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Abstract. We discuss the complexity of conjugacy problem in Miller’s groups.
We stratify the groups in question and show that for “almost all”, in some
explicit sense, elements, the conjugacy search problem is decidable in cubic
time. It is worth noting that a Miller’a group may have undecidable conju-
gacy search problem; our results show that “hard” instances of the problem
comprise a negligibly small part of the group.
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1. Introduction

The present paper continues the development of a new approach to algorithmic
problems in groups initiated in [7]; see that paper for a detailed introduction into
the subject.

The paper is concerned with the conjugacy problem in Miller’s groups. Start-
ing with a presentation for a finitely presented group H, Miller [28] constructed
a generalized HNN-extension G(H); he then showed that the Conjugacy Problem
in G(H) is decidable if and only if the Word Problem is decidable in H. Varying
the group H, one can easily construct infinitely many groups G(H) with decidable
word problem and undecidable conjugacy problem. Moreover, even the class of free
products A ∗C B of free groups A and B with amalgamation over a finitely gen-
erated subgroup C contains specimens with algorithmically undecidable conjugacy
problem [27].

This remarkable result shows that the conjugacy problem can be surprisingly
difficult even in groups whose structure we seem to understand well. In few years
more examples of HNN extensions with decidable word problem and undecidable
conjugacy problem followed (see the book by Bokut and Kukin [5]). The striking
undecidability results of this sort scared away any general research on the word
and conjugacy problems in amalgamated free products and HNN extensions. The
classical tools of amalgamated products and HNN extensions have been abandoned
and replaced by methods of hyperbolic groups [4, 22, 26], or automatic groups
[3, 16], or relatively hyperbolic groups [10, 31].

In this and the previous papers [7, 8, 9] we make an attempt to rehabilitate the
classical algorithmic techniques to deal with amalgams. Our approach treats both
decidable and undecidable cases simultaneously, as well as the case of hyperbolic
groups mentioned above. We show that, despite the common belief, the Word and
Conjugacy Problems in amalgamated free products are generically easy and the
classical algorithms are very fast on “most” or “typical” inputs. In fact, we analyze
the computational complexity of even harder algorithmic problems which lately
attracted much attention in cryptography (see [1, 23, 32], and surveys [14, 33]),
the so-called Normal Form Search Problem and Conjugacy Search Problem. Our
analysis is based on recent ideas of stratification and generic complexity [6, 21];
Appendix to the paper contains the necessary definitions from [6] on asymptotic
classification of subsets in groups.

In [9], working under some mild assumptions about the groups involved in a
given HNN-extension G , we stratify G into two parts with respect to the “hardness”
of the conjugacy problem:

• a Regular Part RP , consisting of so-called regular elements for which the
conjugacy problem is decidable by standard algorithms. We show that
the regular part RP has very good algorithmic properties:

– the standard algorithms are very fast on regular elements;
– if an element is a conjugate of a given regular element then the algo-

rithms quickly provide a conjugator, so the Search Conjugacy prob-
lem is also decidable for regular elements;

– the set RP is generic in G, that is, it is very “big” (asymptotically
the whole group, see Sections 8.1 and 8.2);

– RP is decidable;
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• the Black Hole BH (the complement of the set of regular elements) which
consists of elements in G for which either the standard algorithms do not
work at all, or they require a considerable modification, or it is not clear
yet whether these algorithms work or not.

This general technique for solving the conjugacy problem in HNN-extensions
does not work in those, very rare, groups where the Black Hole (BH) of the conju-
gacy problem coincides with the whole group, in particular in Miller’s groups (see
Lemma 6.1). However, the conjugacy problem in Miller’s groups is still easy for
most of the elements in BH. In this case one has to stratify the Black Hole itself.
To this end, we introduce the notion of a Strongly Black Hole (see Section 6). It
is proven that the Conjugacy Search Problem for elements that do not lie in the
Strongly Black Hole (SBH) is decidable in cubic time (Theorem 7.3). We give an
explicit description of the size of SBH for Miller’s groups and prove that SBH is
a strongly sparse set (Theorem 8.1).

This is the first example of a non-trivial solution of the Stratified Conjugacy
Problem in a finitely presented group with undecidable conjugacy problem.

2. HNN-extensions

2.1. Preliminaries. We introduce in brief some terminology and formulate
several known results on HNN-extensions of groups. We refer to the books [24, 27]
and one of the original papers [12] for more detail.

Let H = 〈X | R〉 be a group given by generators and relators, A = 〈Ui | i ∈ I〉
and B = 〈Vi | i ∈ I〉 two isomorphic subgroups of H with an isomorphism

φ : A → B

given by φ : Ui → Vi, i ∈ I. Then the group G defined by the presentation

G =
〈
X, t | R, t−1Uit = Vi, i ∈ I

〉

is called an HNN-extension of the base group H with the stable letter t and associ-
ated (via the isomorphism φ) subgroups A and B. We sometimes write G as

G =
〈
H, t | t−1At = B, φ

〉

An HNN-extension G is called degenerate if H = A = B.
A modification of the above definition is that of multiple HNN-extension. The

data consist of a group H and a set of isomorphisms φi : Ai → Bi between subgroups
of H. Then similar to the above we define a multiple HNN-extension of H as

G =
〈
H, ti | t−1

i Ati = B,φi, i ∈ I
〉
.

2.2. Reduced and normal forms. The main focus of this section is on
algorithms for computing reduced and normal forms of elements in HNN-extensions
of groups. We consider only HNN-extensions with one stable letter, but one can
easily extend the results to arbitrary multiple HNN-extensions.

Let G =
〈
H, t | t−1At = B, φ

〉
be an HNN-extension of a group H with the

stable letter t and associated subgroups A,B. Every element g of G can be written
in the form

(1) g = w0t
ε1w1 · · · tεnwn,

where εi = ±1 and wi is a (possibly empty) word in the generating set X. The
following result is well known (see, for example, [24]).
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Theorem 2.1 ([24]). Let G =
〈
H, t | tAt−1 = B, φ

〉
, and let

g = w0t
ε1w1 · · · tεnwn.

If g represents the identity element of G then either
(a) n = 0 and w0 represents the identity element of H; or
(b) g contains a subword of the form either t−1wit with wi ∈ A or twit

−1 with
wi ∈ B (words of this type are called pinches).

Theorem 2.1 immediately gives a decision algorithm for the Word Problem in G
provided one can solve effectively in the group H the Word Problem: “Is w0 = 1?”
and Membership Problems: “Are wi ∈ A and/or wi ∈ B?” We will have to say
more on the time complexity of the Word Problem in G in the sequel.

We say that (1) is a reduced form of g ∈ G if no pinches occur in it. It can be
shown that the number of occurrences of ti in a reduced form of g does not depend
on the choice of reduced form; we shall call it the length of g and denote it by l(g).

We say that an element g with l(g) > 0 is cyclically reduced if l(g2) = 2l(g). In
addition, we impose extra conditions in case l(g) = 0 (which is equivalent to saying
that g ∈ H): namely, we say that g is cyclically reduced if either g ∈ A ∪B or g is
not conjugate in H to any element from A ∪B.

Equivalently, the definition of cyclically reduced elements can be formulated as
follows. A reduced form

g = htε1s1 · · · tεnsn

of element g is cyclically reduced if and only if
• If n = 0 then either h ∈ A ∪B or h is not conjugate in G to any element

in A ∪B.
• if n > 0 then either ε1 = εn, or snh does not belong to A provided εn = −1,

or snh does not belong to B provided εn = 1.
We warn that our definition of cyclically reduced elements differs from that

of [24]; elements reduced in our sense are reduced in the sense of [24] but not
vice-versa.

Reduced forms of elements in G are not unique. To define unique normal forms
of elements in G one needs to fix systems of right coset representatives of A and B
in G.

Let SA and SB be systems of right representatives (transversals) of the sub-
groups A and B in H. A reduced form

(2) g = h0t
ε1h1 · · · tεnhn

of an element g ∈ G is said to be a normal form of g if the following conditions
hold:

• h0 ∈ H;
• if εi = −1 then hi ∈ SA;
• if εi = 1 then hi ∈ SB ;

Normal forms of elements of G are unique; see, for example, [24]. It is convenient
sometimes to write down the normal form (2) of g as

(3) g = h0p1 · · · pk

where pi = tεisi and si ∈ S if εi = −1, si ∈ T if εi = 1. Observe that this
decomposition corresponds to the standard decomposition of elements of G when
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G is viewed as the universal Stallings group U(P ) associated with the pregroup

P = {H, tH, t−1H},
(see a more detailed description of pregroups in [29]).

2.3. Algorithm 0 for computing reduced forms. This algorithm takes as
an input a word of the form

g = w0t
ε1w1 · · · tεnwn.

If the word contains no pinches then it is reduced. Otherwise find the first pinch
We look at the first subword of the form tεiwit

εi+1 and transform the subword
according to one of the rules

• If wi ∈ A and εi = −1 then replace t−1wit by φ(wi)
• If wi ∈ B and εi = 1 then replace twit

−1 by φ−1(wi).
After that we multiply the elements wi−1φ(wi)wi+1 (or, correspondingly,

wi−1φ
−1(wi)wi+1), thus decreasing the length l(g) of the word by 2.

Therefore we can formulate the following result (similar to the one for amalga-
mated products [7]).

Proposition 2.2. Let G = 〈H, t | t−1At = B〉 be an HNN-extension of a
group H with associated subgroups A and B. If the Membership Subgroup Problem
is decidable for subgroups A and B in H then Algorithm 0 finds the reduced form
for every given g ∈ G.

2.4. Algorithm I for computing normal forms. Assume now that Coset
Representative Search Problem (CRSP) is decidable for the subgroups A and B
in H, that is, there exist recursive sets S and T of representatives of A and B in
H and two algorithms which for a given word w ∈ F (X) find, correspondingly, a
representative for Aw in S and for Bw in T .

Now we describe the standard Algorithm I for computing normal forms of
elements in G.

Algorithm I can be viewed as a sequence of applications of rewriting rules of
the type

• t−1h → φ(c)t−1s, where h = cs, c ∈ A, s ∈ SA;
• th → φ−1(c)ts, where h = cs, c ∈ B, s ∈ SB ;
• tεt−ε → 1

to a given element g ∈ G presented as a word in the standard generators of G.
Since the problem CRSP is decidable for A and B in H the rewriting rules above
are effective (i.e., given the left side of the rule one can effectively find the right
side of the rule). The rewriting process is organized “from the right to the left”,
i.e, the algorithm always rewrites the rightmost occurrence of the left side of a rule
above.

It is not hard to see that the Algorithm I halts on every input g ∈ G in finitely
many steps and yields a normal form of g.

We summarize the discussion above in the following well-known theorem.

Theorem 2.3. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of a group

H with associate subgroups A and B. If the Coset Representative Search Problem
CRSP is decidable for subgroups A and B in H (with respect to fixed transversals
SA and SB) then Algorithm I finds the normal form for every given g ∈ G.
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2.5. Algorithm II for computing cyclically reduced normal forms.
Now we want to briefly outline an algorithm which, given an element g ∈ G in
reduced form, computes its cyclically reduced normal form. We work under the
assumption that Coset Representative Search Problem (CRSP) and Conjugacy
Membership Search Problem (CMSP) are decidable for subgroups A and B in H.
The latter mean that for a given g ∈ H we can determine determine whether g is
a conjugate of an element from A (or from B, and if so, find such an element in A
and a conjugator.

Algorithm II: Computing Cyclically Reduced Normal Forms.

Input: a word in the reduced form

g = h0t
ε1h1 · · ·hk−1t

εkhk,

Step 0 Find the normal form of g using Algorithm I:

g = hp1 · · · pk

Step 1
– If l(g) = 0 then g ∈ H.

∗ If g ∈ C, where where C = A ∪ B, or if g is not conjugate to
an element in C, then g is already in cyclically reduced form.

∗ If gx ∈ C for some x ∈ H then use a decision algorithm for
(CMSP) to find a particular such x and replace g by gx.

– If l(g) = 1, then g is already in cyclically reduced form.
– If l(g) > 2 and ε1 = εk then g is already in cyclically reduced form.

Step 2
If l(g) > 2 and ε1 = −εk and skh 6∈ A (when εk = −1) or tkh 6∈ B

(when εk = 1) then g is in cyclically reduced form.
Otherwise, if skh ∈ A then set

g∗ = t−ε1h−1ghtε1 ;

obviously, we have l(g∗) = l(g)−2, and we can apply the algorithm to g∗.
The case tkh ∈ B is treated similarly.

3. Conjugacy search problem for regular elements

3.1. Conjugacy criterion. In this section we formulate, in a slightly modified
form, the well known conjugacy criterion for HNN-extensions, due to Collins [12].

Recall that the i-cyclical permutation of a cyclically reduced element g =
h0t

ε1 · · ·hr−1t
εr is the element

gi = hit
εi+1 · · · tεrh0t

ε1 · · ·hi−1t
εi ,

rewritten in normal form.

Theorem 3.1. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of the base

group H with associated subgroups A and B. Let

g = h0t
ε1 · · ·hr−1t

εr , g′ = h′0t
η1 · · ·h′s−1t

ηs

be conjugate cyclically reduced elements of G. Then one of the following is true:
• Both g and g′ lie in the base group H. If g 6∈ A ∪B then g′ 6∈ A ∪B and

g and g′ are conjugate in H.
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• If g ∈ A∪B then g′ ∈ A∪B and there exists a finite sequence of elements
c1, . . . , cl ∈ A ∪ B, such that c0 = g, cl = g′ and ci is conjugated to ci+1

by an element of the form htε, h ∈ H, ε = ±1.
• Neither of g, g′ lies in the base group H, in which case r = s and g′

can be obtained from g by i-cyclically permuting it (i = 1, . . . , r) and then
conjugating it by an element z from A, if εi = −1, or from B, if εi = +1.

3.2. Conjugacy search problem for regular elements. In this section we
introduce and study regular elements. Let C = A ∪B and

N∗
G(C) = {g | Cg ∩ C 6= 1}

be the generalised normaliser of the set C. We say that (c, g) ∈ C×G is a bad pair
if c 6= 1, g 6∈ C, and gcg−1 ∈ C.

Notice that if (c, g) is a bad pair then g ∈ N∗
G(C)r C and c ∈ Zg(C), where

Zg(C) = { c ∈ C | cg ∈ C } = Cg−1 ∩ C.

The following lemma gives a more detailed description of bad pairs.

Lemma 3.2. Let c ∈ Cr{1}, g ∈ GrC, and g = hp1 · · · pk is the normal form
of g. Then (c, g) is a bad pair if and only if he following system of equations has
solutions c1, . . . , ck+1 ∈ C.

pkcp−1
k = c1

pk−1c1p
−1
k−1 = c2

...
p1ck−1p

−1
1 = ck

hckh−1 = ck+1

Moreover, in this case pi, h ∈ N∗
G(C).

Proof. This lemma is a special case of Lemma 3.4 below. ¤

We denote the system of equations in Lemma 3.2 by Bc,g. Observe that the
consistency of the system Bc,g does not depend on the particular choice of repre-
sentatives of A and B in H. Sometimes we shall treat c as a variable, in which case
the system will be denoted Bg.

3.3. Black hole. The set

BH = N∗
G(C)

will be called a black hole. Elements from BH are called singular, and elements from
R = Gr BH regular. The following description of the black hole is an immediate
corollary of Lemma 3.2.

Corollary 3.3. Let G =
〈
H, t | t−1At = B

〉
. Then an element g ∈ Gr C is

singular if and only if the system Bg has a nontrivial solution c, c1, . . . , ck+1 ∈ C.

Now we want to study slightly more general equations of the type gc = c′g′

and their solutions c, c′ ∈ C.
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Lemma 3.4. Let G =
〈
H, t | t−1At = B

〉
. Let g, g′ ∈ G be elements given by

their canonical forms

(4) g = hp1 · · · pk, g′ = h′p′1 · · · p′k
Then the equation gc = c′g′ has a solution c, c′ ∈ C if and only if the following
system Sg,g′ of equations in variables c, c1, . . . , ck has a solution in G.

pkc = c1p
′
k

pk−1c1 = c2p
′
k−1

...
p1ck−1 = ckp′1

hck = c′h′

The proof of Lemma 3.4 is a word-by-word reproduction of the proof of Lemma 4.5
in [7].

The first k equations of the system Sg,g′ form what we call the principal system
of equations, we denote it by PSg,g′ . In what follows we consider PSg,g′ as a system
in variables c, c1, . . . , ck, c′ which take values in C, the elements p1, . . . , pk, p′1, . . . , p

′
k

are constants.
Let M be a subset of a group G. If u, v ∈ G, we call the set uMv a G-shift

of M . For a collection M of subsets in G, we denote by Φ(M, G) the least set of
subsets of G which contains M and is closed under G-shifts and intersections.

Lemma 3.5. Let G be a group and C = A∪B be the union of two subgroups A
and B of G. If D ∈ Φ(C,G) and D 6= ∅ then D is the union of finitely many sets
of the form

D = (Ag1 ∩ · · · ∩Agm ∩Bg′1 ∩ · · · ∩Bg′n)h
for some elements g1, . . . , gm, g′1, . . . , g

′
n, h ∈ G.

The proof of this lemma repeats the proof of Lemma 4.7 of [7].

Lemma 3.6. Let G =
〈
H, t | t−1At = B

〉
. Then for any two elements g and g′

with canonical forms

g = hp1 · · · pk, g′ = h′p′1 · · · p′k (k > 1)

the set Eg,g′ of all elements c from C for which the system PS(g, g′) has a solution
c, c1, . . . , ck, is equal to

Eg,g′ = C ∩ p−1
k Cp′k ∩ · · · ∩ p−1

k · · · p−1
1 Cp′1 · · · p′k.

In particular, if Eg,g′ 6= ∅ then it is the union of at most 2k+1 cosets with respect
to subgroups in A and B of the form described in the previous lemma.

The proof of this lemma is essentially the same as that of Lemma 4.8 in [7].
Denote by Sub(C) the set of all subgroups of C. By Lemma 3.5, non-empty

sets from Φ(Sub(C),H) are finite unions of cosets of subgroups from H.

Corollary 3.7. Let G =
〈
H, t | t−1At = B

〉
. If the Cardinality Search Prob-

lem is decidable in Φ(Sub(C),H), then, given g, g′ as above, one can effectively
find the set Eg,g′ . In particular, one can effectively check whether Eg,g′ is empty,
singleton, or infinite.
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The proof repeats the proof of Corollary 4.9 in [7].

Lemma 3.8. Let G =
〈
H, t | t−1At = B

〉
and g, g′ ∈ G. If l(g) = l(g′) > 1

and the system PS(g, g′) has more than one solution in C then the elements g, g′

are singular.

The proof repeats the proof of Lemma 4.10 in [7].

Lemma 3.9. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of a finitely

presented group H with finitely generated associated subgroups A and B. Set C =
A ∪B. Assume also that H allows algorithms for solving the following problems:

• The Coset Representative Search Problem for subgroups A and B in H.
• Cardinality Search Problem for Φ(Sub(C),H) in H.
• Malnormality problem for C in H.

Then there exists an algorithm for deciding whether a given element in G is regular
or not.

Proof. The proof repeats the proof of Lemma 4.11 from [7]. ¤

Corollary 3.10. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of a free

group H with finitely generated associated subgroups A and B. Then the set of
regular elements in G is recursive.

Denote by CR the set of all elements in G which have at least one regular
cyclically reduced canonical form, that is, CR is the set of elements in G which are
conjugates of cyclically reduced regular elements. The set CR plays an important
part in our analysis of the conjugacy search problem in G.

Lemma 3.11. Let G =
〈
H, t | t−1At = B

〉
. Set C = A ∪ B. Assume also that

H allows algorithms for solving the following problems
• The Coset Representative Search Problem for subgroups A and B in H.
• The Cardinality Search Problem for Φ(Sub(C),H) in H.
• The Malnormality Problem for C in H.

Then there exists an algorithm to determine whether a given element in G is in CR
or not.

Proof. Proof follows from Lemma 3.9 and Algorithm II from Section 2.5 of
this paper. ¤

3.4. Conjugacy search problem and regular elements. The aim of this
section is to study the Conjugacy Search Problem for regular elements in HNN-
extensions. We show that the conjugacy search problem for regular elements is
solvable under some very natural restrictions on the group H. We start with the
following particular case of the Conjugacy Search Problem.

The Conjugacy Search Problem for a fixed element g: this the Conjugacy
Search Problem for the set of pairs

Φg = {(g, u) | u ∈ G}.
Theorem 3.12. Let G =

〈
H, t | t−1At = B

〉
be an HNN-extension of finitely

presented group H with associated finitely generated subgroups A and B. Assume
also that H allows algorithms for solving the following problems:

• The Coset Representative Search Problem for subgroups A and B in H.
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• The Cardinality Search Problem for Φ(Sub(C),H) in H.
Then the Conjugacy Search Problem in G is decidable for cyclically reduced regular
elements g of length l(g) > 1.

The proof of this theorem follows the the proof of Theorem 4.15 from [7], if
we replace the conjugacy criterion for amalgamated products by the conjugacy
criterion for HNN-extensions.

Now we study the Conjugacy Search Problem for regular elements of length 0.

Lemma 3.13. Let G =
〈
H, t | t−1At = B

〉
and g be a cyclically reduced regular

element of G with l(g) = 0. If the Coset Representative Search Problem for sub-
groups A and B in H and the Conjugacy Search Problem for C in H are decidable
then the Conjugacy Search Problem for g in G is decidable.

The proof follows from the conjugacy criterion.
We are ready to formulate a general conjugacy search problem for regular ele-

ments.
Let M be a subset of a group G. If u, v ∈ G, we call the set uMv a G-shift

of M . For a collection M of subsets in G, we denote by Φ(M, G) the least set
of subsets of G which contains M and is closed under G-shifts and intersections.
Denote by Sub(C) the set of all subgroups of C.

The Conjugacy Search Problem for CR is the Conjugacy Search Problem for
the set of pairs

ΦCR = {(g, u) | g ∈ CR, u ∈ G}.
Theorem 3.14. Let G =

〈
H, t | t−1At = B

〉
be an HNN-extension of a finitely

presented group H with associated finitely generated subgroups A and B. Assume
also that H allows algorithms for solving the following problems:

• The Coset Representative Search Problem for subgroups A and B in H.
• The Cardinality Search Problem for Φ(Sub(C),H) in H.
• The Conjugacy Search Problem in H.
• The Conjugacy Membership Search Problems for A and B in H

Then the Conjugacy Search Problem in G is decidable for elements from CR.

Corollary 3.15. Let G =
〈
H, t | t−1At = B

〉
be an HNN-extension of a free

H with associated finitely generated subgroups A and B.
Then the Conjugacy Search Problem in G is decidable for elements from CR.

4. Miller’s construction

In this section we discuss a particular type of HNN-extension introduced by
C. Miller III in [28].

Let
H = 〈s1, . . . , sn | R1, . . . , Rm〉

be a finitely presented group. Starting with H one can construct a new group G(H)
with generators :

(5) q, s1, . . . , sn, t1, . . . , tm, d1, . . . , dn

and relators:

(6) t−1
i qti = qRi, t−1

i sjti = sj , d−1
j qdj = s−1

j qsj , d−1
k sjdk = sj
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Generators from (5) are called the standard generators of G(H).
One can realize G(H) as a generalized mapping torus of a free group, which is

a very particular type of a multiple HNN-extension of a free group. To this end put

S = {s1, . . . , sn}, D = {d1, . . . , dn}, T = {t1, . . . , tm}
and denote by q a new symbol not in S ∪ T ∪D. Let

F (Sq) = F (q, s1, . . . , sn)

be a free group with basis Sq = {q} ∪ S.
For every i = 1, . . . , m we define an automorphism φi of F (Sq) as

φi :
{

q → qRi

sj → sj

For every k = 1, . . . , n we define an automorphism ψk of F as

ψk :
{

q → s−1
k qsk

sj → sj

It is easy to see that the following multiple HNN-extension of F (Sq) with the stable
letters from T ∪ D has precisely the same presentation (6) as the group G(H) in
the standard generators, so it is isomorphic to G(H):

(7) G(H) ' 〈F (Sq), T ∪D | t−1
i fti = φi(f), d−1

k fdk = ψk(f), f ∈ F (Sq) 〉
As it was noticed in [27], the group G(H) can be also viewed as the standard

HNN-extension of a direct product of two free groups by a single stable letter q.
Indeed, consider the following construction.

The subgroup
〈T ∪D〉 6 G(H)

is free with a basis T ∪D (since its image in the quotient group of G(H) modulo
the normal closure of F (Sq) is free), we denote it by F (T,D). The subgroup 〈S〉
of G(H) is also free with basis S (as a subgroup of F (Sq), which, in its turn, is a
subgroup of G(H)), we denote it by F (S).

Put
K = F (T,D)× F (S).

Then the following are free subgroups of K:

A = 〈t1, . . . , tm, s1d
−1
1 , . . . , snd−1

n 〉,
B = 〈t1R−1

1 , . . . , tmR−1
m , s1d

−1
1 , . . . , snd−1

n 〉.
They are isomorphic under the map

θ :
{

ti → tiR
−1
i , i = 1, . . . , m

sjd
−1
j → sjd

−1
j , i = 1, . . . , n

It is a straightforward verification that the following HNN-extension of K with
the stable letter q and the subgroups A,B associated via θ has precisely the same
presentation (6) as the group G(H) in the standard generators, so it is isomorphic
to G(H):

(8) G(H) ' 〈K, q | q−1aq = θ(a) for a ∈ A 〉.
Below we collect some elementary properties of G(H).

Lemma 4.1. In this notation,
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(i) 〈Sq〉 ' F (Sq),
〈T ∪D ∪ S〉 ' K;

(ii) F (Sq) is normal in G(H);
(iii) K = An F (S), where n, as usual, denotes the semidirect product;
(iv) K = B n F (S).

Proof. Straightforward verification. ¤

Corollary 4.2. The set F (S) is a system of left (and right) representatives
of K modulo A, as well as modulo B.

It follows from the definition of K and Lemma 4.1 that every element x ∈ K
can be uniquely written in three different forms:

(9) x = u(x)s(x) = a(x)sa(x) = b(x)sb(x),

where s(x), sa(x), sb(x) ∈ F (S), u(x) ∈ F (T, D), a(x) ∈ A, b(x) ∈ B.

Convention: All the groups that appeared above came equipped with par-
ticular sets of generators. From now on we fix these generating sets and call them
standard generating sets. Furthermore, for all algorithms that we discuss below we
assume that all elements of our groups, when these elements are viewed as inputs
of the algorithms, they are presented as words in the standard generators or their
inverses. The same assumption is required for outputs of the algorithms. Moreover,
in this event we denote by |g|L the length of the word which represents g in the
standard generators of a group L. Instead of |g|G(H) we write |g|.

Lemma 4.3. For a given x ∈ K one can effectively find all three decompositions

x = u(x)s(x) = a(x)sa(x) = b(x)sb(x),

in time at most quadratic in |x|. Moreover, the following equalities hold for some
constant c:

(i) |u(x)| 6 |x|, |s(x)| 6 |x|,
(ii) |a(x)|A 6 |x|, |sa(x)| 6 c · |x|2,
(iii) |b(x)|B 6 |x|, |sb(x)| 6 c · |x|2,
Proof. Let x ∈ K. To decompose x into the form x = u(x)s(x) one needs

only to collect in x all letters from (T ∪D)±1 to the left and all letters from S±1

to the right.
To decompose x in the form x = a(x)sa(x) one can replace each occurrence of

the symbol d−1
i by s−1

i (sid
−1
i ) and each occurrence of di by (dis

−1
i )si. This allows

one to present x as a word in the standard generators of A and F (S). Now, using
the standard procedure for semidirect products (and the relations from (6)) one can
collect the generators of A to the left, which yields the result. Similar argument
provides an algorithm to present x in the form x = b(x)s(x). ¤

Corollary 4.4. In the notations above the following hold:
(i) For every u ∈ F (T,D) there exists a unique s ∈ F (S) such that us ∈ A.

Moreover, one can find such s in quadratic time of |u|.
(ii) For any g, h ∈ K, if u(g) = u(h) then a(g) = a(h) and b(g) = b(h).

Proof. (i) comes directly from Lemmas 4.1 and 4.3. Now (ii) follows from
(i). ¤
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5. Normal forms of elements of G(H)

In this section we discuss normal and cyclically reduced normal forms of ele-
ments of G(H). We start with the standard normal forms in HNN-extensions and
then simplify them using specific properties of G(H).

In what follows we view the group G(H) as an HNN-extension of the group K
by a single stable letter q:

G(H) = 〈K, q | q−1aq = θ(a) (a ∈ A) 〉
By Corollary 4.2 we can choose the set F (S) as the set of representatives of K
modulo A, as well as modulo B. The general theory of HNN-extensions tells one
that in this event every element g ∈ G(H) can be uniquely written in the form

(10) g = hqε1s1 · · · qεksk,

where si ∈ F (S), εi ∈ {1,−1}, h ∈ K, k > 0, and if εi+1 = −εi then si 6= 1.
Since K = F (T ∪D)× F (S) we can write h uniquely as a product h = us0 where
u ∈ F (T, D) and s0 ∈ F (S). It follows that g can be written uniquely as

(11) g = us0q
ε1s1 · · · qεksk.

We refer to (11) as to the normal form of g. Taking in account that

f = s0q
ε1s1 · · · qεksk ∈ F (Sq)

one can rewrite (11) in the form

(12) g = uf, where u ∈ F (T, D) and f ∈ F (Sq).

As usual (see, for example, [24]) the number k in (11) is called the length of g, we
denote it by l(g). Observe that l : G(H) → Z is Lyndon’s length function on G(H)
(see [24] for definitions).

If g ∈ G and l(g) > 0 then g is called cyclically reduced if l(g2) = l(g). In the
case g ∈ G and l(g) = 0 (i.e., g ∈ K) we say that g is cyclically reduced when either
g is not a conjugate of an element from A ∪B, or g ∈ A ∪B. It is easy to see that
every element in G(H) is a conjugate of a cyclically reduced element.

Lemma 5.1. Let H be a finitely presented group and G(H) be the corresponding
Miller’s group. Then the following conditions hold:

(i) There is an algorithm which for every element g ∈ G(H) finds its canonical
normal form (11). Moreover it has at most cubic time complexity in the
length |g|.

(ii) Algorithm II (which finds, for every element g ∈ G(H), a cyclically reduced
element g′ ∈ G(H) which is a conjugate of g), has at most cubic time
complexity in the length |g|.

Proof. To prove (i) we show that a slight modification of the standard Algo-
rithms I does the job. Let

g = w1q
ε1w2q

ε2 · · · qεnwn+1,

where wi ∈ K, εi ∈ {1,−1}. Assume (by induction on n) that one can effectively
rewrite, in at most C1 · 2n · |v|2 steps, the word

v = w2q
ε2 · · · qεnwn+1

into the normal form
v = u2s2q

ε2s3 · · · snqεnsn+1
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where u2 ∈ F (T, D), si ∈ F (S) and such that

|u2| 6 |v|, |si| 6 C2|v|2

for some constant C2 independent of g. Then

g = w1q
ε1v = w1q

ε1u2s2q
ε2s3 · · · snqεnsn+1

Suppose, for certainty, that ε1 = −1 (the case ε1 = 1 is similar). Now by Lemma
4.3 one can effectively rewrite u2 in the form asa with a ∈ A, sa ∈ F (S) such that

|a|A 6 |u2| 6 |v|, |sa| 6 c|u2|2 6 c|v|2

where c is the constant from Lemma 4.3. This rewriting requires at most C3|u2|2
steps, where C3 is a constant from Lemma 4.3 which is independent of u2. Then
q−1a = θ(a)q−1 and |θ(a)|B = |a|A 6 |v|. Observe that

|θ(a)| 6 CR|θ(a)|B 6 CR|v|,
where CR = max{ |Ri| | i = 1, . . . , m }. Hence |w1θ(a)| 6 |w1| + CR|v| 6 CR|g|.
Again by Lemma 4.3 one can effectively rewrite w1θ(a) in the form us1 (in at most
C2

R|g|2 number of steps) where u ∈ T (D, T ), s1 ∈ F (S) and

|s1| 6 C2
R|g|2.

To estimate the length of u notice that u = u(w1)u(θ(a)), so

|u| 6 |u(w1)|+ |u(θ(a))|.
Observe that

|u(θ(a))| 6 |θ(a)|B = |θ(a)|A 6 |v|.
Hence

|u| 6 |u(w1)|+ |u(θ(a))| 6 |w1|+ |v| 6 |g|,
as required. This argument shows how to find the normal form of g in the case
when qε1s2q

ε2 is not a pinch. In the case when it is a pinch one needs also to cancel
qε1qε2 . In both cases the required bounds on the length of elements are satisfied.
The total number of steps required to write down the normal form of g is bounded
from above by

C1 · 2n · |v|2 + C3|u2|2 + C2
R|g|2

If we assume that C1 > C3, CR then one can continue the chain of inequalities:

6 C1(2n|v|2 + |v|2 + |g|2) 6 C1 · 2(n + 1) · |g|2,
as required.

(ii) follows easily from (i) if g 6∈ K. If g ∈ K then one has to verify whether
g ∈ A ∪ B or not, and if yes, then find a conjugate element in A ∪ B. Since K is
a direct product of two free groups the problem above reduces to the Conjugacy
Membership Problem [7] for finitely generated subgroups of free groups which is
decidable in at most quadratic time (see [20]). This proves the lemma. ¤
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6. Regular elements in G(H)

In this section we show that even though the standard black hole BH of G(H)
(given as an HNN-extension of K) is very big, one still can show that just a relatively
small portion of elements of BH are “hard” for conjugacy problem in G(H). We
refer to such elements as to strongly singular, on the contrary the elements for
which the conjugacy problem is relatively easy are called weakly regular ; see precise
definitions below.

The following result shows that the standard black hole in G(H) with respect
to two different presentations of G(H) as HNN-extension contains the whole group,
and, as the result, the standard notion of a regular element becomes vacuous.

Lemma 6.1.
(a) Let G(H) be presented as the HNN-extension (7) then

BH = G(H).

(b) Let G(H) be presented as the HNN-extension (8) of the group K with the
stable letter q then

BH = G(H).

Proof. Set C = A∪B. It immediately follows from presentations (7) and (8)
and Lemma 4.1 that in the both cases N∗

G(C) = G. Since BH = N∗
G(C) the lemma

follows immediately. ¤
Therefore we have to weaken the definition of regular elements. A cyclically

reduced element g ∈ G(H) is called weakly regular if in its normal form (12) the
element u in the decomposition g = uf is non-trivial. If u = 1 then g is called
strongly singular.

We define a strong black hole SBH(G) of G(H) as the set of all elements
conjugate to strongly singular elements,

SBH(G) =
⋃

g∈G(H)

F (S, q)g = F (S, q),

for F (S, q) is a normal subgroup in G(H). Observe that every cyclically reduced
element in Gr SBH(G) is weakly regular.

The main result of this section is the following theorem.

Theorem 6.2. Let
g = uf = us0q

ε1 · · · skqεk

be a weakly regular cyclically reduced element of G(H) and g′ = u′f ′ be an arbitrary
cyclically reduced element of G(H). If

gx = g′

for some x = vh ∈ G(H) with v ∈ F (T ∪ D) and h ∈ F (Sq) then the following
conditions hold:

(i) g′ is weakly regular and uv = u′. Therefore, replacing g′ by (g′)v−1
and x

by xv−1 we may assume that u′ = u and x = h ∈ F (Sq).
(ii) If g ∈ K r (A ∪ B) (that is, f ∈ F (S)) then f ′ ∈ F (S) and fs = f ′ for

some s ∈ F (S).
(iii) If g ∈ A ∪B then g′ ∈ A ∪B. Moreover, the following hold:

(iii.a) If g and g′ are in the same factor then g = g′.
(iii.b) If g ∈ A and g′ ∈ B then q−1gq = g′.
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(iii.c) If g ∈ B and g′ ∈ A then qgq−1 = g′.
(iv) If g 6∈ K then g′ 6∈ K and there exists an i-cyclic permutation

g∗ = us′0q
ε1 · · · s′kqεk

of g′ and an element z ∈ A ∪B such that

gz = g∗,

and z ∈ A if εk = −1, and z ∈ B if εk = 1. Moreover, in this case there
exist an integer l and elements y, c ∈ F (S) such that:

(iv.a) z = ul
0y

l where u0 is a generator of the cyclic centralizer C(u) in
the group F (D ∪ T );

(iv.b)
q−1u0yq = u0c, if εk = −1

qu0yq−1 = u0c, if εk = 1
(iv.c) If k = 1 then

(13) s′0 = y−ls0c
l,

(iv.d) If εk−1εk = 1 then

(14) s′k = y−lskcl,

If εk−1εk = −1 then

(15) s′k = c−lskcl,

Proof. (i) Since F (Sq) is normal in G(H) (Lemma 4.1) one has

u′f ′ = g′ = gx = (uf)vh = (uvfv)h = uv(fv[uvfv, h])

where uv ∈ F (T, D) and fv[uvfv, h] ∈ F (Sq). Uniqueness of the normal forms
implies u′ = uv and f ′ = fv[uvfv, h]. Equality gx = g′ implies gxv−1

= (g′)v−1

hence replacing x by xv−1 = vhv−1 ∈ F (Sq) and g′ by (g′)v−1
one can assume that

g′ = uf ′ and x ∈ F (Sq). This proves (i).
(ii) follows immediately from the first case of the Conjugacy Criterion (Theo-

rem 3.1 in Section 3.1) and from the decomposition of K into a direct sum of free
groups

K = F (D ∪ T )× F (S)
(iii) Recall that every element g ∈ K can be decomposed uniquely as g =

u(g)s(g) where u(g) ∈ F (T, D), s(g) ∈ F (S) (see Section 4). Now let g ∈ A ∪ B.
In this event by the Conjugacy Criterion g′ ∈ A∪B. Since x ∈ F (Sq) then (as was
shown above)

u(g) = u(gx) = u(g′)
By Lemma 4.4 this implies

a(g) = a(g′), b(g) = b(g′)

Therefore if g and g′ are in the same factor then g = g′; if g ∈ A and g′ ∈ B then
q−1gq = g′ (since q−1gq ∈ B and u(q−1gq) = u(g′)); similarly, if g ∈ B and g′ ∈ A
then qgq−1 = g′. This proves (iii).

(iv) By the Conjugacy Criterion if g 6∈ K then g′ 6∈ K and there exists an
i-cyclic permutation

g∗ = us′0q
ε1 · · · s′kqεk
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of g′ and an element z such that

gz = g∗.

Furthermore, in this case z ∈ A if εk = −1, and z ∈ B if εk = 1. This proves the
first part of (iv).

By the argument in (i) z = u1s where [u, u1] = 1 and s ∈ F (S). Observe
that the group F (D ∪ T ) is free, and u 6= 1 (since g is weakly regular) therefore
C(u) = 〈u0〉 for some not a proper power u0 ∈ F (D ∪ T ). Hence u1 = ul

0 for some
l ∈ Z. Replacing u0 by u−1

0 we may assume that l > 0. It follows from Lemma 4.1
that s = yl for some uniquely defined y ∈ F (S). So z = ul

0y
l and (iv.a) follows.

Equality gz = g∗ implies gz = zg∗ which amounts to

(16) us0q
ε1 · · · skqεkul

0y
l = ul

0y
lus′0q

ε1 · · · s′kqεk .

If εk = −1 then there exists c ∈ F (S) such that

q−1u0yq = u0c.

Similarly, if εk = 1 then there exists c ∈ F (S) such that

qu0yq−1 = u0c.

This shows (iv.b).
Rewriting now the left hand side of (16) into the normal form and compare to

the right hand side of (16) one can see that the following equalities hold in the free
group F (S):

If k = 1 then:
s′0 = y−ls0c

l,

and the case (iv.c) follows.
If k > 2 then we have two subcases.
If εk = −1 and εk−1 = −1, or if εk = 1 and εk−1 = 1 then:

(17) s′k = y−lskcl,

If εk = −1 and εk−1 = 1, or if εk = 1 and εk−1 = −1 then:

(18) s′k = c−lskcl,

This proves (iv.d), and finishes the proof of the theorem. ¤

7. Conjugacy search problem in G(H)

The following two results connect the conjugacy problem in G(H) with the
word problem in H.

Lemma 7.1 (Miller [27]). Let w1, w2, w
′
1, w

′
2 are words in the alphabet S±1.

Then
w1qw2 ∼G(H) w′1qw

′
2 ⇐⇒ w1w2 =H w′1w

′
2,

where ∼G(H) denotes the conjugacy of elements in the group G(H).

Theorem 7.2 (Miller [27]). The conjugacy problem is decidable in G(H) if
and only if the word problem group is decidable in H.
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This result shows that for strongly singular elements in G(H) even the classical
decision form of the conjugacy problem is undecidable. It turns out, however, that
for weakly regular elements even the search conjugacy problem is decidable in G(H).
This result completes the general algorithmic picture of the conjugacy problem in
G(H), even though one could still show that for many strongly singular elements
the search conjugacy problem is decidable. We leave for the future a more detailed
analysis of the black hole BH of G(H).

Theorem 7.3. Let H be a finitely presented group and G(H) be Miller’s group
based on H. Then conjugacy search problem to weakly regular elements from G(H)
is decidable in cubic time.

Proof. Let g ∈ G(H) be a weakly regular element of G(H) and g′ be an
arbitrary element of G(H).

Part I. By Lemma 5.1, Algorithm II provides us with the canonical cyclically
reduced forms g = uf and g′ = u′f ′ in at most cubic time in the lengths |g| and
|g′|.

Part II. In this part starting with cyclically reduced forms of elements g and
g′ we algorithmically verify whether or not the cases (i)-(iv) of the Conjugacy
Criterion (Theorem 6.2) hold for these elements. Simultaneously, we estimate time
complexity of our algorithms.

Case (i). One can easily check (in quadratic time on |u|+ |u′|) whether or not
the elements u and u′ are conjugate in the free group F (T, D). Moreover, if they are
conjugate then one can effectively find (in quadratic time on |u|+ |u′|) a conjugator
v.

Now we need to show that one can effectively write down the element (g′)v−1

in the normal form. Clearly, it suffices to show on how one can effectively rewrite
(f ′)v−1

as a reduced word from F (Sq).
Using relations

qdi = s−1
i qsi, qti = qRi, sti

j = sj , sdi
j = sj .

from the presentation (7) of G(H) one can rewrite (f ′)v−1
as a word of length at

most |f ′||v|max{|Ri| | i = 1, . . . , m} in generators Sq, and then freely reduce it.
This shows that one can effectively check whether or not the case (i) of the

Conjugacy Criterion holds for g and g′. Moreover, if it holds then one can effectively
find a required element v and then effectively replace g′ by (g′)v−1

.
Case (ii). To determine effectively whether Case (ii) holds or not one needs,

firstly, to check whether g ∈ A ∪ B or not. This amounts to the Membership
Problem for finitely generated subgroups in free groups, which is linear. Secondly,
one has to solve the conjugacy problem in a free group, which is decidable and at
most quadratic.

Case (iii). is obvious in view of the Case (ii).
Case (iv). Verification of Case (iv) splits into two subcases: firstly, one needs to

find effectively the elements u0, y, and c, and, secondly, one has to find the number
l, or prove that such l does not exist.

Since the element u ∈ F (D ∪ T ) is given, it is easy to find its maximal root
u0 ∈ F (D ∪ T ) in quadratic time in |u|. Then by Lemma 4.3 one can find the
unique y such that u0y ∈ A or u0y ∈ B (depending on the sign of εk). It takes
again at most quadratic time.
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Now one can effectively find the element c to satisfy (iv.b). It follows again
from Lemma 4.3.

It is left to show on how one can effectively solve the systems in (iv.c) for an
unknown l in the free group F (S).

More generally, consider the following equation in a free group F (S)

albl = d

where a, b ∈ F (S) are given, and l is unknown integer l. In the degenerate case,
where d = 1 and a = b−1, every integer l is a solution. Otherwise, this equation
has at most one solution in F (S). Indeed, if

albl = d = ambm

Then am−l = bl−m and m = l.
Now we show how one can find this unique solution if it exists. Below for

elements x, y, z ∈ F (S) we write x = y ◦ z if |x| = |y| + |z|, i.e., no cancellation in
yz.

If [a, b] = 1 then the equation takes the form (ab)l = d which is easy. Let
[a, b] 6= 1. We may assume that a is cyclically reduced and b = e−1 ◦ b0 ◦ e for some
e, b0 ∈ F (S) with b0 cyclically reduced (one can find such e, b0 in quadratic time).
There three cases to consider.

If ab = a ◦ b then
albl = al ◦ e−1 ◦ bl

0 ◦ e = d

hence

l =
|d| − 2|e|
|a|+ |b0| .

If e−1 does not cancel completely in ale−1
1 then a = a1 ◦ a2, e−1 = ap ◦ a−1

2 ◦ e−1
1

and
albl = al−p ◦ a1 ◦ e−1

1 ◦ b0 ◦ e1 ◦ a2 ◦ ap = d

and comparing length one can compute l (since the elements a1, a2, e1 are unique
and can be easily found).

If e−1 cancels completely in ale−1
1 then the key fact is that for any integers k, m

the cancellation in akbm
0 cannot be longer than |a|+ |b0| (otherwise the elements a

and b0 (hence a and b) commute). Again, one can make an equation as above and
solve it for l. We omit details here.

The argument above shows that one can find all possible values for l and then
check whether the equation albl = d holds in F (S). This requires at most quadratic
number of steps.

Now, if the elements g and g′ fall into premises of one of the cases (ii) or (iii)
then they are conjugate in G(H) if and only if the corresponding case holds. In
this case the conjugator x is easy to find.

If the elements g and g′ fall into premises of the cases (i) or (and) (iv) and the
corresponding case does not hold in G(H) then g and g′ are not conjugate in G(H).

If g and g′ fall into the premises of the cases (i) and (iv) and the cases hold in
G(H) then one can effectively find the unique solution l of the systems in (iv.c),
(iv.d) provided the system is non-degenerate. Hence the conjugating element z (if
it exists) must be equal to ul

0y
l. Now using the normal form algorithm one can

check whether, indeed, gz = g∗ for z = ul
0y

l or not.
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Finally, suppose that equations (13), (14), and (15) are degenerate. Equations
(13) and (14) can be written as

(y−1)l(sics
−1
i )l = s′is

−1
i , i = 0, k

in this case degenerate means that s′i = si and y = sics
−1
i . For equation (13)

(Case (iv.c)) this implies that g = g∗ and z = 1. For equation (14) (Case (iv.d), if
εk−1εk = 1) the following equalities hold in the event of εk = −1 (the case εk = 1
is similar and we omit it):

gz = (us0sk−1q
εk−1)z(skq−1)z

= (us0sk−1q
εk−1)zu−l

0 y−lskul
0c

lq−1

= (us0sk−1q
εk−1)zskq−1

Hence gz = g∗ is equivalent to

(us0sk−1q
εk−1)z = u0s

′
0q

ε1 · · · s′k−1q
εk−1

This allows one to find z by induction on k.
In the case of (15) (Case (iv.d)) εk−1εk = −1) one has s′k = sk and c−1skc = sk.

Hence (in the case of εk = −1)

qskq−1z = qskq−1ul
0y

l = qul
0skclq−1 = qθ(z)c−lskclq−1 = zqskq−1

Now gz = g∗ is equivalent to

(us0q
ε1 · · · sk−1)z = us′0q

ε1 · · · s′k−1

and, again, one can find z by induction on k.
This completes the proof of the theorem. ¤

8. Some algorithmic and probabilistic estimates

8.1. Measuring subsets. In this section we use the terminology and tech-
niques developed in [6] for measuring various subsets of the free group F . This
gives the asymptotic classification of the sizes of these sets. We start with a few
definitions and notation from [6]; a more detailed explanation is given in the Ap-
pendix.

Let R be a subset of the free group F and

Sk = {w ∈ F | |w| = k }
the sphere of radius k in F . The fraction

fk(R) =
|R ∩ Sk|
|Sk|

is the relative frequency of elements from R among the words of length k.
The atomic measure λ on F is defined on singleton sets {w}, w ∈ F , by

λ(w) =
1

2n(2n− 1)|w|−1
, if w 6= 1, and λ(1) = 1,

where n = |X| is the rank of F , and extended to all subset in F by countable
additivity:

λ(R) =
∑

w∈R

λ(w) =
∞∑

k=0

fk(R).
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A set R ⊆ F is called generic (negligible) if ρ(R) = 1 (ρ(R) = 0), where the
asymptotic density ρ(R) is defined by

ρ(R) = lim sup
k→∞

fk(R).

If, in addition, there exists a positive constant δ < 1 such that 1− δk < fk(R) < 1
for all sufficiently large k then R is called strongly generic.

A set R ⊆ F is strongly negligible if there exist positive δ < 1 such that
fk(R) < δk. It can be seen that every strongly negligible set is sparse in terminology
of [6], see Appendix for more detail.

A set R ⊆ F is called λ-measurable if λ(R) < ∞. Obviously, every strongly
negligible set is λ-measurable.

8.2. Definition of a measure on G(H). The groups G(H) is an HNN -
extension of the group K by a single stable letter q:

G(H) =
〈
K, q | q−1aq = θ(a), a ∈ A

〉
.

Any element g from G(H) can be written uniquely as follows

(19) g = uf, where u ∈ F (T, D) and f ∈ F (S, q)

Let λ∗1 and λ∗2 be atomic measures defined for free groups F (T, D) and F (Sq)
as above. Then an atomic measure λ∗ for G(H) is defined on singleton g by

λ∗(g) = λ∗1(u)λ∗2(f).

A set R ⊆ G(H) is called λ-measurable if λ(R) < ∞. One can also define
notations generic (strongly generic) and negligible (strongly negligible) sets.

8.3. The Strongly Black Hole in Miller’s groups. The Strongly Black
Hole SBH(G) in G(H) is the subgroup F (S, q) (see Section 6).

Theorem 8.1. Let H = 〈s1, . . . , sn | R1, . . . , Rm〉 be a finitely presented group
and G(H) be Miller’s group constructed from H. Assume that m > 1. Then the
strongly black hole SBH(G) in G(H) is a strongly negligible set if m > 1 and in
this case

fk(SBH(G)) <

(
n + 1
n + m

)k−1

, for all k > 1.

Note that the restriction m > 1 is natural in the context of this paper since
one relator groups have decidable word problem by the classical result of Magnus.

Proof. Denote by Gk, Bk, Pk the set of all elements of length k the groups G,
F (S, q) and F (T, D) respectively. Then it follows from Equation 19 that if g = uf
with u ∈ F (S, q) and f ∈ F (T,D) then l(g) = l(u) + l(f) = k. Then we directly
obtain:

|Gk| = |Pk|+ |Pk−1B1|+ · · ·+ |Bk|.
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Consequently, for m > 1, we have

fk(SBH(G)) =
|Bk|
|Gk|

<
|Bk|
|Pk|

=
(2n + 1)(2n + 2)k−1

(2n + 2m− 1)(2n + 2m)k−1

<

(
n + 1
n + m

)k−1

.

¤

Below we expose a quantitative estimate for the group G(H), in the case when
H is a well-known group with unsoluble word problem.

Example 1. Borisov constructed a group (see [13]) with unsoluble word prob-
lem with 10 generators and 27 relations:

G =〈a, b, c, d, e, p, q, r, t, k | p10a = ap, p10b = bp, p10c = cp, p10d = dp,

p10e = ep, qa = aq10, qb = bq10, qc = cq10, qd = dq10, qe = eq10, ra = ar,

rb = br, rc = cr, rd = dr, re = er, pacqr = rpcaq, p2adq2r = rp2daq2,

p3bcq3r = rp3cbq3, p4bdq4r = rp4dbq4, p5ceq5r = rq5ecaq5,

p6deq6r = rp6edbq6, p7cdcq7r = p7cdceq7, p8caaaq8r = rp8aaaq8,

p9daaaq9r = rp9aaaq9, pt = tp, qt = tq, k(aaa)−1t(aaa) = k(aaa)−1t(aaa)〉.

(20)

In our case
n + 1
n + m

=
11
37

<
1
3
.

Take l = 81, then

f81(SBH(G)) <

(
n + 1
n + m

)l−1

<
1

380
,

a number small beyond any practical possibility to find an element in SBH(G) by
picking random elements in G.

8.4. Random elements in the base group. In view of the general conju-
gacy criterion for HNN-extensions (Theorem 3.1), the most challenging case of the
Conjugacy Problem for Miller’s group G =

〈
K, q | q−1Aq = B, θ

〉
is presented by

pairs (g, g′) where both elements g and g′ belong to the base group K.
Let us look at random elements in K using the measure-theoretic framework of

[6] (see Appendix for more detail). A natural way to introduce an atomic measure
on K is to use the direct sum decomposition K = F (T,D)× F (S) and set

µ(k) = µσ1(u)µσ2(s)

where k = (u, s), u ∈ F (T, D) and s ∈ F (S), and µσ1 and µσ2 are multiplica-
tive measures with stopping probabilities σ1 and σ2 on groups F (T,D) and F (S),
correspondingly.
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Theorem 8.2.
P (k is strongly singular) = σ1,

where σ1 is the stopping probability of the random word generator for the group
F (T,D).

Proof. Let k = us with u ∈ F (T, D) and s ∈ F (S, q). Since SHB(G) ∩K =
F (S), it follows immediately that the element k belongs to SBH(G) if and only if
u = 1. Hence the probability in question is the probability P (u = 1) = σ1. ¤

Appendix: Measuring sets in free groups

Generation of random words. For completeness of exposition, we reproduce
here some definitions from [6].

Let F = F (X) be a free group with basis X = {x1, . . . , xm}. We use, as our
random word generator, the following no-return random walk on the Cayley graph
C(F, X) of F with respect to the generating set X. We start at the identity element
1 and either do nothing with probability s ∈ (0, 1] (and return value 1 as the output
of our random word generator), or move to one of the 2m adjacent vertices with
equal probabilities (1 − s)/2m. If we are at a vertex v 6= 1, we either stop at v
with probability s (and return the value v as the output), or move, with probability
1−s

2m−1 , to one of the 2m − 1 adjacent vertices lying away from 1, thus producing
a new freely reduced word vx±1

i . Since the Cayley graph (C(F, X) is a tree and
we never return to the word we have already visited, it is easy to see that the
probability µs(w) for our process to terminate at a word w is given by the formula

(21) µs(w) =
s(1− s)|w|

2m · (2m− 1)|w|−1
for w 6= 1

and

(22) µs(1) = s.

Observe that the set of all words of length k in F forms the sphere Sk of radius k
in C(F,X) of cardinality |Sk| = 2m(2m− 1)k−1. Therefore the probability to stop
at a word of length k is

(23) P (|w| = k) = s(1− s)k.

Hence the lengths of words produced by our process are distributed according to
a geometric law. It is obvious now that the same random word generator can be
described in simpler terms: we make random freely reduced words w of random
length |w| distributed according to the geometric law (23) in such way that words
of the same length k are produced with equal probabilities.

The mean length Ls of words in F distributed according to µs is equal to

Ls =
∑

w∈F

|w|µs(w) = s

∞∑

k=1

k(1− s)k−1 =
1
s
− 1.

Hence we have a family of probability distributions µ = {µs} with the stopping
probability s ∈ (0, 1) as a parameter, which is related to the average length Ls as

s =
1

Ls + 1
.



24 A. V. BOROVIK, A. G. MYASNIKOV, AND V. N. REMESLENNIKOV

By µ(R) we denote the function

µ(R) : (0, 1) → R

s 7→ µs(R) =
∑

w∈R

µs(w);

we call it measure of R with respect to the family of distributions µ.
Denote by nk = nk(R) = |R ∩ Sk| the number of elements of length k in R,

and by fk = fk(R) the relative frequencies

fk =
|R ∩ Sk|
|Sk|

of words of length k in R. Notice that f0 = 1 or 0 depending on whether R contains
1 or not. Recalculating µs(R) in terms of s, we immediately come to the formula

µs(R) = s

∞∑

k=0

fk(1− s)k,

and the series on the right hand side is convergent for all s ∈ (0, 1). Thus, for every
subset R ⊆ F , µ(R) is an analytic function of s.

The asymptotic behaviour of the set R when Ls →∞ depends on the behaviour
of the function µ(R) when s → 0+. Here we just mention how one can obtain a
first coarse approximation of the asymptotic behaviour of the function µ(R). Let
W0 be the no-return non-stop random walk on C(F, X) (like Ws with s = 0), where
the walker moves from a given vertex to any adjacent vertex away from the initial
vertex 1 with equal probabilities 1/2m. In this event, the probability λ(w) that the
walker hits an element w ∈ F in |w| steps (which is the same as the probability
that the walker ever hits w) is equal to

λ(w) =
1

2m(2m− 1)|w|−1
, if w 6= 1, and λ(1) = 1.

This gives rise to an atomic measure

λ(R) =
∑

w∈R

λ(w) =
∞∑

k=0

fk(R)

where λ(R) is just the sum of the relative frequencies of R. This measure is not
probabilistic, since some sets have no finite measure (obviously, λ(F ) = ∞), more-
over, the measure λ is finitely additive, but not σ-additive. We shall call λ the
frequency measure on F . If R is λ-measurable (i.e., λ(R) < ∞) then fk(R) → 0
when k →∞, so intuitively, the set R is “small” in F .

A number of papers (see, for example, [2, 11, 30, 34]), used the asymptotic
density (or more, precisely, the spherical asymptotic density)

ρ(R) = lim sup fk(R)

as a numeric characteristic of the set R reflecting its asymptotic behavior.
A more subtle analysis of asymptotic behaviour of R is provided by the relative

growth rate [18]
γ(R) = lim sup k

√
fk(R).

Notice the obvious inequality γ(R) 6 1. If γ(R) < 1 then the series
∑

fk converges.
This shows that if γ(R) < 1 then R is λ-measurable.
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The multiplicativity of the measure and generating functions. It is
convenient to renormalise our measures µs and work with the parametric family
µ∗ = {µ∗s} of adjusted measures

(24) µ∗s(w) =
(

2m

2m− 1
· 1
s

)
· µs(w).

This new measure µ∗s is multiplicative in the sense that

(25) µ∗s(u ◦ v) = µ∗s(u)µ∗s(v),

where u ◦ v denotes the product of non-empty words u and v such that |uv| =
|u|+ |v| i.e. there is no cancellation between u and v. The measure µ itself is almost
multiplicative in the sense that

(26) µs(u ◦ v) = cµs(u)µs(v) for c =
2m

2m− 1
· 1
s

for all non-empty words u and v such that |uv| = |u|+ |v|. Therefore our measure
is close in its properties to the Boltzmann samplers of [15]: there, random combi-
natorial objects are generated with probabilities obeying the following rule: if thing
A is made of two things B and C then p(A) = p(B)p(C).

If we denote

(27) t = µ∗s(x
±1
i ) =

1− s

2m− 1
then

(28) µ∗s(w) = t|w|

for every non-empty word w.
Similarly, we can adjust the frequency measure λ making it into a multiplicative

atomic measure

(29) λ∗(w) =
1

(2m− 1)|w|
.

Let now R be a subset in F and nk = nk(R) = |R ∩ Sk| be the number of
elements of length k in R. The sequence {nk(R)}∞k=0 is called the spherical growth
sequence of R. We assume, for the sake of minor technical convenience, that R does
not contain the identity element 1, so that n0 = 0. It is easy to see now that

µ∗s(R) =
∞∑

k=0

nktk.

One can view µ∗(R) as the generating function of the spherical growth sequence
of the set R in variable t which is convergent for each t ∈ [0, 1). This simple
observation allows us to apply a well established machinery of generating functions
of context-free languages [17] to estimate probabilities of sets.

Cesaro density. Let µ = {µs} be the parametric family of distributions de-
fined above. For a subset R of F we define the limit measure µ0(R) :

µ0(R) = lim
s→0+

µs(R) = lim
s→0+

s ·
∞∑

k=0

fk(1− s)k.

The function µ0 is additive, but not σ-additive, since µ0(w) = 0 for a single element
w. It is easy to construct a set R such that lims→0+ µ(R) does not exist. However, in
the applications that we have in mind we have not yet encountered such a situation.
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Strictly speaking, µ0 is not a measure because the set of all µ0-measurable sets is not
closed under intersections (though it is closed under complements). Because µs(R)
gives an approximation of µ0(R) when s → 0+, or equivalently, when Ls →∞, we
shall call R measurable at infinity if µ0(R) exists, otherwise R is called singular.

If µ(R) can be expanded as a convergent power series in s at s = 0 (and hence
in some neighborhood of s = 0):

µ(R) = m0 + m1s + m2s
2 + · · · ,

then
µ0(R) = lim

s→0+
µs(R) = m0,

and an easy corollary from a theorem by Hardy and Littlewood [19, Theorem 94]
asserts that µ0 can be computed as the Cesaro limit

(30) µ0(R) = lim
n→∞

1
n

(f1 + · · ·+ fn) .

So it will be also natural to call µ0 the Cesaro density, or asymptotic average
density.

The Cesaro density µ0 is more sensitive than the standard asymptotic density
ρ = lim sup fk. For example, if R is a coset of a subgroup H of finite index in F
then it follows from Woess [34] that

µ0(R) =
1

|G : H| ,

while, obviously, ρ(H) = 1 for the group H of index 2 consisting of all elements of
even length.

On the other hand, if limk→∞ fk(R) exists (hence is equal to ρ(R)) then µ0(R)
also exists and µ0(R) = ρ(R). In particular, if a set R is λ-measurable, then it is
µ0-measurable, and µ0(R) = 0.

Asymptotic classification of subsets. In this section we introduce a clas-
sification of subsets R in F according to the asymptotic behaviour of the functions
µ(R).

Let µ = {µs} be the family of measures defined in Section 8.4. We start with
a global characterization of subsets of F .

Let R be a subset of F . By its construction, the function µ(R) is analytic
on (0, 1). We say that R is smooth if µ(R) can be analytically extended to a
neighborhood of 0.

We start by considering a linear approximation of µ(R). If the set R is smooth
then the linear term in the expansion of µ(R) gives a linear approximation of µ(R):

µs(R) = m0 + m1s + O(s2).

Notice that, in this case, m0 = µ0(R) is the Cesaro density of R. An easy corollary
of [19, Theorem 94] shows that if µ0(R) = 0 then

m1 =
∞∑

k=1

fk(R) = λ(R).

On the other hand, even without assumption that R is smooth, if R is λ-
measurable (that is, the series

∑
fk(R) converges), then

µ0(R) = 0 and lim
s→0+

µ(s)
s

= λ(R).



CONJUGACY PROBLEM IN MILLER’S GROUPS, VER. 5, 8 SEP 2005 27

This allows us to use for the limit

µ1 = lim
s→0+

µ(s)
s

,

if it exists, the same term frequency measure as for λ. The function µ1 is an additive
measure on F (though it is not σ-additive).

Now we can introduce a subtler classification of sets in F :
• Thick subsets: µ0(R) exists, µ0(R) > 0 and

µ(R) = µ0(R) + α0(s), where lim
s→0+

α0(s) = 0.

• Sparse subsets: µ0(R) = 0, µ1(R) exists and

µ(R) = µ1(R)s + α1(s) where lim
s→0+

α1(s)
s

= 0.

• Intermediate density subsets: µ0(R) = 0 but µ1(R) does not exist.
• Singular sets: µ0(R) does not exist.

For sparse sets, the values of µ1 introduce a further and more subtle discrimi-
nation by size.

It can be easily seen [6] that every λ-measurable set is sparse.
A set R ⊆ F is strongly negligible if there exist positive δ < 1 such that

fk(R) < δk. It is easy to see that every strongly negligible set is sparse and λ-
measurable.
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