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Abstract. Let Fn be the free group of a finite rank n. We study orbits Orbφ(u),
where u is an element of the group Fn, under the action of an automorphism φ. If
an orbit like that is finite, we determine precisely what its cardinality can be if u
runs through the whole group Fn, and φ runs through the whole group Aut(Fn).

Another problem that we address here is related to Whitehead’s algorithm
that determines whether or not a given element of a free group of finite rank is an
automorphic image of another given element. It is known that the first part of this
algorithm (reducing a given free word to a free word of minimum possible length
by elementary Whitehead automorphisms) is fast (of quadratic time with respect
to the length of the word). On the other hand, the second part of the algorithm
(applied to two words of the same minimum length) was always considered very
slow. We give here an improved algorithm for the second part, and we believe this
algorithm always terminates in polynomial time with respect to the length of the
words. We prove that this is indeed the case if the free group has rank 2.

1. Introduction

Let Fn be the free group of a finite rank n ≥ 2 with a set X = {xi}, 1 ≤ i ≤ n,
of free generators. Denote by Orbφ(u) the orbit of an element u of the free group Fn

under the action of an automorphism φ. That is, Orbφ(u) = {v ∈ Fn, v = φm(u) for
some m ∈ Z+}.

One of the problems that we address here is: how many elements can a finite orbit
like that possibly have if u runs through the whole group Fn, and φ runs through the
whole group Aut(Fn)? The answer is provided by the following theorem, in combination
with a result of McCool [9] (see also [4]):

Theorem 1.1. In the free group Fn, there is an orbit Orbφ(u) of cardinality k if and
only if there is an element of order k in the group Aut(Fn).

Thus, the question above is reduced to another question, of finding out what possible
order can a torsion element of the group Aut(Fn) have. The latter was answered by
McCool [9]; more general results were obtained later by Khramtsov [4]. We cite the
relevant result in Section 2, after the proof of Theorem 1.1.

It should be pointed out that the “only if” part of our Theorem 1.1 is no longer
valid if φ is an arbitrary endomorphism. The following example is based on the idea
suggested by C. Sims.
Example. In the free group F3, let φ be the endomorphism that takes x1 to x−1

2 x3;
x2 to x1; x3 to 1. Let u = x1x2x3; then the cardinality of Orbφ(u) is 5, but there is
no element of order 5 in the group Aut(F3).
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Another problem that we consider here, is the following.
Let u be an element of the free group Fn, whose length |u| cannot be decreased by

any automorphism of Fn. Let A(u) denote the set of elements {v ∈ Fn; |v| = |u|, f(v) =
u for some f ∈ Aut(Fn)}. How fast does the cardinality of A(u) grow as a function of
|u|?

The set A(u) is therefore an “abridged” orbit OrbAut(Fn)(u), that includes only
those automorphic images of u that have the same length as u does.

The problem above was motivated by complexity issues for Whitehead’s algorithm
that determines whether or not a given element of a free group of finite rank is an
automorphic image of another given element. It is known that the first part of this
algorithm (reducing a given free word to a free word of minimal possible length by
“elementary” Whitehead automorphisms) is pretty fast (of quadratic time with respect
to the length of the word). On the other hand, the second part of the algorithm (applied
to two words of the same minimum length) was always considered very slow. In fact,
the procedure outlined in the original paper by Whitehead (see e.g. [7]), suggested this
part of the algorithm to be of superexponential time with respect to the length of the
words. However, a standard trick in graph theory shows that there is an algorithm
of at most exponential time (see Proposition 3.1 in Section 3). Moreover, in the case
where the free group has rank 2, we were able to prove

Theorem 1.2. Let u ∈ F2 be a word whose length is irreducible by any automorphism
of F2 (in particular, u is cyclically reduced). Then the number of automorphic images
of u that have the same length as u does, is bounded by a polynomial function of |u|.

In fact, experimental data suggest that the number in the statement of Theorem
1.2 has the (exact!) bound of 8m2−40m for m ≥ 9, where m = |u|, but we were unable
to prove that.

Theorem 1.2 has the following

Corollary 1.3. In the group F2, Whitehead’s algorithm terminates in polynomial time
with respect to the maximum length of the two words in question.

We do not know whether or not Theorem 1.2 and, therefore, Corollary 1.3 hold for
free groups of bigger ranks. However, experimental data kindly provided by C. Sims
allowed us to make the following

Conjecture. In the free group Fn, the cardinality of A(u) is bounded by a polynomial
of degree 2n− 2 in |u|, provided the length of u is irreducible by any automorphism of
Fn.

A most amazing thing is that, according to the experimental data mentioned
above, the maximum cardinality of A(u) that can actually occur under the irreducibil-
ity assumption in the Conjecture, appears to be precisely a polynomial of degree
2n − 2 in m = |u| for sufficiently large m. For n = 2, this polynomial, as we
have already mentioned, is 8m2 − 40m if m ≥ 9. For n = 3, the polynomial is
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48m4 − 480m3 + 1104m2 − 672m if m ≥ 11. A particular element u ∈ F3 of length m
whose orbit A(u) has the cardinality given by the latter polynomial, is, according to
the same experimental data, u = xk

1x2x1x
−1
2 x1x

2
2x

2
3, where k = m− 8.

We also note that, in the case where the free group has rank 2 (but not in the general
case), the condition on |u| to be irreducible by any automorphism can be relaxed to
u just being cyclically reduced. If however we drop this latter condition, the situation
changes, and the number of automorphic images might become exponential:

Proposition 1.4. The number of primitive elements of length m in the group F2 (and
therefore, in any group Fn, n ≥ 2) is:
(a) more than 8

3
√

3
· (√3)m if m is odd.

(b) more than 4
3 · (

√
3)m if m is even.

(c) The number of cyclically reduced primitive elements of length m ≥ 1 in the group
F2 is 4m · Φ(m), where Φ(m) is the Euler function of m, i.e., the number of positive
integers < m relatively prime to m. (Clearly, Φ(m) < m).

Informally speaking, “most” primitive elements in F2 are conjugates of primitive
elements of smaller length. This is not the case in Fn for n > 2, where “most” primitive
elements are of the form u ·x±1

i ·v where u, v are arbitrary elements that do not depend
on xi.

Proof of Proposition 1.4 is given in Section 4.

2. Finite orbits

We start with

Proof of Theorem 1.1.

(1) The “only if” part is a combination of an observation due to G.Levitt (see [5])
with a result of Bestvina and Handel [2]. Here is the argument. Suppose that for some
automorphism ϕ of the group Fn, one has ϕk(g) = g and ϕq(g) 6= g for 0 < q < k.

Consider the action of ϕ on the subgroup H = Fix(ϕk) of all elements fixed by
ϕk. (This subgroup is clearly invariant under ϕ since ϕk(ϕ(h)) = ϕ(ϕk(h)) = ϕ(h).)
Then ϕ is an automorphism of H. Indeed, ϕ is obviously surjective on H since for any
h ∈ H, we have h = ϕ(ϕk−1(h)). If ϕ were not injective on H, then we would have
ϕ(h) = 1 for some h ∈ H, in which case h could not be fixed by ϕk.

Finally, ϕ clearly has order k as an element of the automorphism group Aut(H).
Since H has rank at most n by [2], this yields the “only if” part of the theorem. 2

(2) To prove the “if” part we need the following definition. A group G satisfies the
big powers condition if for any tuple of elements u1, . . . , un from G with [ui, ui+1] 6=
1 (i = 1, . . . , n− 1), there is an integer K such that for any integers M1, . . . , Mn ≥ K,
the following inequality holds:

uM1
1 . . . uMn

n 6= 1.

It is known that every free group satisfies the big powers condition [1]. Now comes
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Lemma 2.1. Let φ be a nonidentical automorphism of Fn. Then there exists an integer
K ≥ 1 such that for any M1, . . . , Mn ≥ K the following inequality holds:

φ(xM1
1 . . . xMn

n ) 6= xM1
1 . . . xMn

n .

Proof. Suppose, by way of contradiction, that for any integer K > 0, there are
integers M1(K), . . . , Mn(K) ≥ K such that

φ(xM1(K)
1 . . . xMn(K)

n ) = x
M1(K)
1 . . . xMn(K)

n .

It follows that

φ(x1)M1(K) . . . φ(xn)Mn(K)x−Mn(K)
n . . . x

−M1(K)
1 = 1 (1)

for all positive integers K. As we have mentioned above, the free group Fn satisfies
the big powers condition, therefore there are two commuting consecutive factors in (1).
Since φ is an automorphism, the only consecutive factors which can possibly commute
are φ(xn)Mn(K) and x

Mn(K)
n . It follows that φ(xn) = xn and (1) takes the form

φ(x1)M1(K) . . . φ(xn−1)Mn−1(K)x
−Mn−1(K)
n−1 . . . x

−M1(K)
1 = 1.

Upon repeating the argument above, we get φ(xi) = xi for all i = 1, . . . , n, i.e., φ is
identical. This contradiction proves the lemma. 2

We now continue with our proof of the “if” part. Given k > 1 and an automorphism
ϕ of order k of the group Fn, we are going to find an element u ∈ Fn, so that the orbit
Orbϕ(u) has cardinality k.

If ϕ is a permutation on the set {x±1
1 , ..., x±1

n }, then any element of the form u =
xM1

1 · ... · xMn
n , Mi 6= 0, would do. If not, then there is at least one free generator, say,

x1, such that ϕ(x1) has length at least 2. Let u = xM1
1 · ... · xMn

n . Then, by Lemma 2.1,
for some choice of K ≥ 1, for any M1, . . . ,Mn ≥ K we have ϕ(u) 6= u.

Similarly, for any m, 1 < m < k, we can construct an element um such that
ϕm(um) 6= um. Every um, m ≥ 2, is chosen to be of the form um = x

M1,m

1 · ... · xMn,m
n

with miniMi,m > maxiMi,m−1, and ϕm(um) 6= um (the latter is possible by Lemma
2.1).

Obviously, with this choice of Mi,j we will also have ϕj(uj) 6= uj for any j ≤ m.
Therefore, for u = uk, the orbit Orbϕ(u) will have cardinality k. 2

We note that possible values of the order of a torsion element of the group Aut(Fn)
are described, according to [9] and [4], as follows. Pick a positive integer k = pα1

1 ·...·pαs
s ,

where p1, ..., ps are different primes. There is an element of order k in the group Aut(Fn)
if and only if

∑s
i=1(p

αi
i −p

αi−1

i ) ≤ n. For example, if k = 15 = 3 ·5; then the sum above
becomes (3-1)+(5-1) =6. Therefore, there is an automorphism of order 15 in the group
Aut(Fn) for n ≥ 6, but not for n ≤ 5.
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We also note that Levitt and Nicolas [6] proved that the maximum order (call it
H(n)) of a torsion element of Aut(Fn) is the same as that of a torsion element of
GLn(Z), with the exception of n =2, 6, and 12. They also established the asymptotic
of this function by showing logH(n) ∼ √

n · log n.

3. Whitehead’s algorithm revised

In this section, we study complexity of Whitehead’s algorithm that determines
whether or not a given element of a free group of finite rank is an automorphic image
of another given element.

It is known that the first part of this algorithm (reducing a given free word to a free
word of minimum possible length by “elementary” Whitehead automorphisms) is pretty
fast (of quadratic time with respect to the length of the word). On the other hand,
the second part of the algorithm (applied to two words of the same minimum length)
was always considered very slow. In fact, the procedure outlined in the original paper
by Whitehead [11], suggested this part of the algorithm to be of superexponential time
with respect to the length of the words. Indeed, given a word u, the procedure calls for
constructing a graph whose vertices correspond to all words of length |u|. That means,
the number of vertices is an exponential function of |u|. After that, for every vertex
of the graph, one constructs edges incident to this vertex as follows: an edge connects
this particular vertex to another vertex if and only if there is an elementary Whitehead
automorphism that takes one of the corresponding words to the other. Finally, to find
out if there is an automorphism that takes the word u to another given word v of the
same length, one has to check all the paths in the graph that start at the vertex that
corresponds to u, and see if some of them leads to the vertex that corresponds to u.
The number of paths in a graph is, in general, an exponential function of the number
of vertices, therefore this algorithm is, in general, of superexponential complexity with
respect to the length of the word u.

It is possible however to skip some steps in this algorithm and get the following

Proposition 3.1. Let N be the number of automorphic images of u ∈ Fn that have
the same length as u does. Then, given an element v of length |u|, one can decide in
linear time with respect to N , whether or not v is an automorphic image of u.

Proof. We are going to use the backtracking method which is a well-known procedure
in graph theory for searching a tree.

Starting with the vertex that corresponds to u = u0, we are building a tree as
follows. (We use the same notation for words and corresponding vertices when there is
no ambiguity).
(1) Apply an arbitrary elementary Whitehead automorphism to u0; if a new word u1 of
the same length is obtained, plot the corresponding vertex and connect it to u0. If not,
then apply another elementary Whitehead automorphism, until you get a new word u1

of the same length. (Note that the total number of those automorphisms C = C(n) is
finite and depends on the rank n of the group Fn only).
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(2) Continue the same process. That is, suppose we have obtained a word ui, i > 0, at
the previous step. This time “a new word” would mean a word different from all the
words obtained at previous steps.

If none of the elementary Whitehead automorphisms produces a new word, then do
“backtracking”, i.e., return to the word obtained at the immediately preceding step,
and repeat the same process.

In the end (i.e., when no new word can be obtained from any of the “old” words),
we shall obviously have a spanning tree of the graph described before the statement of
Proposition 3.1. It will therefore have N vertices and N −1 edges. Furthermore, in the
course of constructing this tree, we did not traverse any of the edges more than twice
(once in each direction).

Thus, the time we need to construct this tree, is no more than C · N , where C is
the constant mentioned above. Once the tree is constructed, it will take just N more
steps to find out if the vertex corresponding to the word v is among the vertices. Or,
we can perform the check every time we get a new vertex, because once we get v, we
can stop. 2

Thus, the speed of Whitehead’s algorithm is determined by the number of auto-
morphic images of an element u ∈ Fn that have the same length as u does. Therefore,
Theorem 1.2 will imply that, in the case where the free group has rank 2, Whitehead’s
algorithm does, in fact, terminate in polynomial time with respect to the length of the
words in question.

We are now ready for

Proof of Theorem 1.2. Throughout the proof, we shall call “length-preserving”
those automorphisms of F2 that are permutations on the set {x, x−1, y, y−1}. There
are 8 of them, so whenever we count the number of automorphic images of a particular
element “up to a length-preserving automorphism”, it means the upper bound for such
a number should be multiplied by 8.

Let M = |u|. Let k be the sum of exponents on x in the word u, and l the sum
of exponents on y. Upon applying a length-preserving automorphism if necessary, we
may assume that k, l ≥ 0. First, we are going to establish the result of Theorem 1.2 for
u /∈ [F2, F2], so we assume that k, l are not both 0. In this case, the result will follow
from the following observations.
(1) For a word of length M , there are

∑M
i=0(i + 1) = 1

2(M + 1)(M + 2) possible pairs
(k, l) with k, l ≥ 0; k + l ≤ M .
(2) It is well known (see e.g. [8]) that the group Aut(F2) is generated by inner automor-
phisms, by 3 length-preserving automorphisms π : x → y, y → x; σx : x → x−1, y → y;
σy : x → x, y → y−1, and by the following two: α : x → xy, y → y, and
β : x → x, y → yx. The subgroup H of Aut(F2) generated by α and β can be
mapped onto SL2(Z). Under this epimorphism, α and β correspond to the matrices(

1 0
1 1

)
and

(
1 1
0 1

)
, respectively. The kernel of this epimorphism is generated
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(as a normal subgroup) by the inner automorphism induced by the element [x, y]; in
particular, every automorphism in the kernel is inner.

Furthermore, relations between generators of Aut(Fk) given in [8, Section 3.5, The-
orem N1] show that in any product of automorphisms α±1, β±1, π, σx, and σy,
automorphisms α±1 and β±1 can be collected on the right. This, together with the
fact that the subgroup of inner automorphisms of F2 is normal in Aut(F2), implies
that applying an automorphism of F2 amounts to first applying an automorphism from
the subgroup H generated by α and β, then a length-preserving automorphism, and,
finally, an inner automorphism.

Therefore, to bound the number of cyclically reduced automorphic images of u with
the same non-zero vector (k, l) of exponent sums, it is sufficient to bound the number of
matrices from SL2(Z) that fix the vector (k, l) acted upon by right multiplication, and
then multiply this number by M (the number of cyclic permutations of a word of length
M). Furthermore, up to a length-preserving automorphism, every automorphism from
the group H corresponds to a matrix from SL2(Z) whose elements in the first row are
of different signs, say, the element in the upper left corner is non-negative, and the
element in the upper right corner is non-positive. (Elements in the first row correspond
to the image of x).
(3) Thus, what is left to do now is to count the number of matrices in SL2(Z) whose
elements in the first row are of different signs, that fix a given non-zero vector (k, l)

with k, l ≥ 0. The computation here is straightforward. Let A =
(

a11 a12

a21 a22

)
be a

matrix from SL2(Z) with a11 ≥ 0, a12 ≤ 0, which fixes a vector (k, l). Then we have
the following system of equations in aij :
k · a11 + l · a21 = k; k · a12 + l · a22 = l; a11a22 − a12a21 = 1.

Suppose first that both k, l 6= 0. Then from the first equation we get a21 = k
l − k

l ·a11,
and from the second equation a22 = 1− k

l · a12. Plug this into the third equation and
simplify: l · a11 − k · a12 = l. Since k, l > 0, a11 ≥ 0, a12 ≤ 0, this gives either
a12 = 0, a11 = 1, or a11 = 0, a12 = − l

k . In the former case, we get a22 = 1, a21 = 0. In
the latter case, a21 = k

l , a11 = 0, a22 = 2.
Now suppose, say, k = 0. Then a21 = 0, a22 = 1, a11 = 1, whereas a12 can be

arbitrary. However, we can show that, should the automorphism corresponding to the
matrix A preserve the length of u, the absolute value of a12 cannot be greater than 2|u|.
Indeed, let K = a12; then the automorphism corresponding to the matrix A is αK , i.e.,
it takes x to xyK , y to y. Suppose K > 2|u|; we may assume that u has at least one
occurence of x. Then αK(u) has a subword xyK (before cancellation). Since we have
assumed that αK(u) has the same length as u does, more than half of yK should cancel
out. This implies that, in the word u itself, there is a subword y−N with N ≥ K+1

2 .
This is a contradiction since K > 2|u|.

Thus, in any of the considered cases, we have no more than 2|u| different matrices
from SL2(Z) that fix a given non-zero vector (k, l).

Summarizing the observations (1), (2), (3), we see that the number of cyclically
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reduced automorphic images of u of length M = |u| is no more than c ·M4 for some
constant c independent of u. This completes the proof in the case where u /∈ [F2, F2].

Now let u ∈ [F2, F2]. In this case, we are going to use induction on the length of u.
To make the induction work, we are going to prove the following somewhat stronger
claim.

Proposition 3.2. Let u ∈ [F2, F2] be cyclically reduced. For any positive integer
K, the number of elements v ∈ F2 such that v = φ(u) for some φ ∈ Aut(F2) and
|v| = |u|+ K, is less than c · 3K · (|u|+ K)4 for some constant c independent of u and
K.

Proof. The basis of induction u = [x, y] is almost obvious. This element is fixed by
any automorphism from H (recall that H is the subgroup of Aut(F2) generated by two
automorphisms, α : x → xy, y → y, and β : x → x, y → yx), and therefore, to
count the number of elements v ∈ F2 such that v = φ(u) for some φ ∈ Aut(F2) and
|v| = |u| + K, we just have to count (up to a length-preserving automorphism) the
number of conjugates of u of length up to |u|+K. This latter number is no bigger than
the number of different elements of length [K/2] in the group F2, i.e., equals 3[K/2].

For the induction step, we first assume that u has a subword of the form [x±1, y±1].
Then, upon applying a length-preserving automorphism if necessary, we may assume
that u has a subword [x, y]. Then a cyclic permutation of u has the form [x, y]w, with no
cancellation between [x, y] and w. Thus, by the remarks in the beginning of the proof
of Theorem 1.2, we may assume that u = [x, y]w. Let φ be an arbitrary automorphism
from H. Recall that every automorphism in H fixes [x, y].

Assume first that w is cyclically reduced. We have two possibilities:
(1) [x, y] is entirely canceled out by φ(w). Then, since φ(u) = [x, y]φ(w), we see
that, if |φ(u)| = |u| + K, we must have |φ(w)| = |w| + K + 4. By the inductive
assumption, the number of automorphic images of w with this property is no more
than c ·3K+4 · |w+K +4|4 for some constant c independent of w and K. Similar result
for u now follows.
(2) Only part of [x, y] cancels out (this includes the case where nothing cancels out).
Then, since φ(u) = [x, y]φ(w) and since an element of the commutator subgroup must
have an even length, we see that, if |φ(u)| = |u|+K, then either |φ(w)| = |w|+K+2, or
|φ(w)| = |w|+ K. By the inductive assumption, the number of automorphic images of
w with this property is no more than c ·3K+2 · |w+K+2|4 (respectively, c ·3K · |w+K|4)
for some constant c independent of w and K. Similar result for u now follows.

If w is not cyclically reduced, i.e., if u = [x, y]gw′g−1, then we consider a cyclic
permutation of u: u′ = g−1[x, y]gw′ = [xg−1

, yg−1
]w′, where we can assume w′ to

be cyclically reduced. Now we apply essentially the same argument to u′ as we have
just applied to u, upon replacing the subgroup H of automorphisms by the left coset
igH, where ig is the inner automorphism induced by the element g. (Applying an
automorphism from igH is equivalent to first applying conjugation by g, and then
applying an automorphism from H.)
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Since the group of inner automorphisms is normal in Aut(F2), observation (2) in
the beginning of the proof of Theorem 1.2 remains valid upon replacing H by igH.
That is, every automorphism from Aut(F2) is a product of an automorphism from the
coset igH and an inner automorphism. Since every automorphism from igH fixes the
element [xg−1

, yg−1
], the same argument as above completes the proof in this case.

Suppose now that u does not have a subword of the form [x±1, y±1], but does
have a subword of the form x±1y±1x∓1. Then, upon applying a length-preserving
automorphism if necessary, we may assume that u has a subword xyx−1. Thus, a cyclic
permutation of u has the form xyx−1w, with no cancellation. Then we can write u
as u = [x, y]yw. Note that the word yw has smaller length than u does, and we can
assume that yw is cyclically reduced, for if it was not, w would end with y−1, and then
a cyclic permutation of u would be of the form y−1xyx−1w′ = [y−1, x]w′, and therefore
this case would be reduced to the previous one.

Thus, we can apply the inductive assumption to this word w, and the same argument
as above will work in this case as well.

Finally, suppose that u does not have a subword of the form x±1y±1x∓1. Then
u must have a subword of the form x±1ykx∓1 for some k 6= 0,±1. We can assume,
upon applying a length-preserving automorphism and a cyclic permutation if necessary,
that u = xykx−1w, k > 1. Then we can write u = [x, y]yxyk−1x−1w. Now the word
yxyk−1x−1w has the same length as u does, but it has the subword xyk−1x−1. Also,
we can assume that yw is cyclically reduced, for if it was not, w would end with y−1,
and then a cyclic permutation of u would be of the form y−1xykx−1w′, i.e., it would
begin with y−1xy, and therefore this case would be reduced to one of the previously
considered. An obvious inductive argument now completes the proof. 2

4. Primitive elements of F2

In this section, we give bounds for the total number of primitive elements of a given
length m in the group F2, and a precise number of cyclically reduced primitive elements
of length m. (Note that the total number of elements of length m in the group F2 is
4
3 · 3m).

Proof of Proposition 1.4. Let x and y be generators of F2.
(a) Suppose m is odd. Then any conjugate of x±1, as well as of y±1, by an element
of length k = (m − 1)/2, is a primitive element of length m (assuming there are no
cancellations in the middle). The number of elements like that in the group F2 is
2 · 3k−1, whence the result.

(b) If m is even, then counting conjugates of x±1y and xy±1 by elements of length
(m− 2)/2 yields the result.

(c) The result of this part will follow from a well-known fact about primitive elements
of F2 (see [3] or [10]):
– for any pair {k, l} of integers with (k, l) = 1, there is exactly one cyclically reduced
primitive element of F2 whose exponent sum on x is k and the exponent sum on y is l.
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Thus, the number of cyclically reduced primitive elements of F2 of length m is 8
times the number of pairs {k, l} of positive integers with (k, l) = 1, k < l, k + l = m.
The latter number is obviously equal to 1

2Φ(m), where Φ(m) is the number of positive
integers < m relatively prime to m. 2
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