x1 → a, y1 → b, x2 → b, y2 → a

extends by means of any φ above to a solution ψ of the equation S = g. Choose a, b ∈ G
such that [[b, a], rφ

3 ] 6= 1 for the given solution φ. This is always possible, because either
[b, a] or [b2, a] does not commute with rφ

3 in the fully residually free group G provided
[a, b] 6= 1. And we again just need to appeal to Proposition 3.

The case m > 2 is easy since if φ is a solution of this equation, then we can consider
the equation

i=m∏

i=1

[xi, yi] = g(
j=n∏

j=1

c
zj

j )−φ

which by Proposition 3 has a solution in general position; after that to finish the proof
we need only apply Proposition 3. 2

Proposition 5 Let S : cz1
1 . . . czk

k = g be a nondegenerate standard quadratic equation
over a fully residually free group G. Then either S = g has a solution in general position
or every solution of S = g is commutative.

Proof By the definition of a standard quadratic equation ci 6= 1 for all i = 1, . . . , k.
Hence every solution of S = g is a nondegenerate. Now the result follows from Proposi-
tion 3. 2

The following simple lemma will be of use throughout the paper.

Lemma 15 Let G be a group, S = 1 be a system over G with variables from X and
w ∈ G[X]. If wφ = 1 for every solution φ : GS −→ G, then S ∼ S ∪ {w} over G.

Proof If wφ = 1 for every solution φ : GS −→ G, then w belongs to the radical Rad(S),
therefore S ∼ S ∪ {w} over G. 2
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Proposition 6 Let S : cz1
1 . . . czk

k = g (k ≥ 2) be a nondegenerate standard quadratic
equation over a CSA-group G such that all of its solutions are commutative. Then S = g
splits over G:

S = g ∼G {[zia
−1
i , ci] = 1 | i = 1, . . . , k},

where ai ∈ G.
Moreover, in this case, up to some linear transformations of variables zi → gizihi =

ui, where gi, hi ∈ G, we can rewrite the system in the form

S ′ = {[ui, bi] = 1 | i = 1, . . . , k},

where bi ∈ G and [bi, bj] = 1 for every i, j.

Proof Notice, that g 6= 1, otherwise the equation S = g is not standard. Fix an arbitrary
solution, say zi → ai, i = 1, . . . , k. Then g = ca1

1 . . . cak
k and [cai

i , c
ai+1

i+1 ] = 1.
Let φ : GS −→ G be an arbitrary solution of S = g. In the CSA-group G we have

[c
zφ
i

i , c
zφ
i+1

i+1 ] = 1, [cai
i , c

ai+1

i+1 ] = 1, c
zφ
1

1 . . . c
zφ
k

k = ca1
1 . . . cak

k .

From transitivity of commutation in G we deduce that for any i, j :

[c
zφ
i

i , c
zφ
j

j ] = 1, [cai
i , c

aj

j ] = 1.

Again, from transitivity of commutation in G (notice that g = ca1
1 . . . cak

k 6= 1) we obtain

[c
zφ
i

i , cai
i ] = 1

and from malnormality of centralizers in G we see that

[zφ
i a−1

i , ci] = 1, i = 1, . . . , k,

for all solutions φ. By Lemma 15

S = g ∼G {cz1
1 . . . czk

k = ca1
1 . . . cak

k , [zia
−1
i , ci] = 1, i = 1, . . . , k} = S1.

The equation [zia
−1
i , ci] = 1 can be rewritten as czi

i = cai
i ; this allows us to eliminate the

initial equation S = g from S1. Thus finally,

S = g ∼G {[z1a
−1
1 , c1] = 1, . . . , [zka

−1
k , ck] = 1} = S1.
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Moreover, [ca1
1 , c

aj

j ] = 1; therefore [c1, c
aja−1

1
j ] = 1. If we conjugate the equation [zja

−1
j , cj] =

1 by dj = aja
−1
1 , we obtain

S = g ∼G {[d−1
j zja

−1
j dj, c

dj

j ] = 1 | j = 1, . . . , k} = S1.

Renaming uj = d−1
j zja

−1
j dj and bj = c

dj

j we can rewrite the system so that

S = g ∼G {[u1, b1] = 1, . . . , [uk, bk] = 1},

where [bi, bj] = 1. This finishes the proof. 2

It easy to describe the radical of the system S ′ = 1 from the proposition above.

Proposition 7 Let S ′ = {[ui, bi] = 1 | i = 1, . . . , k} be a system (with indetermi-
nates ui) over a CSA-group G such that bi ∈ G and [bi, bj] = 1 for every i, j. Then the
radical of the system S ′ is the normal closure of the following system

S∗ = {[ui, C] = 1, [ui, uj] = 1 | i, j = 1, . . . , k}

where C = CG(b1, . . . , bk) . Moreover, GRad(S) = GS∗ is an extension of the centralizer
C in G.

Proof The system S∗ must follow from S ′ because G and, consequently GR(S) , are
CSA-groups. On the other hand, GS∗ is an extension of the centralizer C; hence it is
fully residually G. So the radical Rad(S) coincides with the normal closure of S∗ in
G[u1, . . . , uk]. 2

Corollary 3 Let S : cz1
1 . . . czk

k = g be a nondegenerate standard quadratic equation
over a CSA-group G such that in the case k ≥ 2 all solutions of it are commutative.
Then the radical Rad(S) is equal to

{[a−1
j zj, C] = 1, [a−1

i zi, a
−1
j zj] = 1 | i, j = 1, . . . , k},

where zi → ai is a solution of S = g and C = CG(ca1
1 , ca2

2 , . . . , cak
k ) . Moreover, GR(S) is

an extension of the centralizer C in G.

The proof follows from Proposition 6 and Proposition 7.

Proposition 8 Let S : x2
1 . . . x2

pc
z1
1 . . . czk

k = g be a nondegenerate standard quadratic
equation over residually free group G. Then

25



1. If p ≥ 2, then there is always a nondegenerate solution.

2. If p = 1, then either there is a nondegenerate solution or xψ
1 = 1 for any solution

ψ and the radical of S is the same as the radical of system S : cz1
1 . . . czk

k = g.

3. If k = 0, g = 1 and p ≥ 4 or k = 0, g 6= 1 and p ≥ 3 or k 6= 0 and p ≥ 3, then
there is always a solution in general position.

4. If p ≥ 2, then either there is a solution in general position or all solutions are
commutative and GR(S) is an extension of a centralizer.

Proof 1) All quadratic atoms of the form z−1
i cizi are nontrivial. Suppose ψ(xi) =

a, ψ(xi+1) = 1. Then we can take another solution φ , such that φ(xi) = a2, φ(xi+1) = a−1

and φ(xj) = ψ(xj) for all j 6= i, φ(zk) = ψ(zk).
This solution has fewer trivial atoms.
Suppose ψ(xi) = 1, ψ(xi+1) = 1. Then again we can take another solution φ , such

that for some a φ(xi) = a, φ(xi+1) = a−1 and φ(xj) = ψ(xj) for all j 6= i, φ(zk) = ψ(zk).
This solution again has fewer trivial atoms.
2) Trivial.
3) Suppose there is a solution such that all the atoms commute. If there is a solution

φ such that x2φ
1 . . . x2φ

q = s2
1 . . . s2

q 6= 1, for some q ≥ 3, then there is another solution
ψ(x1) = b, ψ(x2) = b−1, where [b, si] 6= 1, ψ(x3) = s1s2s3, ψ(xi) = φ(xi) , for i 6= 1, 2, 3
and ψ(zk) = φ(zk). For p ≥ 4 and for the case p ≥ 3, k = 0, g 6= 1 such a solution
φ always exists. If p = 3 and x2φ

1 x2φ
2 x2φ

3 = 1, then take an element b which does not
commute with any conjugate of c1 and put ψ(x1) = b2, ψ(x2) = ψ(x3) = b−1.

4) If there is a solution with two noncommuting atoms, then by 1) there is a solution
in general position. All we have to prove is that if all solutions are commutative then
GR(S) is an extension of a centralizer.

Fix an arbitrary nontrivial solution say zi → ai, i = 1, . . . , k, xi → si, i = 1, . . . , p.
Then g = s2

1 . . . s2
pc

a1
1 . . . cak

k and from transitivity of commutation in G we have [cai
i , c

aj

j ] =
1, [cai

i , sj] = 1, [sk, sj] = 1.
Let φ : GS −→ G be an arbitrary solution of S = g. Then

[c
zφ
i

i , c
zφ
j

j ] = 1, [c
zφ
i

i , xφ
j ] = 1, [xφ

j , x
φ
k ] = 1.

Again, from transitivity of commutation in G (notice that g = s2
1 . . . s2

pc
a1
1 . . . cak

k 6= 1,
otherwise the equation is not standard) we obtain

[c
zφ
i

i , cai
i ] = 1,
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and from malnormality of centralizers in G we see that

[zφ
i a−1

i , ci] = 1, i = 1, . . . , k,

for all solutions φ.
The equation [zφ

i a−1
i , ci] = 1 can be rewritten as czi

i = cai
i . So we have x2φ

1 . . . x2φ
p =

s2
1 . . . s2

p. In a residually free group G this equality implies xφ
1 . . . xφ

p = s1 . . . sp. Hence

S = g ∼G {xφ
1 . . . xφ

p = s1 . . . sp, [a
−1
i zi, c

ai
i ] = 1, i = 1, . . . , k, [cai

i , xj] = 1, [xi, xj] = 1, [xi, sj] = 1} = S1.

Write ui = a−1
i zi. Then the radical of the system S1 is the normal closure of the following

system

S∗ = {x1 . . . xp = s1 . . . sp, [ui, C] = 1, [ui, uj] = 1, i, j = 1, . . . , k, [ui, xj] = 1, i = 1, . . . , k,

j = 1, . . . , p, [xi, xj] = 1, i, j = 1, . . . , p},
where C = Cg(c

a1
1 , . . . , cak

k , s1 . . . sp). The group GR(S) is just the extension of a central-
izer C.

The proposition is proved.

3. Atomic rank 1

In this section we prove Theorem 1 for a standard quadratic equation S = d of atomic
rank 1.

Quadratic equations of atomic rank 1 have one of the following three forms.
Form 1. [x, y] = d for some d ∈ G. By the conditions of the theorem this equation

has a solution in the group G, say x → a, y → b, consequently, d = [a, b].
Suppose, [a, b] = 1. Then

GS = G∗ < x, y | [x, y] = 1 >' G ∗ (Z× Z).

Definition 18 Let K =< H, t|at = aφ, a ∈ A > be the HNN-extension of a group H
with associated subgroups A and Aφ. We say that we make a pinch if we replace in the
word w ∈ K a subword at by aφ or a subword aφt−1

by a, a ∈ A.

We need now a modification of a result from [1].
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Lemma 16 Let G be a nonabelian CSA-group, G(u, t) an extension of a centralizer
of G and v ∈ G such that [u, v] 6= 1. Then for z = (tvt)2 the subgroup gp(G, uz, tz) is
G-isomorphic to the free product of G and a free abelian group of rank 2 generated by
uz and tz.

Proof The subgroup H = gp(uz, tz) ≤ G(u, t) is free abelian of rank 2. We claim that
the subgroup N = gp(G,H) is G-isomorphic to G ∗H. Let

x = g0(z
−1h1z)g1(z

−1h2z)g2 . . . (z−1hnz)gn (10)

be an element in N such that: 1 6= hi ∈ H, i = 1, . . . , n and 1 6= gj ∈ G, j = 1, . . . , n− 1
in the case n 6= 0; and g1 6= 1 in the case n = 0. Using the method of normal forms
for free products to prove that N ' G ∗ H one needs only prove that x 6= 1 in the
HNN-extension G(u, t). To get a contradiction, let us suppose that x = 1. If n 6= 0 then
the word ( 10) contains a pinch. Let us consider a “typical” subword of the word ( 10):

(z−1hiz)gi(z
−1hi+1z). (11)

There are only two possible types of pinches in ( 11), namely, hi ∈ C(u) and gi+1 ∈
C(u). In those cases one has t−1hit = hi and t−1gi+1t = gi+1. Then “making a pinch”
one can rewrite the word ( 11) according to the reductions in HNN-extensions. In the
rewritten word new pinches can occur only in subwords of the type v−1hiv and vgi+1v

−1.
But [u, v] 6= 1 and hi ∈ C(u), gi+1 ∈ C(u) and hence v−1hiv 6∈ C(u) and vgi+1v

−1 6∈ C(u)
– this follows from the malnormality of centralizers in CSA-groups. This means that
there are no more pinches in ( 11). This argument shows that pinches in ( 11) and hence
in ( 10) do not affect each other and consequently after all possible reductions in ( 10)
the remaining word represents a nontrivial element in G(u, t) whenever n 6= 0. But if
n = 0 then x = g0 6= 1 by the supposition. The contradiction proves the lemma. 2

The lemma shows that GS is G-embeddable in every nontrivial extension of a cen-
tralizer G(u, t) of G.

Suppose now that [a, b] 6= 1. Then GS is a free product with amalgamation < G ∗
F (x, y) | [a, b] = [x, y] >.

Lemma 17 Let G(u, t) be an extension of a centralizer of a nonabelian CSA-group
G, then the subgroup < G, Gt > is isomorphic to the free product with amalgamation
〈G ∗Gt | C(u) = C(u)t〉.

The proof is similar to the proof of the lemma above, but simpler.
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The element [a, b] is not a proper power in G because G is a residually free group.
By Lemma 17 the subgroup < G, Gt > is G-isomorphic to the free product < G ∗ Gt |
C([a, b]) = C([a, b]t > in the extension G([a, b], t) of the centralizer of [a, b] ∈ G. Any two
noncommuting elements in G (hence in Gt) generate a free subgroup (this is a property
of residually free groups). Therefore the subgroup < G, at, bt > is a free product of G
and the free group < at, bt > with amalgamation [a, b] = [at, bt]; so this subgroup is
G-isomorphic to GS.

Form 2. Let S = 1 be an equation of the type z−1cz = d. Assume now that c is
generator of CG(c).

This equation has a solution in G; so we can assume that d = a−1ca, for some a ∈ G.
This implies [za−1, c] = 1. Hence,

GS = 〈G, z | [za−1, c] = 1〉 ' 〈G, t | [t, c] = 1〉,

where t is a new letter obtained by the corresponding Tietze transformation (t = za−1).
So, in this case, GS is an extension of a centralizer of G.

Suppose that CG(c) 6=< c >; In this case by Lemma 15

{S = 1} ∼ {[za−1, CG(c)] = 1} = S1.

The group GS1 is an extension of a centralizer of G; hence it is residually G, and conse-
quently, Rad(S) is the normal closure of [za−1, CG(c)] in G[z]. Thus GR(S) is embeddable
into an extension of a centralizer of G.

Form 3. S = 1 is in the form x2 = d (the case d = 1 is included).
If x → a is a solution of S = 1 in G, then a2 = d and our equation takes the form

x2 = a2.
Hence {x2 = d} ∼ {x = a} for some a ∈ G such that d = a2. The group 〈G, x | x = a〉

is isomorphic to G, and consequently, it is a residually G group. Hence the radical R(S)
is equal to the normal closure of xa−1 in G[x] and G = GR(S) The case k = 1 is finished.

Remark 1 In this proof we used just the following properties of the group G: G is a
nonabelian CSA-group; every nontrivial commutator is not a proper power in G; every
two noncommuting elements in G generate a free subgroup.

4. Some auxiliary results

We shall need the following auxiliary results.
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Lemma 18 For all solutions φ of the equation cmxcn = clz in a free group F one
has [xφ, c] = 1, [zφ, c] = 1.

Proof We can assume, that the absolute value of at least one of the numbers m,n, l is
equal to 1. Otherwise [xφ, c] = 1, [zφ, c] = 1 (see [15]) Without loss of generality we can
suppose that l = 1. Suppose φ(x) = a, φ(z) = b.

We can rewrite the equation in the form c−mcmab−1
cnb−1

c−n = c1−m−n or [cm, ab−1][b, c−n] =
c1−m−n. The members of the lower central series of the free group are isolated subgroups.
Hence in the case m + n 6= 1 this equality implies that c belongs to the intersection of
the lower central series of F . This intersection is trivial; hence c = 1.

Consider now the case n = 1−m. Let H be the subgroup generated by c and a. If
[a, c] 6= 1, then H is free of rank 2. Elements c and d = cmacn are virtually conjugate
in H (i.e., they are conjugated in a free group F ) and not proper powers in H. By
Theorem 4 from [4] we have: either c and d are conjugate in H (but this is not the case,
because c and d are cyclically reduced in H and of different length in H) or the element
t−1ctd−1 = t−1ct(cmacn)−1 is primitive in the free group < a, c, t > . But this is also
impossible, because t−1ct(cmacn)−1 belongs to the commutator subgroup of < a, c, t > .

This implies that [a, c] = 1. But then c = cb and [c, b] = 1. 2

Lemma 19 Let H be a CSA-group and

Φ = {φ : H −→ Hφ}
be a separating family of homomorphisms of H. Then for any finite partition Φ =⋃n

i=1 Φi there exists an index i(1 ≤ i ≤ n) such that Φi is also a separating family of
homomorphisms.

Proof A family of homomorphisms Φ separates H if and only if the diagonal homo-
morphism η : H −→ ∏

φ∈Φ Hφ is an embedding. For every i(i = 1, . . . , n) we have the
diagonal homomorphism

ηi : H −→ Hi =
∏

φ∈Φi

Hφ.

Now we can concoct the diagonal homomorphism

η : H −→
n∏

i=1

Hi,

which is an embedding because Φ is a separating family for H. To prove the proposition
it is sufficient to prove that at least one of homomorphisms is an embedding. Let Ki be
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the kernel of the map ηi. If all these kernels are non-trivial, then we can choose nontrivial
elements ki ∈ Ki. Then, according to the CSA-property, there are some elements xi ∈ H
such that the commutator

c = [[[k1, k
x2
2 ], kx3

3 ], . . . , kxn
n ]

is non-trivial. But the image of c under η is trivial, since every ηi maps c onto 1 (because
ηi maps ki onto 1). This contradicts the fact that η is an embedding. 2

Lemma 20 Let G be a fully residually free group, a, b ∈ G, [a, b] 6= 1, and let
CG(ab) not be conjugate to either CG(a) or CG(b). Let A consist of alternating products
of nontrivial elements pi ∈ CG(a) and qj ∈ CG(ab), such that the alternating product
does not belong to < b >. Let B = CG(b)\ < b >, and h = h0g1h1 . . . gnhn be an
alternating product of elements gi ∈ B and hj ∈ A, which does not begin and end with
an element from B. Then h 6∈ CG(b).

Proof For each homomorphism φ : G → F if [a, b]φ = 1, then either aφ or bφ or (ab)φ

is not a proper power, see [15]. The family Φ of discriminating homomorphisms for G
can be subdivided into three subfamilies Φ1, Φ2 and Φ3 corresponding to these three
possibilities (we can assume [a, b]φ = 1 for each φ ∈ Φ.

By Lemma 19 one of these three families Φj is a separating family for G. According
to the CSA property for any nontrivial elements k1, . . . kn ∈ G there are some elements
xi ∈ G such that the commutator

c = [[[k1, k
x2
2 ], kx3

3 ], . . . , kxn
n ]

is non-trivial. As a separating family Φj contains a homomorphism φ such that cφ 6= 1.
Hence φ separates the elements k1, . . . , kn. Hence Φj is discriminating. Suppose for
definiteness that Φ3 is a discriminating family. Then for any c ∈ CG(ab) and any φ ∈ Φ3

cφ = (aφbφ)n, for some n.
We show now, that for an element s ∈ A [s, b] 6= 1. Indeed, by Lemma 21 s belongs

to the free product of the centralizers CG(a) and CG(ab); b also belongs to this free
product, has length 2 as a reduced word in the free product, and is not a proper power.
Hence the centralizer of b in this free product is < b >.

We will show that for h1, . . . , hk ∈ A and g1, . . . , gk−1 ∈ B, h1g1 . . . hkbh
−1
k . . . g−1

1 h−1
1 b−1 6=

1.
Let hi = bti1pi1qi1 . . . pimi

qimi
bti2 and ci = [pi1qi1, b] 6= 1anddi = [pimi

qimi
, b] 6= 1. Such

representation exists because [hi, b] 6= 1. There is a homomorphism φ ∈ Φ3 separating
the elements [hi, b], ci, di, b

ti2+αgib
ti+1,1+β, where α, β ∈ {0, 1,−1}.
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Consider
hφ

1g
φ
1 . . . hφ

kbh
−φ
k . . . g−φ

1 h−φ
1 b−1. (12)

Let aφ = a0, b
φ = b0. Consider this element as an element in the free product of CF (a0)

and CF (b0), and suppose that all hφ
i ’s are in the reduced form in this product, hence

containing a0, then (12) will be in the reduced form, because there are no pinches in
hφ

i g
φ
i hφ

i+1 or in (hkbh
−1
k )φ. 2

5. Atomic rank 2

In this section we shall prove the following result.

Proposition 9 For every fully residually free group G and every nondegenerate stan-
dard quadratic equation S = 1 of atomic rank 2 that has a solution in general position
over G there is an extension of centralizers G(U, T ) and a G-embedding ψ : GS −→
G(U, T ).

Let S = 1 be a standard nondegenerate quadratic equation of atomic rank 2. In this
case the equation S = 1 can be written as

r1 r2 = g, g ∈ G,

where r1, r2 are standard quadratic atoms of the types:

[x, y], z−1cz, x2.

With respect to the different forms of atoms we consider four cases.
1) If r1 = [x, y], then the equation takes form

[x, y]r2 = d.

There exists a solution φ : GS → G of the equation S = 1 over G such that [rφ
1 , rφ

2 ] 6=
1. Let

φ : x → a, y → b, r2 → c.

This implies that [a, b]c = d , [a, b] 6= 1, and that the centralizers CG([a, b]) and CG(c)
have trivial intersection (because G is a CSA-group).

Let us consider a group G(U, T ) which is obtained from G by two extensions of
centralizers:

G(U, T ) = 〈G, s, u | [CG([a, b]), s] = 1, [CG([a,b],s)(d), u] = 1〉.
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Define a G-map ψ which depends on the form of the atom r2: if r2 = [x2, y2], then

ψ : x → asu, y → bsu, x2 → (xφ
2)

u, y2 → (yφ
2 )u;

if r2 = z−1cz, then
ψ : x → asu, y → bsu, z → (zφ)u.

The map ψ can be extended to a G-homomorphism ψ : GS −→ G(U, T ). Indeed,

(r1r2)
ψ = ((r1)

φ)su(rφ
2 )u = (rφ

1 rφ
2 )u = du = d.

Proposition 10 Let φ : GS → G be a solution of the equation S = 1 over G such
that [rφ

1 , rφ
2 ] 6= 1. Then the G-homomorphism ψ : GS → G(U, T ) defined above is monic

on the subgroup H = 〈G, x, y〉.

Proof From Lemma 9 we know that H ' G ∗ F (x, y). Hence to prove the proposition
we need to show that ψ is monic on F (x, y) and Hψ ' G ∗ F (x, y)ψ (we have Gψ = G
since ψ is a G-map). The homomorphism ψ is monic on F (x, y) if and only if

F (x, y)ψ ' F (xψ, yψ) ' F (xφ, yφ)su ' F (xφ, yφ) = F (a, b),

which is equivalent to say that a, b freely generate a free subgroup of rank 2. Notice,
that rφ

1 = [a, b] 6= 1 in G and the group G is residually free; so the subgroup 〈a, b〉 is
indeed free of rank 2. Now it is sufficient to prove that Hψ ' G ∗ F (x, y)ψ.

Choose an arbitrary nontrivial element h ∈ H. It can be written in the form

h = g1 v1(x, y) g2 v2(x, y) g3 . . . vn(x, y) gn+1,

where 1 6= vi(x, y) ∈ F (x, y) are words in x, y and 1 6= gi ∈ G (with the possible
exception of g1 and gn+1, they could be trivial). Then

hψ = g1 v1(a, b)su g2 v2(a, b)su g3 . . . vn(a, b)su gn+1. (13)

The group G(U, T ) is obtained from G by two HNN-extensions (extensions of central-
izers), so every element in G(U, T ) can be rewritten in reduced form by making finitely
many pinches. In the case of G(U, T ), to make a pinch means to rewrite the element
according to the following rules: (here e ∈ {1,−1}, p ∈ CG([a, b]), q ∈ CG([a,b],s)(d))

seps−e → p, uequ−e → q,
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which allows us to cancel s or u.
Claim: The leftmost occurrence of u in the product (13) occurs in the reduced form

of hψ uncancelled. Moreover, the element hψ can be written in the following reduced
form

hψ = g1u
−1wf, (14)

where :
a) either w is an alternating product p1q1 . . . pkqk of nontrivial elements (perhaps,

with the exception of qk) such that pi ∈ CG([a, b]) and qi ∈ CG(d) or w is trivial;
b) f begins with either the letter u or s or their inverses, or f is trivial. In particular,

if w = 1 then f does not begin with u±1 because the form (14) is reduced.
We prove the claim by induction on n. If n = 1, and hψ is already a reduced form,

then the claim is obviously correct. Suppose now, there is a pinch there. Since u does
not commute with any element of G(U, T ) containing s in reduced form s−1v(a, b)s, then
we should have a pinch s−1v(a, b)s. This means v(a, b) ∈ CG([a, b]). After cancelling s
we have

hψ = g1u
−1v(a, b)ug2;

this is a reduced form , since the centralizers of d and [a, b] have trivial intersection. In
this case w = v(a, b) = p1 , f = ug2 and all conditions of the claim are satisfied.

Assume now that hψ is in the general form (13) and n > 1. Let

hψ
1 = g2 v2(a, b)su g3 . . . vn(a, b)su gn+1.

By induction we can write hψ
1 in a reduced form which satisfies the conditions of the

claim:
hψ

1 = g2u
−1w1f1.

In particular, if w 6= 1, then w = p2q2 . . . is an alternating product of nontrivial elements
from the corresponding centralizers. It follows that

hψ = g1u
−1s−1v(a, b)sug2u

−1w1f1. (15)

If this form is reduced, then it satisfies the statement of the claim. If (15) is not reduced
then either s−1v(a, b)s or ug2u

−1 (or both) should be a pinch; indeed, g2u
−1w1f1 is

already reduced by induction; so either the pinch is inside g1u
−1s−1v(a, b)sug2 (and this

case was already discussed for n = 1), or it should be of the type ug2u
−1. If s−1v(a, b)s

is the only pinch in (15) then cancelling s we have a reduced form which evidently
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satisfies the claim. If ug2u
−1 is a pinch, but s−1v(a, b)s is not a pinch, then we have

g2 = q1 ∈ CG(d) and

hψ = g1u
−1s−1v(a, b)sq1w1f1 = g1u

−1s−1v(a, b)sq1p2q2 . . . f1.

If we have both possible pinches then v(a, b) = p1 ∈ CG([a, b]) and

hψ = g1u
−1p1q1p2q2 . . . f1.

In the last two cases to meet the conditions of the claim, we need to prove that the
rewritten forms are reduced; it is sufficient to prove that any alternating product w =
p1q1 . . . of length at least two, in which all factors are nontrivial, does not belong to
either of centralizers CG([a, b]) , CG(d). Now we need

Lemma 21 Let G be a fully residually free group. If centralizers A = CG(g) and
B = CG(h) in G do not coincide, then the subgroup C = 〈A,B〉 generated by them in G
is isomorphic to the free product A ∗B.

Proof Consider an alternating product of the type

c = c1c2 . . . cn, ci ∈ A ∪B,

where neighbors ci and ci+1 are in different centralizers. The group G is fully residually
free; so there exists a homomorphism λ : G −→ F which separates all the elements ci in
F and also separates the commutator [g, h]. The inequality [gλ, hλ] 6= 1 ensures that the
centralizers CF (gλ) and CF (hλ) do not coincide in F , and, consequently, they generate
a free subgroup of rank two, which is exactly their free product. Hence,

cλ = cλ
1c

λ
2 . . . cλ

n 6= 1.

This implies c 6= 1 and therefore C ' A ∗B. 2

We have almost completed the proof of Proposition 10; indeed, the element w =
p1q1 . . . has length at least 2 in the free product C = CG([a, b]) ∗ CG(d); hence, it does
not belong to either of the factors. The proposition has been proved.

Case 1a) Let the equation r1r2 = d be of the form [x, y][z, w] = d. Then by Proposi-
tion 1 Gr1r2=d ' Hr2=r−1

1 d and by Proposition 10 H is G-embeddable into some G(U, T ).

Hence, by Proposition 2 Hr2=r−1
1 d is embeddable into G(U, T )r2=r−1

1 d. According to Sec-

tion 3, G(U, T )r2=r−1
1 d is embeddable into G(U, T )(U1, T1) = G(U ∪ U1, T ∪ T1) for some

U1 and T1.
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Case 1b) Let the equation S = 1 have the form

[x, y]z−1
1 c1z1 = d,

and suppose there is a solution φ of this equation such that [rφ
1 , rφ

2 ] 6= 1. Denote zφ
1 =

a1, x
φ = a, yφ = b.

Consider the following group which is obtained from G by two extensions of central-
izers:

G(U, T ) = 〈G, s, u | [CG(ca1
1 ), s] = 1, [CG(d), u] = 1〉.

Notice that the centralizers CG(ca1
1 ) and CG(d) have trivial intersection in G. This shows

that the centralizers of s and u in G(U, T ) have trivial intersection (see [MR]); moreover:

CG(U,T )(s) = 〈CG(ca1
1 ), s〉, CG(U,T )(u) = 〈CG(d), u〉. (16)

Define a G-map β : GS −→ G(U, T ) by:

z1 −→ a1 s u, x −→ au, y −→ bu.

By straightforward verification we see that

(r1r2)
β = [a, b]a−1

1 c1a1 = d;

hence, ψ defines the G-homomorphism which we denote again by ψ : GS −→ G(U, T ).

Proposition 11 The restriction of β onto the subgroup H = 〈G, z1〉 is monic.

The proof of this proposition is the same as the proof of Proposition 12 below. Now
to finish Case 1b) it is sufficient to repeat the argument from the end of 1a).

Case 2) Let the equation S = 1 have the form

z−1
1 c1z1 z−1

2 c2z2 = d,

and suppose there is a solution φ of this equation such that [rφ
1 , rφ

2 ] 6= 1. Denote zφ
i =

ai, i = 1, 2. Then d = ca1
1 ca2

2 , and [ca1
1 , ca2

2 ] 6= 1. We can also assume that the solution
φ also satisfies an auxiliary condition [a1, c1] 6= 1. In fact, if [a1, c1] = 1, instead of φ we
can consider the solution

φ′ : z1 −→ a1d, φ′ : z2 −→ a2d
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in the group G (clearly, φ′ is a solution of our equation). Now, if [a1d, c1] = 1 then
[d, c1] = 1, but d = c1c

a2
2 , therefore [c1, c

a2
2 ] = 1 – a contradiction to the condition

[rφ
1 , rφ

2 ] 6= 1.
In this event we have also

[ca1
1 , c1] 6= 1.

Otherwise CG(c1)
a1∩CG(c1) 6= 1, but the group G is a CSA-group; hence every stabilizer

is malnormal in G and consequently a1 ∈ CG(c1), which implies that [c1, a1] = 1 – a
contradiction to the choice of φ.

In the CSA-group G the centralizers CG(c1), CG(c2), CG(d) are either conjugate to
each other or at least one of them, say CG(d), is not conjugate to any of the others.

Suppose [cbi
i , d] = 1 for some bi ∈ G, i = 1, 2. Then (cb1

1 )b−1
1 z1(cb2

2 )b−1
2 z2 = d, where

[cb1
1 , cb2

2 ] = 1. By Lemma 18 for every solution φ of this equation we have [(b−1
i zi)

φ, cbi
i ] =

1, i = 1, 2. This implies [rφ
1 , rφ

2 ] = 1 - contradiction with conditions of the proposition.
Hence, every conjugate of CG(d) intersects trivially with CG(c1) and CG(c2).

Consider the following group which is obtained from G by two extensions of central-
izers:

G(U, T ) = 〈G, s, u | [CG(ca1
1 ), s] = 1, [CG(d), u] = 1〉.

Since every conjugate of CG(d) has trivial intersection in G with CG(c1), then (see [MR]):

CG(U,T )(s) = 〈CG(ca1
1 ), s〉, CG(U,T )(u) = 〈CG(d), u〉. (17)

Define a G-map ψ : GS −→ G(U, T ) by:

z1 −→ a1 s u, z2 −→ z2 u.

By straightforward verification, we see that

(r1r2)
ψ = a−1

1 c1a1 a−1
2 c2a2 = d;

hence, ψ defines a G-homomorphism which we denote again by ψ : GS −→ G(U, T ).

Proposition 12 The restriction of ψ to the subgroup H = 〈G, z1〉 is monic.

Proof We know that H ' G ∗F (z1). It is sufficient to prove then that Hψ ' G ∗F (zψ
1 ).

Let
h = g1z

`1
1 g2 z`2

1 . . . z`n
1 gn+1
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be an element in H such that hψ = 1. Then

hψ = g1(a1su)`1 g2 (a1su)`2 . . . (a1su)`ngn+1 = 1. (18)

The group G(U, T ) is obtained from G by two HNN-extensions (extensions of centraliz-
ers); so every element in G(U, T ) can be rewritten in its reduced form by making finitely
many pinches. In our case to make a pinch means to rewrite the element according to
the following rules: (here e ∈ {1,−1}, p ∈ CG(ca1

1 ), q ∈ CG(d))

seps−e → p, uequ−e → q,

which allow us to cancel s or u.
Claim: In the product (18) the leftmost occurrence of s, in the case when `1 > 0, or

u, in the case when `1 < 0, occurs in the reduced form of hψ uncancelled . Moreover,
the element hψ can be written in one of the following two reduced form:

a) `1 > 0 :
hψ = g1a1swf, (19)

where either w is trivial or w is an alternating product of nontrivial elements (with
a possible exception of pk, qk) of the type q1p1 . . . qkpk, such that pi ∈ CG(ca1

1 ) and
qi ∈ CG(d); and f = s−1a−1

1 (a1su)`2k+1g2k+1 . . . , if qk 6= 1 and f = u(a1su)`2k−1−1g2k . . . ,
if qk = 1.

b) `1 < 0 :
hψ = g1u

−1wf, (20)

where either w is trivial or w is an alternating product of nontrivial elements (maybe,
with a possible exception of pk, qk) of the type p1q1 . . . pkqk such that pi ∈ CG(ca1

1 ) and
qi ∈ CG(d); and f = u(a1su)`2k−1g2k+1 . . . , if qk = 1, pk 6= 1 and f = s−1a−1

1 (a1su)`2k+1+1g2k+2 . . . ,
if pk = 1.

We prove the claim by induction on n in (18). For n = 1 we have

hψ = g1(a1su)`1 g2.

This form is reduced and the claim is obviously correct.
Assume now that hψ is in the general form 18 and n > 1. Let

hψ
1 = g2 (a1su)`2 . . . (a1su)`ngn+1.

By induction we can write hψ
1 in a reduced form which satisfies the conditions of the

claim. The arguments we use depend on the signs of exponents `1 and `2.
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Subcase 1) Let `2 > 0. In this event by induction the element hψ
1 can be written in

the reduced form as
hψ

1 = g2a1swf,

where w1 = q1p2 . . . qkpk is an alternating product of pi ∈ CG(ca1
1 ), qi ∈ CG(d) such that

all of them are not trivial except, perhaps, pk.
If `1 > 0 then

hψ = g1(a1su)`1 g2a1sw1f1,

and this form is evidently reduced.
Suppose `1 < 0. Then we have

hψ = g1 (u−1s−1a−1
1 )|`1| g2a1sw1f1.

According to the description of the centralizers of s, u in (17) the element u commutes
just with powers of u and some elements from G; the same is true for s. Therefore to
have a pinch we must have a−1

1 g2a1 ∈ CG(ca1
1 ). Write p1 = a−1

1 g2a1. Now, we see that by
cancelling s we get

hψ = g1 (u−1s−1a−1
1 )|`1|−1u−1 p1w1f1,

and this form is already reduced, since w1 begins with q1 ∈ CG(d), and consequently
w = p1w1 = p1q1p2 . . . qkpk does not belong to the centralizer CG(d) (this means that we
will not have a pinch even if f1 begins with letter u). Moreover this reduced form of hψ

satisfies the condition a) of the claim.
Subcase 2) Let `2 < 0. In this case by induction the element hψ

1 can be written in
reduced form as

hψ
1 = g2u

−1w1f1,

where w1 = p1q2 . . . pkqk.
If `1 < 0, then we have no pinches in the product

hψ = g1(u
−1s−1a−1

1 )|`1|g2u
−1w1f1.

So this is a reduced form of hψ and it satisfies the condition b) of the claim.
If `1 > 0, then we have

hψ = g1(a1su)`1g2u
−1w1f1.

To have a pinch we must have g2 ∈ CG(d), and by writing q1 = g2 we obtain

hψ = g1(a1su)`1−1a1sq1w1f1.
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As above, this form is reduced and satisfies the conditions of the claim.
The outcome of this discussion is that for every nontrivial h ∈ H there exists a

reduced form of hψ in which the leftmost letter (u or s) is uncancelled. Consequently,
hψ 6= 1.2

Let, as above, the equation S = 1 have the form

z−1
1 c1z1 z−1

2 c2z2 = d,

where c1, c2 ∈ G. Let there be a solution φ of this equation such that [rφ
1 , rφ

2 ] 6= 1. Let
zφ

i = ai, i = 1, 2. Then d = ca1
1 ca2

2 , and [ca1
1 , ca2

2 ] 6= 1. As above, we can assume that the
solution φ also satisfies an auxiliary condition [a1, c1] 6= 1. In this event we have

[ca1
1 , c1] 6= 1.

Conjugating the equation by a−1
2 and changing variables we can rewrite the equation in

the form z−1
1 c1z1 z−1

2 c2z2 = ca
1c2 = d. If some conjugate of c1 commutes with c2, then

instead of c1 we can take this conjugate.
We can suppose that CG(ca

1c2) is not conjugated to CG(c1) and not conjugated to
CG(c2). Indeed, either all the three centralizers are mutually non-conjugated or two of
them are conjugated; then changing variables, we can suppose that c1 and c2 commute.
In the latter case, using approximations and Lemma 18 one shows that CG(ca

1c2) is not
conjugated to CG(c1).

Consider the following group which is obtained from G by four extensions of central-
izers:

G(U, T ) = 〈G, s, u, t, r | [CG(ca
1), s] = 1, [CG(d), u] = 1, [t, CG(c2)] = 1, [r, CG(d,u)c

u
2 ] = 1〉.

CG(U,T )(s) = 〈CG(ca
1), s〉, CG(U,T )(u) = 〈CG(d), u〉, CG(U,T )(r) = 〈CG(c2)

u, tu, r〉. (21)

In the case when [c1, c2] = 1 we have

CG(U,T )(s) = 〈CG(ca
1), s, r

u−1a, ta〉, CG(U,T )(u) = 〈CG(d), u〉. (22)

Define a G-map ψ : GS −→ G(U, T ) by:

z1 → a s u, z2 → t u r.

By straightforward verification we see that

(r1r2)
ψ = d;

hence, ψ defines the G-homomorphism which we denote again by ψ : GS −→ G(U, T ).
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Proposition 13 The homomorphism ψ is monic.

Proof Let
h̄ = ḡ1z

i1
2 ḡ2 zi2

2 . . . zik
2 ḡk+1 (23)

be an element in GS in reduced form such that ḡi ∈ G ∗ F (z1) ' H and hψ = 1. Then

h̄ψ = ḡψ
1 (tur)i1 ḡψ

2 (tur)i2 . . . (tur)ik ḡψ
k+1 = 1. (24)

The element h̄ was in reduced form in GS; hence in the case ij < 0, ij+1 > 0 ḡj+1 6∈<
c2 >, and in the case ij > 0, ij+1 < 0, ḡj+1 6∈< c2 >u .

The group G(U, T ) is obtained from G by four HNN-extensions (extensions of cen-
tralizers); so every element in G(U, T ) can be rewritten in its reduced form by making
finitely many pinches.

From the description of the centralizer of r and elements from Hψ in the proof of
Proposition 12, it follows that in (24) in the product (r−1u−1t−1)g(tur), where g ∈ Hψ,
r can only be cancelled if g ∈ CG(c2). Notice that g 6∈< c2 > because h̄ is in the reduced
form. In that case (r−1u−1t−1)g(tur) = gu. Direct verification shows that in the product
(tur)g(r−1u−1t−1), where g ∈ Hψ ,the element r cannot be cancelled.

Replace all products (r−1u−1t−1)g(tur), where g ∈ CG(c2)\ < c2 > in the element
(24) by gu. There are two possibilities.

1. The element h̄ψ does not contain r anymore. Then it is an alternating product of
elements in Hψ\ < c2 >u, and in (CG(c2)\ < c2 >)u.

2. The element h̄ψ contains r.
We start with the second case. The nontriviality of h̄ψ in the first case will be proved

in the process of considering the second case.
Consider the product

(tur)g(r−1u−1t−1), (25)

where g is an alternating product of elements in Hψ\ < c2 >u, and in (CG(c2)\ < c2 >)u,
g does not begin and end with a syllable in (CG(c2)\ < c2 >)u. Such restrictions on
the alternating product follow from the fact that (23) was in reduced form in GS. In
this product we can make an r-pinch if and only if g belongs to a subgroup generated
by CG(c2)

u, tu and possibly sa−1u (if c1 ∈ CG(c2)). This would only be possible if g
had the form of gu

1 , where g1 does not contain u. From the Claim in the proof of
Proposition 12, it follows that g1 must be an alternating product of nontrivial elements
from CG(c2)\ < c2 > and

A = {p1q1 . . . pk|pi ∈ CG(ca
1), qj ∈ CG(ca

1c2), i, j = 1, . . . , k;
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pi 6= 1, qj 6= 1, i = 2, . . . k − 1, j = 1 . . . k − 1},
and g1 begins and ends with elements from A. But by Lemma 20 such an element g1

belongs to G and does not belong to CG(c2); hence gu
1 does not belong to the centralizer

of r. So there is no r-pinch in (25).
Consider the product

(r−1u−1t−1)g(tur), (26)

where g is an alternating product of elements in Hψ, and in (CG(c2)\ < c2 >)u, g 6∈ Hψ.
This product can be rewritten as

(u−1t−1ur−1u−1)g(uru−1tu). (27)

Then g must not contain s and must be in the form g = gu
1 , where g1 is an alternating

product of elements from CG(c2)\ < c2 > and A. But r does not commute with u−2g2u
2,

where g2 ∈ G; so we cannot have r-pinch in the product (27).
Finally, in the element (24) either u or r cannot disappear. 2

Case 3) If r1 = x2 and r2 = z−1cz, there exists a solution φ : GS → G of the
equation S over G such that [rφ

1 , rφ
2 ] 6= 1. Let

φ : x → a, z → b.

This implies that a2b−1cb = d , a 6= 1, the centralizers CG(a) and CG(cb) have trivial
intersection (because G is a CSA-group), and, consequently, that the centralizers CG(a)
and CG(d) have trivial intersection.

Let us consider the group G(U, T ) obtained from G by three extensions of a central-
izer:

G(U, T ) = 〈G, u, s, r | [CG(d), u] = 1, [CG(cb), s] = 1, [CG(d,u)(c
bu), r] = 1〉

Define a G-map ψ
ψ : x → au, , z → bsur.

The map ψ can be extended to a G-homomorphism ψ : GS −→ G(U, T ).

Proposition 14 Let φ : GS → G be a solution of the equation S over G and such
that [rφ

1 , rφ
2 ] 6= 1. Then the G-homomorphism ψ : GS → G(U, T ) defined above is monic.

The proof is very similar to the proposition above, but much simpler.
Case 4) Suppose r1 = x2, r2 = y2. In this case the equation takes the form

x2y2 = d.
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There exists a solution φ : GS → G of the equation S over G such that [rφ
1 , rφ

2 ] 6= 1.
Let

φ : x → a, y → b.

This implies a2b2 = d , a 6= 1, the centralizers CG(a) and CG(b) have trivial intersection
(because G is a CSA-group), and, consequently, the centralizers CG(a) and CG(d) have
trivial intersection.

Let us consider a group G(U, T ) which is obtained from G by a single extension of a
centralizer:

G(U, T ) = 〈G, u | [CG(d), u] = 1〉.
Define a G-map ψ

ψ : x → au, , y → bu,

Proposition 15 Let φ : GS → G be a solution of the equation S over G such that
[rφ

1 , rφ
2 ] 6= 1. Then the G-homomorphism ψ : GS → G(U, T ) defined above is monic.

6. Induction step and the proof of Theorems 1,2,3

We have shown that for every fully residually free group G and every nondegenerate
standard quadratic equation S0 = 1 of atomic rank 2 that has a solution in general
position over G there is an extension of centralizers G(U0, T0) and a G-embedding ψ0 :
GS0 −→ G(U0, T0).

Theorem 4 For every fully residually free group G and an arbitrary nondegenerate
quadratic equation S = 1 over G that has a solution in general position, there exists an
extension of centralizers G(U, T ) and a G-embedding ψ : GS −→ G(U, T ).

Proof First we formulate the following simple lemma.

Lemma 22 Let G be a group and S(X) an arbitrary system of equations over G.
Suppose X = X1 ∪ X2 is an arbitrary partition of the set X. Then any specialization
map ξ : F (X2) −→ G gives rise to a unique G-epimorphism ξ : G[X] −→ G[X1] which
can be extended to the unique G-epimorphism

φξ : GS −→ GSξ

In particular, Sξ(X1) = 1 is a system of equations over G with variables from X1.
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The proof is straightforward.
We will now prove the theorem by induction on the atomic rank. The basis of the

induction is given in the previous section. Suppose that the theorem is true for atomic
rank less than k. Let S be a nondegenerate standard quadratic equation of atomic rank
k > 2 over a group G, which is a subgroup of F (U1, T1). As was mentioned above we
can rewrite it in the form

S2 = gR−1
2 ,

where g ∈ G, S2 = r1r2 and R2 = r3 . . . rk. Let φ : GS → G be a solution of S in G.
Then in G we have the equality

(S2)
φ = (gR−1

2 )φ.

If we denote h = (S2)
φ ∈ G, then the equation

S2 = h

has a solution in G. Notice that if we consider the restriction ξ of φ on the set P2 of all
variables from R2, then the equation S2 = h is exactly of the form Sξ = 1. Hence by
the lemma above we have a canonical G-epimorphism

φξ : GS −→ GSξ .

By Lemma 9 the epimorphism φξ is monic on H = H(1) = gp(G, F (Q1)). The system
S2 = h over G is of atomic rank 2 having a solution in a general position; hence there
exists a G-embedding ψ0 : GR(S2=h) → G(U0, T0), which is monic on H. We identify
now H with Hψ via ψ0 (then G is identified with itself, because ψ0 is a G-map). Thus
H ≤ G(U0, T0). Denote by η the canonical epimorphism η : GS2=h −→ GR(S2=h). By the
conditions of the theorem η is an H-homomorphism. Now, the equation S = 1 can be
written as

R1 = r−1
1 g,

which is an equation over H and is of atomic rank k − 1. By Proposition 1 we have
GS ' HR1 (here, as everywhere above, we omit the constant h in the equation R1 = h
and write simply R1). Let ψ be the composition of φξ, η and ψ0. Then ψ : HR1 −→
G(U0, T0) is an H -homomorphism; in particular, ψ is a solution of the equation R1 = h
(which originally is an equation over H, and consequently, over the group G(U0, T0).
Hence, R1 = h is a non-degenerate standard quadratic equation of atomic rank k − 1
over G(U0, T0). It has a solution in general position. Indeed, [ψ(r2), ψ(r3)] 6= 1 since
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[φ(r2), φ(r3)] 6= 1, and φ is a specialization of ψ. The group G(U0, T0) is fully residually
G and therefore it is fully residually free. By induction there exists an embedding
λ : G(U0, T0)R(R1) −→ G(U0, T0)(U2, T2). We have that G(U0, T0)(U2, T2) = G(U0 ∪
U2, T0 ∪ T2) = G(U ′, T ′). Hence, λ gives an G(U0, T0)-embedding of G(U0, T0)R(R1) into
some extension of centralizers of G. 2

Theorems 1 and 3 now follow from Theorem 4, Propositions 3–8, Section 3 and by
considering case 2) in Section 5. Theorem 2 follows by induction from Theorem 1.
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