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HYPERBOLIC GROUPS AND FREE CONSTRUCTIONS

O. KHARLAMPOVICH AND A. MYASNIKOV

Abstract. It is proved that the property of a group to be hyperbolic is pre-
served under HHN-extensions and amalgamated free products provided the
associated (amalgamated) subgroups satisfy certain conditions. Some more
general results about the preservation of hyperbolicity under graph products
are also obtained. Using these results we describe the Q-completion (Q is the
field of rationals) GQ of a torsion-free hyperbolic group G as a union of an
effective chain of hyperbolic subgroups, and solve the conjugacy problem in
GQ.

Hyperbolic groups have been the subject of intensive investigation since the work
of Gromov [8]. Let G = 〈J,R〉 be a finitely presented group with a set of generators
J and a set of relators R. A word W in the alphabet J±1 is equal to 1 in G if and
only if there is an equality

W =
∏n

i=1
S−1
i R±1

i Si(1)

in the free group F = F (J), where Si ∈ F and Ri ∈ R. The group G is hyperbolic if
there exists a linear function bounding the minimal number of factors n = n(W ) in
(1) depending on the length ||W || of the word W. This definition does not depend
on the choice of the presentation of G.

In his book ([8], §3.3) M.Gromov claimed that if G1 and G2 are torsion-free
hyperbolic and U and V are maximal cyclic subgroups in G1 and G2 respectively,
then the amalgamated free product G1 ∗U=V G2 is also hyperbolic.

On the other hand the group 〈x〉 ∗xn=ym 〈y〉 for | n |, | m |> 1 is not hyperbolic,
because it contains a free abelian subgroup with generators xy and xn.

The Baumslag-Solitar groups BS(m,n) = 〈x, t | t−1xmt = xn〉 provide examples
of HNN-extensions of hyperbolic group (with cyclic associated subgroups) that are
not hyperbolic.

In [4] it has been shown that an amalgamated product of two hyperbolic groups
with a cyclic subgroup amalgamated is automatic and that an amalgamated prod-
uct of two finitely generated free groups with a finitely generated subgroup amal-
gamated is acynchronously automatic. It has been also proved in [4] that if G
is an HNN-extension of a finitely generated free group with finitely many stable
letters and if the associated subgroups are all finitely generated, then G is asyn-
chronously automatic. Under the additional assumption of “speed-matching”, such
HNN-extensions are shown to be automatic in [16]. (Notice that the class of au-
tomatic groups is contained in the class of asynchronously automatic groups and

Received by the editors July 7, 1994 and, in revised form, January 18, 1996.
1991 Mathematics Subject Classification. Primary 20F06, 20E06.
The first author was supported by grants from NSERC and FCAR.

c©1998 American Mathematical Society

571



572 O. KHARLAMPOVICH AND A. MYASNIKOV

contains the class of hyperbolic groups.) In [3], [6] it was proved that if an amal-
gamated free product G1 ∗U G2 is automatic then both groups G1 and G2 are
automatic provided the amalgamated subgroup U is finite.

In [5] Bestvina and Feighn proved the combination theorem for negatively curved
spaces and as a corollary obtained the result which we also formulate in this paper
as Corollary 2.

We define a subgroup U of a group G to be conjugate separated if the set {u ∈
U | ux ∈ U} is finite for all x ∈ G \ U .

Let us introduce the construction of a separated HNN-extension of a group G.

Definition 1. Suppose that U and V are subgroups of G, ψ : U → V is an
isomorphism, either U or V is conjugate separated, and the set U ∩ g−1V g is
finite for all g ∈ G. Then the HNN-extension

〈
G, t | t−1ut = uψ, u ∈ U〉 is called

separated.

Let a, b ∈ G; by |a− b|G we denote the distance between the points a and b in
the Cayley graph of G (see the definition below). If it is clear from the context in
which group the distance is taken, we will just write |a− b| .

A finitely generated subgroup U of a hyperbolic group G is said to be quasiiso-
metrically embedded if there is a constant λ = λ(U) such that |1− a|U ≤ λ |1− a|G
for any element a ∈ U. Every quasiisometrically embedded subgroup of a hyperbolic
group is itself hyperbolic.

It is not hard to see that a subgroup of a hyperbolic group is quasiisometrically
embedded if and only if it is quasiconvex (the definition of quasiconvexity can be
found in Section 6).

Theorem 1. If G is a hyperbolic group and H = 〈G, t | U t = V〉 is a separated
HNN-extension such that the subgroups U and V are quasiisometrically embedded
in G, then H is hyperbolic.

Theorem 2. Let G1, G2 be hyperbolic groups, U ≤ G1, V ≤ G2 quasiisometrically
embedded, and U conjugate separated in G1. Then the group G1∗U=VG2 is hyperbolic.

As corollaries we have the following results.

Corollary 1. If G is a hyperbolic group, A and B isomorphic virtually cyclic sub-
groups, then the HNN-extension H = 〈G, t | At = B〉 is hyperbolic if and only if it
is separated.

Corollary 2 ([5]). Let G1, G2 be hyperbolic groups, A ≤ G1, B ≤ G2, virtually
cyclic. Then the group G1 ∗A=B G2 is hyperbolic if and only if either A is conjugate
separated in G1 or B is conjugate separated in G2.

The assertion of our Corollary 1 contradicts the assertion of the last corollary
(HNNs over virtually cyclics) in [5] (there is an omission in this corollary in [5]). The
group given by the presentation K = 〈a, b, t | t−1a2t = b2〉 is a counterexample.
The group is obviously not hyperbolic, but it satisfies condition (2) in the last
corollary in [5].

After our paper was ready, A.Yu. Olshanskii informed us that he and his student
K. Mikhajlovskii [11] independently obtained the results formulated in Corollaries
1 and 2. Corollary 2 is also proved in [7].

Corollary 3. HNN-extensions (amalgamated products) of hyperbolic groups with
finite associated (amalgamated) subgroups are hyperbolic.
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Corollary 4. Separated HNN-extensions of a free group with finitely generated as-
sociated subgroups are hyperbolic.

The condition in Theorems 1 and 2 can be weakened (see Section 5). The
proof of our results uses a geometric interpretation by Van Kampen diagrams of
the deducibility of relations in a group from the defining relations, as well as the
hyperbolicity of the Cayley graph Γ(G) of a hyperbolic group G.

In Section 6 we prove some results on quasiconvexity (Theorems 4, 5, 6 and 7).
In Section 7 we apply our results to exponential groups.
Let A be an arbitrary associative ring with identity and G a group. Fix an action

of the ring A on G, i.e. a map G × A → G. The result of the action of α ∈ A on
g ∈ G is written as gα. Groups with A-actions satisfying axioms 1)–4) in Section
7 are called A–groups. In particular, an arbitrary group G is a Z-group. In the
case where A is the field of rationals Q, Q-completions of groups (see definition
in Section 7) were studied by G. Baumslag in [2], [1]. A-completions for arbitrary
rings A were investigated in [12].

In [1] it was proved that for a free group F the word problem in the Q-completion
FQ is solvable. The proof was based on the residual finiteness of some specific
subgroups of FQ, so the problem was posed of finding a “direct” proof of the
solvability of the word problem using normal forms of elements in FQ. Moreover,
in the same article Baumslag mentioned that the conjugacy problem in FQ is still
open.

In Section 7 we describe the Q-completion GQ of a torsion-free hyperbolic group
G as the union of an effective chain of hyperbolic subgroups. This allows one to
apply techniques of hyperbolic group theory to solve various algorithmic problems
in GQ, in particular, to solve the conjugacy problem (Theorem 10) and to construct
effectively some natural normal forms for its elements, induced by the normal forms
of amalgamated free products (Theorem 9). A free group F is hyperbolic, so one
can answer two of Baumslag’s questions [1] mentioned above.

1. Quasigeodesic polygons in hyperbolic groups

Let us recall some notions from the theory of hyperbolic spaces.
Let X be a metric space, |x − y| the distance between points x, y ∈ X. If one

fixes a point o ∈ X then Gromov’s product (x · y)o is by definition

(x · y)o = 1/2(|x− o|+ |y − o| − |x− y|).
The space X is called δ-hyperbolic (for some fixed constant δ ≥ 0) if for all points
x, y, z, o ∈ X

(x · y)o ≥ min((x · z)o, (y · z)o)− δ.

And X is called hyperbolic if it is δ-hyperbolic for some δ ≥ 0
A geodesic segment between points x, y ∈ X is an isometric map [0, |x−y|] −→ X

sending 0 to x and |x−y| to y. Its image will also be called a geodesic segment; [x, y]
is the notation for some fixed geodesic segment between x and y. A metric space is
called geodesic if every pair of points can be connected by a geodesic segment. We
shall call a geodesic δ-hyperbolic space simply a δ-space.

An example of a geodesic space is the realization of the Cayley graph Γ(G) =
Γ(G, J) of a group G with a fixed generating system J. Recall that the vertices of
Γ(G) are elements of G, and the elements g, h = ga, a ∈ J, are connected by an
edge e = (g, a) having label φ(e) = a ∈ J. The label of a path is the product of the
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labels of the edges of this path. Let us endow each edge e with the metric of the
unit segment [0, 1]. By definition now the distance |x− y| between points x and y
is the length of a shortest path in Γ(G) between x and y.

A finitely presented group G is hyperbolic if and only if Γ(G) is a hyperbolic
space [8]. If g, h ∈ G then by definition (g · h) = (g · h)1 is the Gromov product in
Γ(G), where 1 is the identity of G. Let p be a path and x a point. Let |x, p| denote
the distance between the point x and the path p and |x, [y, z]| denote the distance
between the point x and the geodesic segment [y, z].

Lemma 1 ([14], Lemma 1.5). For each geodesic triangle [x1, x2, x3] in a δ-space,
there are points yi ∈ [xi−1, xi+1] (indices are considered modulo 3) such that

|xi − yi−1| = |xi − yi+1| = (xi−1 · xi+1)xi ,

|yi − yi−1| ≤ 4δ and |u, [xi, yi±1]| ≤ 4δ

for any point u ∈ [xi, yi±1].

It is easy to verify that for a hyperbolic group G we have in Γ(G)

(x · z)y = (φ([y, x]) · φ([y, z])).

We can rewrite the equalities from the lemma in the following form:

|xi − yi−1| = |xi − yi+1| = (φ[xi, xi−1] · φ[xi, xi+1]).

A path p with the natural parametrisation by length in Γ(G) is called (λ, µ)-
quasigeodesic for some λ ≥ 0 and µ ≥ 0, if for any points p(s) and p(t)

λ |s− t| − µ ≤ |p(s)− p(t)| .
Denote by q− (resp. q+) the initial (resp. terminal) vertex of a path q. A word

in the generators of G is called geodesic (resp. quasigeodesic) if the corresponding
path is geodesic (resp. quasigeodesic) in the Cayley graph of G.

If a subgroup U is quasiisometrically embedded in a hyperbolic group G then
every geodesic in U is a (λ, 0)-quasigeodesic in G.

Lemma 2 ([14], Lemma 1.9). There exists a constant H1 = H1(δ, λ, µ) such that
for any (λ, µ)-quasigeodesic path p in a δ-space and any geodesic path q with the
conditions p− = q− and p+ = q+, the inequalities |u, p| < H1 and |v, q| < H1 hold
for any points u ∈ q and v ∈ p.

As in [14], call two paths p and q C-bound if (|p− − q−|, |p+ − q+|) ≤ C.

Lemma 3 ([14], Lemma 1.7). Let [x1, . . . , x4] be a geodesic quadrangle in a δ-
space and

|x1 − x2| > 4 max(|x1 − x4| , |x2 − x3|).
Then, there exist 8δ-bound subsegments p and q of the segments [x1, x2] and [x3, x4]
such that

min(|p| , |q|) ≥ (7/20) |x1 − x2| − 8δ.

Now we fix some notation and introduce constants δ, λ, c, H1, that will be used
below without reference. Let G be the hyperbolic group from Theorem 1, J a fixed
set of generators of G. Suppose G is δ-hyperbolic. Let U and V be the subgroups
of G from Theorem 1, quasiisometrically embedded with the constant λ. Let U be
conjugate separated.

We introduce two length functions on the group G. If g ∈ G then |g| = |g − 1|
in Γ(G, J). In other words, |g| is the length of a shortest word in the alphabet J
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representing g in G. We also consider words in the alphabet J to be elements of G.
The notation W ≡ V means the equality of words, and W = V means the equality
of elements. Suppose V is a word in the alphabet J ; we say that W is a geodesic
word such that W = V if W is a shortest word representing in G the same element
as V.

By ||W || = ||W ||G we denote the length of the word W. Clearly the length ||W ||
can be greater then |W | .

We now fix some presentation of H. Let A = {a1, . . . , an} be a generating set
of U , ψ : U → V an isomorphism, bi = ψ(ai), i = 1, . . . , n, and B = {b1, . . . , bn}.
Then ati = bi is a defining relation in H. Let c= max{|a1| , . . . |an| , |b1| , . . . |bn|}.

One can consider two metrics on U , one induced from G and the other the
word metric in the generators from A (for W ∈ U we denote the latter by |W |U ).
We also denote the length of the word W ∈ U in the generators a1, . . . , an by
||W ||U . Then |W |U ≤ ||W ||U ≤ ||W || ≤ c||W ||U . It is also clear that |W |U ≤
λ|W |, |W |V ≤ λ|W | and |W | ≤ c|W |U . For V ∈ V we have |V | ≤ c|V |V . If U ∈ U
and U(a1(J), . . . , an(J)) is a geodesic word in U in the generators in A, then we
say that U is a U-geodesic word (or a geodesic in U). The same for V .

If we have a path p in the Cayley graph of G such that φ(p) is a word in the
generators in A (resp. B) which are words in the generators of G, then the vertices
of p corresponding to the beginnings and ends of the generators in A (resp. B) will
be called phase vertices (phase points). Phase vertices depend on the way we write
φ(p) as a word in the generators of U (respectively V). We call a word W cyclically
minimal if it has minimal length among all words conjugated to W in G.

Let H1 be the constant obtained for the group G as in Lemma 2.

Lemma 4. Let H2 = H1+c, H = 2H2+8δ. There is a constant M0 = M0(G,U ,V)
such that for any U-geodesic words u, ū, V-geodesic words v, v̄, and geodesic words
X,Y ∈ G,

1) the equality XuY ū = 1 for |u| ≥M0 implies

4 ·max(|X | , |Y |) ≥ |u| , |ū| ,
or X and Y belong to U .

2) the equality XuY v = 1 implies max(|u| , |v|) < M0 or 4 · max(|X | , |Y |) ≥
|u| , |v| ,

3) the equality XvY v̄ = 1 for |v| ≥M0 implies one of the following:
1. 4 ·max(|X | , |Y |) ≥ |v| , |v̄| ,
2. X and Y belong to V ,
3. there are elements T1 and T2 such that |Ti| < H, v ≡ v1v3v2, v̄ ≡ v̄2v̄3v̄1,

Xv1T
−1
1 v̄1 = 1, T1v3T

−1
2 v̄3 = 1, T2v2Y v̄2 = 1

and |v1| , |v̄1| ≤ 4 max{|X | , H}, |v2| , |v̄2| ≤ 4 max{|Y | , H}.
Proof. See Fig. 1. Let W1,W2 ∈ {u, ū, v, v̄}, and suppose we have an equality
XW1YW2 = 1. If X = Y = 1 there is nothing to prove. Suppose X 6= 1. By
the condition of the lemma, there is a quadrangle p1q1p2q2 in the Cayley graph
Γ(G) such that φ(p1) = X,φ(q1) = W1, φ(p2) = Y, φ(q2) = W2, the paths q1, q2 are
quasigeodesic and p1, p2 are geodesic. Consider geodesic paths si, such that

si± = qi±.

If either |W1| or |W2| is larger than 4 max{|X | , |Y |} then by Lemma 3 the paths s1

and s2 contain 8δ-bound subsegments t1 and t2 such that
∣∣t1∣∣ , ∣∣t2∣∣ > 1/3

∣∣s1∣∣ (we
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Figure 1

suppose that M0 > 8δ/(7/20 − 1/3)). We take these subsegments to be maximal
8δ-bound subsegments (this means that there are no 8δ-bound subsegments t̄1, t̄2

such that t̄1 contains t1, t̄2 contains t2 and one of these inclusions is proper).
Lemma 2 allows us to find phase points o1j (j = 1, 2) on q1, and o2j (j = 1, 2)

on q2, such that ∣∣o11 − t1−
∣∣ , ∣∣o12 − t1+

∣∣ , ∣∣o21 − t2−
∣∣ , ∣∣o22 − t2+

∣∣ < H2.

This shows that in the case W1 = v,W2 = v̄ (the third case) we have either the
first possibility or the third (we will show that the second possibility is a particular
case of the third). The subpath z1 = o11 − o12 has length∣∣z1

∣∣ > 1/3
∣∣q1∣∣ ,

and by Lemma 1 every vertex of z1 can be connected with a vertex of the path
z2 = o21 − o22 by some path t of length < 4H2 + 16δ.

Consider now vertices a1, a2, a3 . . . (called phase vertices) of the path z1, such
that the labels of the subpaths ai−ai+1 are graphically equal to generators of U (V).
Similarly, choose phase vertices b1, b2, b3, . . . on z2. As was noticed above, each ai
can be connected with some vertex bk by a path ti of length < 2H . Therefore the

number of different labels φ(ti) of paths ti is less then 2 |J |2H . So, for sufficiently
large M0 there exist vertices ai and aj such that φ(ti) ≡ φ(tj) = T.

Let z1 be the subpath of z1 connecting ai with aj , and z2 be the subpath of z2

connecting bk with bl. Observe that z1 (resp. z2) can be made arbitrary long if one
takes long z1 (resp. z2) .

The label of the closed path t−1
i (ai−aj)tj(bl−bk) is the word T−1φ(z1)T (φ(z2))

−1.
If W1,W2 ∈ U then φ(z1), φ(z2) ∈ U , and if q1 (and hence s1) is long enough (in-
crease M0 if necessary), then because U is conjugate separated, one can find a
suitable T in U . Hence X,Y ∈ U .

If W1 ∈ U and W2 ∈ V then, because H is a separated HNN-extension, such a T
cannot exist for long q1 or q2 .

A direct consequence of this lemma is the following

Corollary 5. Let U and V be subgroups of G as in Theorem 1. If

M > max{M0, 4, cλ},
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then for any U -geodesic words u, ū, any V-geodesic words v, v̄, and geodesic words
X,Y ∈ G,

• the equality XuY ū = 1 implies

M ·max(|X | , |Y |) > |u| , |ū| ,
or X and Y belong to U .

• the equality XuY v = 1 implies

max(|u| , |v|) < M max(|X | , |Y | , 1),

• the equality XvY v̄ = 1 implies one of the following:
1. M ·max(|X | , |Y |) > |v| , |v̄| ,
2. X and Y belong to V,
3. there are elements T1 and T2 such that |Ti| < H, v ≡ v1v3v2, v̄ ≡ v̄2v̄3v̄1,

Xv1T
−1
1 v̄1 = 1, T1v3T

−1
2 v̄3 = 1, T2v2Y v̄2 = 1

and |v1| , |v̄1| ≤ 4 max{|X | , H}, |v2| , |v̄2| ≤ 4 max{|Y | , H}.
Definition 2. Suppose a word W in G has the following decomposition:

W ≡ X0W1X1W2X2 . . .WkXk,

where each Xi is a reduced word, each Wi either belongs to U and is U-geodesic
or belongs to V and is V-geodesic, and if, for some i, Wi and Wi+1 both belong
to U or both belong to V then Xi 6= 1. Then this decomposition will be called a
UV-decomposition of W.

If W = 1, X0 ≡ 1 and in the above definition indices are taken modulo k, then
the above decomposition will be called a cyclic UV-decomposition of W.

In the case where all the Wi’s belong to U (resp. V), we will talk about U-
decomposition (V-decomposition).

Definition 3. A UV-decomposition of the word W

W ≡W1X1W2X2 . . .WkXk = 1

is called splittable if one of the following holds.

1. There is a j ≤ k such that W1 ≡W11W12, W11,W12 ∈ U and Wj ≡Wj1Wj2,
Wj1,Wj2 ∈ U and

W12X1W2X2 . . .Wj1 = W ′ ∈ U ,
where

|W12|U + |Wj1|U > |W ′|U +
∣∣Wj1W

′−1W12

∣∣
U .

2. There is a j ≤ k such that W1 ≡ W11W12,W11,W12 ∈ V and Wj ≡ Wj1Wj2,
Wj1,Wj2 ∈ V and

W12X1W2X2 . . .Wj1 = W ′ ∈ V ,
where

|W12|V + |Wj1|V > |W ′|V +
∣∣Wj1W

′−1W12

∣∣
V .

3. There is a j ≤ k such that W1 ≡ W11W12,W11 6= 1,W12 6= 1 ∈ V and
Wj ≡Wj1Wj2,Wj1 6= 1,Wj2 6= 1 ∈ V and

W12X1W2X2 . . .Wj1 = T,

where T 6∈ V , |T | < H and W12,Wj1 have minimal length in V among the
subwords of W1 and Wj with the property that the above equality is satisfied
for some word T, where |T | < H .
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A cyclic UV-decomposition of W is called cyclically nonsplittable if all permuta-
tions of the form

WiXi . . .WkXkW1 . . .Wi−1Xi−1 = 1.

are nonsplittable.

Our main goal in this section is to prove Corollary 6.
The following lemma follows from Corollary 5.

Lemma 5. For any U -geodesic words u, ū ∈ U , and V-geodesic words v, v̄ ∈ V and
geodesic words X,Y ∈ G we have the following :

• If XuY ū = 1 is a cyclically nonsplittable U-decomposition, then

M · (|X |+ |Y |) > |u| , |ū| .
• The equality XuY v = 1 implies

max(|u| , |v|) < M max(|X |+ |Y | , 1).

• If XvY v̄ = 1 is a cyclically nonsplittable V-decomposition, then

M · (|X |+ |Y |) > |v| , |v̄| .
Proposition 1. Suppose that in the group G we have a cyclically nonsplittable UV-
decomposition of the word W :

W ≡W1X1W2X2 . . .WkXk = 1,

where the Xi are geodesic words.
Then for any i

|Wi| ≤M(
k∑
i=1

|Xi|) + 2M(k − 1)(2H2 + 6δ) + k(H2 + 1).

(See Fig. 3.)

We will give a proof of this proposition together with the following lemma by
simultaneous induction on k.

Lemma 6. Suppose we are given a UV-decomposition of a word W̄ :

W̄ ≡ X̄0W̄1X̄1W̄2X̄2 . . . W̄k−2X̄k−2W̄k−1,

k > 2, and X̄0 = 1 if k > 3, the X̄i’s are geodesic, each W̄i either belongs to U and
is geodesic in U , or belongs to V and is geodesic in V.

Let Uk be a geodesic word such that Uk = W̄ and Ūk be a geodesic such that

Ūk = UkW̄
−1
k−1.

Suppose that the decomposition

X̄0W̄1X̄1W̄2X̄2 . . . W̄k−2X̄k−2W̄k−1U
−1
k = 1

is cyclically nonsplittable. Let V̄i be a geodesic word such that V̄i = W̄i. Then
Gromov’s products

Lk = (Ū−1
k · V̄k−1) ≤M(

k−2∑
i=1

∣∣X̄i

∣∣) +M(1 + 2(k − 2))(2H2 + 6δ) + (k − 1)(H2 + 1).

(See Figs. 2, 4.)
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The assertion of the proposition for k = 2 is just Lemma 5.
We first will prove Lemma 6 for k = 3. The proof is illustrated in Fig. 2. Consider

a geodesic triangle [x1, x2, x3] in Γ(G) such that the label Ā of the side [x1, x2]
is equal to Ū−1

3 in G and the label B̄ of the side [x1, x3] is equal to V̄2. Then
L3 = (Ā · B̄). By Lemma 1, one can find decompositions Ā ≡ A1A2, B̄ ≡ B1B2,
where |A1| = |B1| > L3 − 1, and for subsegments p, q of the sides [x1, x2] and
[x1, x3] with labels A1 and B1, |p+ − q+| ≤ 4δ. Consider the path s issuing from
x1 and having W̄2 as a label. According to Lemma 2 there is an initial subpath s1
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of s with the label W̄21 belonging to the same subgroup U or V as W2, such that∣∣q+ − s1+
∣∣ < H1 + c = H2. Let t be a path issuing from x1 and having the label

X̄−1
1 W̄−1

1 . Then either |t+ − p+| < δ +
∣∣X̄0

∣∣ or there is a subpath t1 issuing from

x1 and having the label X̄−1
1 W̄−1

12 , such that
∣∣t1+ − p+

∣∣ < 2δ +H2.

It is clear that L3 − 1 ≤ H2 +
∣∣W̄21

∣∣ .
By Corollary 5,

∣∣W̄21

∣∣ < M max{∣∣X̄1

∣∣ , H2+5δ+
∣∣X̄0

∣∣ , 2H2+6δ,H2+6δ+
∣∣X̄1

∣∣ , 1}.
Hence L3 ≤ H2 +1+M((

∣∣X̄0

∣∣+ ∣∣X̄1

∣∣)+ 2H2 +6δ). The lemma is proved for k = 3.
Suppose now that the proposition is proved for all k < r and the lemma is proved

for all k ≤ r. We will prove the proposition for k = r. Let Vi be geodesic words such
that Vi = Wi. See Fig. 3. Let [x1, y1, . . . xr, yr] be a geodesic 2r-gon in the Cayley
graph Γ(G), such that Vi is the label of [xi, yi] and Xi is the label of [yi, xi+1] (Xr

is the label of [yr, x1]). Let U be the label of [y1, x3], and W the label of [x1, x3].
By the assertion of the lemma for k = r, applied to the word

W3X3 . . .WrXrW1,

we have

Lr = (W · V1) ≤ (r − 1)(H2 + 1) +M(

r∑
i=3

|Xi|+ (1 + 2(r − 2))(2H2 + 6δ)).

By the assertion of the Lemma for k = 3, applied to the word

X−1
2 W−1

2 X−1
1 W−1

1 ,

we have

L3 = (U · V −1
1 ) ≤ H2 + 1 +M((|X0|+ |X1|) + 2H2 + 6δ).

Now, by Lemma 1,

|V1| = L3 + Lr ≤ r(H2 + 1) +M(

r∑
i=1

|Xi|+ (r − 1)2(2H2 + 6δ)).

Now we will prove the lemma for k = r + 1. See Fig. 4.
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Consider a 2r-gon [x1, y1, . . . , xr, yr] in Γ(G) such that X̄i is the label of [yi, xi+1]
and a path with the label W̄i has initial point xi and terminal point yi.

Consider a geodesic triangle [x1, xr, yr] such that the label Ā of the side [xr , x1]
is equal to Ū−1

r in G, and the label B̄ of the side [xr, yr] is equal to V̄r. Then
Lr = (Ā · B̄). By Lemma 1, one can find decompositions Ā ≡ A1A2, B̄ ≡ B1B2,
where |A1| = |B1| > Lr − 1 and for subsegments p, q of the sides [xr , x1] and
[xr, yr] with labels A1 and B1, |p+ − q+| ≤ 4δ. Consider the path s issuing from
xr and having W̄r as its label. According to Lemma 2 there is an initial subpath
s1 of s with the label W̄r1 belonging to the same subgroup U or V as Wr, such
that

∣∣q+ − s1+
∣∣ < H2. There are the following r possibilities: |p+, [x1, y1]| < δ,

|p+, xi+1| < iδ +
∣∣X̄i

∣∣ (i = 1, . . . , r − 1).
We consider the first possibility. Then there is a path t issuing from y1 with the

label W̄−1
12 such that |p+, t+| < δ + H2. Let f be the label of the geodesic path

s1+, t+; then |f | < 5δ + 2H2.

If f 6= 1 or both W̄12, W̄r1 6∈ U(V), then the word

W̄12X̄1 . . . W̄r−1X̄r−1W̄r1f = 1

is nonsplittable and we can apply the proposition for k ≤ r to get

Lr+1 − 1 ≤ r(H2 + 1) +M(
r−1∑
i=1

∣∣X̄i

∣∣+ 1 + 2(r − 1)(2H2 + 6δ)).

Now suppose that f = 1, W̄12, W̄r1 ∈ U . Let Ŵ be a quasigeodesic word such

that Ŵ = W̄r1W̄12. Consider instead of the word

W̄12X̄1 . . . W̄r−1X̄r−1W̄r1 = 1

the word

Ŵ X̄1 . . . W̄r−1X̄r−1

(it is nonsplittable) , and apply the proposition for k = r − 1 to estimate Ŵ .
Because nonsplitability implies

∣∣(W̄r1W̄12)
∣∣
U =

∣∣W̄r1

∣∣
U +

∣∣W̄12

∣∣
U , and hence∣∣W̄r1

∣∣ ≤ ∣∣∣Ŵ ∣∣∣+H2, the proof is finished in this case.

The case f = 1, W̄12, W̄r1 ∈ V can be considered similarly.
The other r − 1 possibilities |p+, xi+1| < iδ +

∣∣X̄i

∣∣ (i = 1, . . . r − 1) can be
considered similarly to the first possibility. Proposition 1 and Lemma 6 are proven.
2

Corollary 6. There are constants M1, M2 such that if in the group G we have a
cyclically nonsplittable UV-decomposition

W ≡W1X1W2X2 . . .WkXk = 1,

then for Wi ∈ U we have |Wi|U ≤ M1

∑
i |Xi| + M2k, and for Wi ∈ V we have

|Wi|V ≤M1

∑
i |Xi|+M2k.

2. Diagrams

Recall that a map a is finite, planar connected 2-complex.
By a diagram ∆ over a presentation 〈a1, . . . , am|R1, . . . , Rn〉, where the words

Ri are cyclically reduced, we mean a map with a function φ which assigns to each
edge of the map one of the letters a±1

k , 1 ≤ k ≤ m, such that φ(e−1) = (φ(e))−1 and
if p = e1 . . . ed is the contour of some cell Φ of ∆, then φ(p) ≡ φ(e1) . . . φ(ed) ≡ R
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is a cyclic shift of one of the defining words R±1
i . In general the word φ(p) is called

the label of the path p. The label of a diagram ∆ (whose contour is always taken
with a counterclockwise orientation) is defined analogously.

Van Kampen’s lemma states that a word W represents the identity of the group
G if and only if there is a simply connected (or Van Kampen, or disk) diagram ∆
over G such that the boundary label of ∆ is W.

Due to Van Kampen’s lemma, a group G is hyperbolic if and only if there are
constants K and C such that for any element W = 1 in G there is a diagram with
boundary label W and number of cells ≤ K ||W || + C. Since ||W || ≥ 1 we can
assume (taking K + C instead of K) that C = 0.

3. HNN-extensions

Let H be the HNN-extension as in Theorem 1. We fixed the presentation for
the group H in the first section. As we just noticed, from the hyperbolicity of the
group G it follows that there is a constant K such that for any element W = 1 in
G there is a diagram with boundary label W and number of cells ≤ K ||W || .

The contents of this section is the proof of the following fact.

Proposition 2. There is a linear function L(x) depending only on G,U ,V such
that for any element W = 1 in H there is a diagram over H with boundary label W
and number of cells ≤ L(||W ||).

Let ∆ be a diagram over H with boundary label W . New cells corresponding to
the relations t−1ait = bi, where i = 1, . . . , n, will be called t-cells. They are shown
on Fig. 5. A configuration of t-cells in a diagram over H, as shown on Fig. 6a, we
call a t-annulus.

From now on we suppose that ∆ is minimal; this means that it has a minimal
possible number of t-cells.

Lemma 7. A minimal diagram over H cannot contain a t-annulus.

Proof. Suppose it contains a t-annulus. Take a t-annulus such that there is not
another t-annulus inside it. Then the label of its internal contour p equals the
identity in the group G. Hence the label of its external contour q equals the identity
in the group G. We can decrease the number of t-cells by applying

Transformation 1. Assuming that the contour p in Fig. 6a bounds a G-diagram,
replace the interior of the diagram having the contour q in Fig. 6a by a G-diagram
with the contour q.

The lemma is proved.

By this lemma, t-cells can only form t-strips as shown in Fig. 6b, and these
t-strips must end on the boundary of ∆.

bi

ai

t t

Figure 5
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The direction of the t-edges defines U- and V-sides of a t-strip. The minimal-
ity of ∆ also implies that the U-sides (V-sides) of the t-strips are geodesic words
respectively in the subgroups U and V . Indeed, suppose we have a t-strip whose
U- and V-sides are not geodesic words in U and V . Let the path p correspond to
the V-side of the t-strip, with φ(p) = V1. Let V2 be a geodesic word in V such that
V2 = V1 in V . Let V2 = φ(q). We replace the t-strip by the diagram Θ having the
same contour as shown in Fig. 7 and cut out the annulus. As a result we have a
diagram with fewer t-cells.

The typical form of ∆ is shown in Fig. 8 on page 000.
Our diagram ∆ is subdivided by the t-strips into a set of mutually disjoint max-

imal G-subdiagrams. The maximal G-subdiagrams are the connected components
of ∆ which remain after deleting all t-edges and interiors of t-cells.

Our next goal is to study maximal G-subdiagrams in the diagram ∆. A typical
form of a maximal G-subdiagram is shown in Fig. 9 on page 000.

Definition 4. An island in a maximal G-subdiagram is a G-subdiagram with the
following properties:

1. The contour of the island is subdivided into paths, such that every path either
belongs to the boundary of ∆ or is a part of a U- or V-side of a t-strip in ∆.

2. There is no point on the contour of the island such that the deletion of this
point splits the island into two or more disconnected components.

Every edge of an island is proper, i.e. lies on the boundary of some cell of this
island.

A bridge is a pair of paths {p, p−1}, where p = e1 . . . er is a maximal subpath,
consisting of improper edges of ∆, such that the valencies of the terminal points of
e1 . . . er−1 are equal to 2.

Every maximal G-subdiagram consists of islands and bridges.
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Figure 7

The contour of each island is canonically subdivided into paths, and each of
these paths either belongs to the U- or V-side of some t-strip and is maximal with
respect to this property (we will call these paths U-paths and V-paths, or generally
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strippaths) or belongs to the boundary of ∆ and is maximal with respect to this
property (we will call them boundary paths).

We will call a vertex on a U-side (resp. V-side) of a t-strip a phase vertex if
it corresponds to the beginning or end of a path labelled by some generator ai of
U (resp. generator bi of V) and to the beginning or to the end of the t-edge. A
vertex on a strippath will be called a phase vertex if it is a phase vertex on the
corresponding U- or V-side of the t-strip.

Transformation 2. We now carry out surgeries on the diagram. Our objective is
to make U- and V-paths contact the boundary paths only through phase vertices.
See Fig. 10. Let p be a boundary-path of an island I which is adjacent to a U-path
at the point O1. Let O2 be the phase vertex on the U-path closest to O1, and q
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Figure 9
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a subpath of the U-path connecting O1 and O2. We make a cut along the path
q. Each cut can increase the boundary by most 2c. Collectively, these cuts define
Transformation 2.

Such a transformation increases the length of the boundary of ∆ by a factor
of not more then (1 + 4c). This coefficient does not depend on the diagram. So,
if we can prove a linear isoperimetric unequality for a transformed diagram (or
diagrams), we can prove it for the original one.

Without loss of generality we assume now that ∆ has the property that all
boundary paths contact strip-paths only at phase vertices.

Transformation 3. For each boundary-path q on the contour of an island, linking
two V-paths and such that φ(q) is equal in G to an element of V , φ(q) = v, as shown
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on Fig. 11, glue to q two diagrams over G: Θq,1 with contour q−1p and Θq,2 with
contour p−1q, where φ(p) ≡ v and v is a geodesic word in V . See Fig. 12.

We do the same for each boundary-path q such that φ(q) is equal in G to an
element of U and linking two U-paths. The resulting diagram will have the same
contour as ∆. Transformation 3 ends by cutting out each diagram Θq,2.

Since U and V are quasiisometrically embedded in G and G is hyperbolic, we can
pick each diagram Θq,2 over G, with a contour pq−1, where φ(p) = v(u), so that the
number of cells in it is less than K(||v||+ ||q||) ≤ K(cλ+ 1) ||q|| . Hence the sum of
cells in all the diagrams Θq,2 is less than K(cλ+ 1) ||W || .

Our goal is to bound the number of cells in the diagrams with contour W by a
linear function of ||W || . We have bounded the number of cells in the union of the
diagrams Θq,2 for all boundary paths q of the type considered above. The length of
the contour of the resulting diagram is less then cλ times the length of the contour
of the original diagram ∆. Now instead of the diagram ∆ we will consider this new
diagram, which we will also denote by ∆.

From now on we do not change the boundary of ∆ anymore.

Lemma 8. If in the diagram ∆ on the boundary of an island there are two U-paths
(V-paths) p and s such that the terminal vertex of p is the initial vertex of s and is
a phase vertex for both p and s, then the path ps is a geodesic in the group U (V).
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Proof. See Fig. 13. Suppose that on the boundary of an island two U-paths p and
s have a common phase vertex p+ = s− with φ(p) = u1, φ(s) = u2. Suppose that
their union is not a geodesic path in U , and let q be a geodesic path in U such that
φ(q) = u and u = u1u2. So |q|U < |p|U + |s|U .

We make the

Transformation 4 as shown on Fig. 13 (the contour of the subdiagram is not
changed by this transformation). We cut along the path ps and insert two mirror
copies of the diagram with the contour psq−1. Then we cut along the edge q and
insert a patch of two adjoining t-strips. We then cut 6 t-cells and reattach them
in a different way to create the subdiagram in Fig. 13c. Transformation 4 ends by
cutting out the t-annulus (Transformation 1).

After the cutting we have a diagram with fewer t-cells. This contradicts the
minimality of ∆. Indeed, we replace |p|U+ |s|U t-cells by |q|U t-cells. This completes
the proof of the lemma.

In the diagram ∆, U-sides of two t-strips cannot be glued together along a path
longer thanMc+c. If they are glued from one, common phase vertex to another one,
then we can make a t-annulus, then cut it out using Transformation 1 and decrease
the number of t-cells. This contradicts the minimality of ∆. If they are glued not
from one common phase vertex to another one, then we can apply Corollary 5 and
restrict their length by Mc+ c.

Definition 5. A G-subdiagram with a cyclic UV-decomposition of boundary label

W ≡W1X1W2X2 . . .WkXk = 1,

where each Wi is a label of a strippath, is called nonsplittable if the above decom-
position is cyclically nonsplittable (see Definition 3).

Definition 6. A maximal nonsplittable G-subdiagram is called a nonsplittable piece.

Definition 7. A V-piece is a G-subdiagram having boundary label

W1X1W2X2 = 1,

where W1, W2 label only subpaths of V-sides of t-strips, and X1, X2 are shorter
than H (the Xi’s can be trivial), and we assume that the V-piece is not properly
contained in another G-subdiagram with a boundary label of that type.

Definition 8. By a piece we mean either a nonsplittable piece or a V-piece.

A piece may consist of a several islands; it need not necessarily be an island
itself.

A contour of a piece consists of strippaths (which are maximal with respect to
the property of belonging to a side of a t-strip and to the contour of the piece, and
beginning and ending in the phase vertex) and paths connecting them.

Lemma 9. Every maximal G-subdiagram in ∆ is partitioned into nonsplittable
pieces and V-pieces between them.

Proof. Let Θ be a maximal G-subdiagram. A boundary label of Θ is a word

W ≡W1X1W2X2 . . .WkXk = 1,

whereWi ∈ {U ,V} and is geodesic in U or in V . Also if Wi,Wi+1 ∈ U or Wi,Wi+1 ∈
V (indices are taken modulo k), then Xi 6= 1.
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Suppose the boundary label is a splittable UV-decomposition. Suppose that
the second possibility in Definition 2 holds. Then there is a j ≤ k such that
W1 ≡W11W12,W11,W12 ∈ V , Wj ≡Wj1Wj2,Wj1,Wj2 ∈ V and

W12X1W2X2 . . .Wj1 = W ′ ∈ V ,
where

|W12|+ |Wj1| > |W ′|+ ∣∣Wj1W
′−1W12

∣∣ .
Let W̄11, W̄12, W̄j1, W̄j2 be the words corresponding to W11,W12,Wj1,Wj2 on the
other side of the t-strips. Then we can make

Transformation 5 as shown in Fig. 14. Let V be a geodesic word in V such that
V = Wj1W

′−1W12. Let V̄ be the word corresponding to V on the other side of the
t-strip. Let ∆1 be the subdiagram with the contour

t−1W̄1tV
−1t−1W̄jtW

−1
j2 W

′−1W−1
11 .

Replace it by the union of three diagrams: Θ1, which is just a t-strip with the
boundary label tV −1t−1V̄ , Θ2, with the boundary label

V̄ −1tt−1W̄j1tt
−1W̄ ′−1tt−1W̄12tt

−1

and Θ3, with the boundary label

W̄11tt
−1W̄ ′tt−1W̄j2tW

−1
j2 W

′−1W−1
11 t

−1.

Θ1 is glued to Θ2 along the path with the label V̄ , Θ3 is glued to Θ2 along the
path with the label W̄ ′. The union of Θ1, Θ2 and Θ3 has the same boundary label
as ∆1.

Now instead of one maximal G-subdiagram Θ we obtained three: Θ4,Θ5 and
Θ6. where Θ4 has the boundary label X1 . . .Xj−1V , Θ5 has the boundary label
V −1Wj1W

′−1W12 and Θ6 has the boundary label W11W
′Wj2Xj . . .Xk. The dia-

gram Θ5 is the interior of a t-annulus, and, together with this t-annulus, gives Θ2.
We can end Transformation 5 by application of Transformation 1 and replacing Θ2

by a diagram over U . This decreases the number of t-cells in ∆, because instead of
|W12|V + |Wj1|V t-cells we have now |V |V + |W ′|V . This contradicts the assumption
that ∆ is minimal.

The case where the first possibility in Definition 3 holds can be considered sim-
ilarly.

Suppose now that the third possibility holds. Then there is a j ≤ k such that
W1 ≡ W11W12, with W11 6= 1 and W12 6= 1 both belonging to V , Wj ≡ Wj1Wj2,
with Wj1 6= 1 and Wj2 6= 1 both belonging to V , and

W12X1W2X2 . . .Wj1 = T,

where T is not necessarily in V , but |T | < H and W12,Wj1 have minimal length
among the subwords with this property (see Fig. 15 on p. 000). Then we can
represent Θ as a union of two G-subdiagrams Θ1 and Θ2, where Θ1 has contour
label

W12X1W2X2 . . .Wj1T
−1,

and Θ2 has contour label

W11TWj2 . . . Xk.

If Wj2 = Wj21Wj22, W11 = W111W112 and Wj22 . . .XkW111 = T1, where T1 6∈ V
but |T1| < H, then Θ is the union of Θ1 and a G-subdiagram Θ3 with contour
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W111T1Wj22Xj . . . Xk, connected to Θ1 by a V-piece with contour TWj21T
−1
1 W112,

as shown on Fig. 15.
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Every time when a diagram under consideration is splittable we represent it as
a union of several subdiagrams. Continuing this process, we will obtain the desired
partition.

Definition 9. A piece with a contour that does not contain any boundary paths
is called a concealed piece.

Definition 10. A piece is called a k-piece if it has k strippaths on the contour.

Lemma 10. Suppose we have fixed some partition of maximal G-subdiagrams in ∆
into nonsplittable pieces and V-pieces. Let Nk (k > 2) be the number of nonsplittable
k-pieces and N2 be the number of nonsplittable 2-pieces plus the number of V-pieces

in ∆, and let S be the number of t-strips in it, S ≥ 3. Then J :=
∑S

k=2Nkk ≤
15(S − 2).

Proof. The number of concealed pieces between two t-strips cannot be more than
one.

We say that two t-strips adjoin irregularly if they do not adjoin through phase
vertices. A subdiagram with a contour formed by two t-strips adjoined irregularly
is an island, but it is always either properly included in some nonsplittable piece
or included in some V-piece.

From now on, we will not worry about filling in the pieces by subdiagrams over
G; we just consider all possible configurations of S t-strips in the plane. We can
forget that the strips are t-strips and think about them simply as strips. We treat
the paths shorter than H on the boundaries of V-pieces as if they were just points,
so that at these points the corresponding t-strips are tangent. The number J will
remain the same after this assumption.

We use induction on S. The cases S = 3, 4 we verify directly. (See Fig. 16
for the maximal possible values of J for S = 3, 4.) Suppose that the lemma has
been proved for diagrams with fewer than S strips. Suppose that a diagram Θ
has S strips. Either there is a strip that splits the diagram into two parts Θ1 and
Θ2 (see Fig. 17) with at least two strips in Θ1 and two strips in Θ2, or there is
no such strip. If there is no such strip we just draw one more strip such that it
splits the diagram into two parts Θ1 and Θ2 (see Fig. 17) and each of these parts
contains at least two strips. Suppose that Θ1 contains S1 strips and Θ2 contains
S2 strips; in the first case S = S1 + S2 + 1, in the second case S = S1 + S2.
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Figure 17

Apply the induction hypothesis to the union of Θ1 and the dividing strip. We have

J1 =
∑S1+1

k=2 Nkk ≤ 15(S1 + 1 − 2). If we apply induction to the union of Θ2 and

the fixed strip, then we have J2 =
∑S2+1

k=2 Nkk ≤ 15(S2 + 1− 2). Upon summation,

J =
∑S

k=2Nkk ≤ J1 + J2 ≤ 15(S1 + S2 − 2) ≤ 15(S − 2).

Our goal now is to assign to each t-strip a set of nonsplittable pieces and V-pieces
in such a way that every piece occurs at most once in the union of these sets.
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Figure 18

Dual Forest. We construct a dual forest of ∆ in the following way. We plot a
vertex of the dual forest in each piece (recall that “piece” means a nonsplittable
piece or a V-piece).

Before defining the dual forest of ∆, we consider the family F of all subdiagrams
of ∆ with the following property: if Θ ∈ F contains some cell of a t-strip, then
it contains the whole t-strip, and if Θ contains a cell of a maximal G-subdiagram,
then it contains the whole subdiagram. We shall define the edges of the forest for
subdiagrams in F by induction on the number of t-strips.

Definition 11. The piece part of a t-strip, corresponding to a piece I, is the max-
imal connected set of cells τ(I) in the t-strip that border the piece I (i.e. having
some path in common with the contour of the piece).

Definition 12. Two pieces I and J are called neighbours if τ(I) ∩ τ(J) 6= ∅; in
other words, if there is a cell in a t-strip such that its U-side belongs to one piece
and its V-side to the other.

Suppose the subdiagram Θ has one t-strip (see Fig. 18).
We follow one of the sides of the t-strip (the U-side, for instance) starting at one

of the t-edges. As we meet the first piece I1 (see Fig. 18), we draw directed edges
from I1 to all the neighbouring pieces, if there are any (in Fig. 18 these pieces are
I8 and I7), and to each edge we associate the piece part of the t-strip determined
by the piece representing the endpoint of the edge. We also color these associated
piece parts.
S8 is assigned to the edge (I1, I8), S7 is assigned to the edge (I1, I7). (On Fig. 18

we color S7 and S8.) Then we take the next piece I along the U-side of the t-strip.
There are three possibilities: 1) I does not have neighbouring pieces; 2) the piece
part τ(I) is already coloured; 3) the piece part τ(I) is not completely coloured and
I has neighbouring pieces.

In the first two cases we go to the next piece; in the third case we draw directed
edges to the vertices in the neighbouring pieces. And again to each edge we associate
the piece part of the t-strip determined by the piece representing the endpoint of
the edge. We also color these associated piece parts.

We continue this process until we have exhausted all the pieces on the U-side
of the t-strip. Finally all the piece parts of the t-strip, associated to the pieces
representing the endpoints of the edges, are colored. Every uncoloured cell of the
t-strip has at least one side on the boundary of Θ.

Now suppose that for subdiagrams from F that contain not more than s strips
we have an algorithm to construct the dual forest and simultaneously colour the
piece parts of t-strips assigned to the edges of the dual forest. Assume furthermore
that the algorithm is such that the following conditions are satisfied:
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Θ1

S

Figure 19

1. The piece parts of the t-strip, associated to the pieces representing the end-
points of the edges, are colored. Every uncoloured cell of the t-strip has at
least one side on the boundary of the subdiagram.

2. A vertex of the forest cannot be an endpoint of two edges.

Now suppose we have s+1 t-strips in the subdiagram Θ. Fix one t-strip S, such that
there are no t-strips on one side of it. By a simple induction argument such a t-strip
always exists. Suppose, for definiteness, that there are no t-strips on the U-side of
it. Consider the subdiagram Θ1 on the other side (V-side) of this t-strip. This
diagram contains s t-strips (see Fig. 19) We suppose that the dual forest and the
coloring for Θ1 have already been constructed and satisfy the induction hypothesis.
Our purpose is to extend the dual forest to Θ and to colour the piece parts of the
t-strip S.

Consider now the subdiagram Θ2 from F consisting of S and the neighbouring
maximal G-subdiagrams. We go from right to left along the V-side of S, and repeat
the procedure of drawing edges and colouring the piece parts of S as in the first
step of the induction.

The constructed graph is still a forest, because the graph in Θ1 is a forest by
our induction assumption, and our construction is such that the new arrows do not
produce cycles. Moreover, all the piece parts of t-strips in Θ are assigned to edges
of the dual forest, the uncoloured parts have one side on the boundary of Θ, and a
vertex of the forest cannot be an endpoint of two edges.

Lemma 11. Suppose there is a nonsplittable k-piece in ∆ with the contour label

W ≡W1X1W2X2 . . .WkXk.

Let Xi1 , . . . , Xip be the labels of the parts of the boundary of this piece that are on
the boundary of ∆. Let ni be the number of t-cells corresponding to the word Wi. Let
M1,M2 be the constants from Corollary 6. Then for any M3 ≥M2 + 2c, M3 ≥ H,
and for any i,

|ni| ≤M1

∑
j

∣∣Xij

∣∣+M3k.
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Proof. This follows from Corollary 6 and the fact that for a nonsplittable piece the
Xij ’s that do not belong to the boundary of ∆ are rather short, shorter then 2c,
hence their sum is less then 2ck.

Lemma 12. Let E1 be the sum of all cells in all t-strips of ∆, D the length of the
boundary of ∆, and S the number of t-strips (hence D1 = D − 2S is the length of
the part of the boundary excluding the t-edges). Let M4 = (1 + cλ)(15M3 + M1).
Then E1 ≤M4D.

Proof. Every t-strip is partitioned into piece parts and parts intersecting the bound-
ary of ∆. To each piece part we assign some nonsplittable piece or some maximal
V- piece, namely the endpoint of the corresponding edge in the dual forest. To the
remaining parts we assign the intersection with the boundary of ∆.

The label of each part of a t-strip that is assigned to a V-piece is shorter in G than
2H + R, where R is the length of the other part of the t-strip on the boundary of
this V-piece, and this part of the t-strip is estimated already not in the V-piece but
in nonsplittable pieces (two V-pieces cannot be neighbours). Recall that H ≤M3.

So, from Lemma 11 we have that

E1 ≤ (1 + cλ)M1D1 + (1 + cλ)M3

∑S

k=2
Nkk.

By Lemma 10, J =
∑S

k=2Nkk ≤ 15(S − 2). So E1 ≤ (1 + cλ)(M1D1 + 15M3) =
M4D.

We now apply

Transformation 6. Replace each maximal G-subdiagram Θ in ∆ by a diagram
with the same contour, but where the number of cells contained in it is not more
than K times the length of the contour of Θ (it is possible to do this, because G
satisfies a linear isoperimetric inequality with the constant K).

Lemma 13. Let E be the number of cells in ∆, and M5 = K(1 + 2M4c) + M4.
Then

E ≤M5D.

Proof. If E2 is the total number of cells in all maximal G-subdiagrams, then

E2 ≤ K(D1 + 2M4cD).

Finally

E = E1 + E2 ≤M4D +K(D1 + 2M4cD) = M5D.2

The proposition and Theorem 1 are proved.

Proof of Corollary 1. Let G be a hyperbolic group, A and B isomorphic virtually
cyclic subgroups, hence ([8], [14]) quasiisometrically embedded. Then the separated
HNN-extension H = 〈G, t | At = B〉 is hyperbolic by Theorem 1.

Now suppose that the HNN-extension H is not separated.
First, suppose that there is an element g ∈ G such that Ag ∩ B is infinite. Then

there is an element b = ag of infinite order, where b ∈ B and a ∈ A. Then, for some
nonzero integers m and n, we have t−1ant = bm; hence t−1ant = g−1amg and

(tg−1)−1antg−1 = am.

It follows from [8] (Corollary 8.2.c) that if, in a hyperbolic group, an element y has
infinite order, and m and n are nonzero integers, then the equation x−1ynx = ym
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implies that the subgroup generated by x and y is virtually cyclic. In particular,
|m| = |n| and we say that x nearly commutes with ym.

But in our case both elements tg−1 and a have infinite order and are not powers
of the same element (because the reduced form of (tg−1)k1 in the HNN-extension H
is different from the reduced form ak2 for any k1, k2). Hence the subgroup generated
by tg−1 and a cannot be virtually cyclic.

Suppose now that neither A nor B is conjugate separated. Then, for some
g1 ∈ G\A and g2 ∈ G\B, both sets

S1 = {a ∈ A | g−1
1 ag1 ∈ A}

and
S2 = {b ∈ B | g−1

2 bg2 ∈ B}
are infinite. Since S1 and S2 are then infinite subgroups of the virtually cyclic groups
A and B, there are elements c ∈ S1 and d ∈ S2 of infinite order. The inclusion
g−1
1 cg1 ∈ A implies that g1 nearly commute with a power of c. Also, g−1

2 dg2 ∈ B
implies that g2 nearly commutes with a power of d. If H were hyperbolic we would
be able to find numbers m and n such that g−2

1 cmg2
1 = cm, g−2

2 dng2
2 = dn and

t−1cmt = dn. It is easy to see that the subgroup 〈(tg2
2t
−1g2

1)
2, cm〉 is free abelian, a

contradiction.

4. Free products with amalgamation

The proof of Theorem 2 is quite similar and not as complicated as the proof of
Theorem 1, so this section will be quite brief, more in the vein of a guided exercise
than a proof.

Let G1, G2 and U , V be as in Theorem 2, R = G1 ∗U=V G2.
From the hyperbolicity of G1 and G2 it follows that there is a constant K such

that for any element W1 = 1 (resp. W2 = 1) in G1 (resp. G2) there is a reduced
diagram over G1 (resp. G2) with boundary label W1 (resp. W2) and number of cells
≤ K ||W1|| (≤ K ||W2||).

Let A = {a1, . . . , an} and B = {b1, . . . , bn} be the distinguished generating sets
for G1 and G2 respectively, such that φ(ai) = bi. The contents of this section is the
proof of the following fact.

Proposition 3. There is a linear function L1 of a single variable, depending only
on G1,G2, A,B, such that for any element W = 1 in R there is a diagram over R
with boundary label W and number of cells ≤ L1(||W ||).

A (U ,V)-cell is a cell with contour aib
−1
i . In this section (U ,V)-cells will play the

role of t-cells.
Let ∆ be a minimal diagram over R with boundary label W (this means that ∆

contains the least possible number of (U ,V)-cells).
A (U ,V)-strip is a subdiagram, with boundary ai1 . . . aikb

−1
ik
. . . b−1

i1
consisting

of (U ,V)-cells, that begins and ends on the boundary of the diagram ∆, and is
minimal with this property. (U ,V)-strips will play the role of t-strips. A (U ,V)-cell
and (U ,V)-strip are shown in Fig. 20.

Lemma 14. A diagram ∆ cannot contain a (U ,V)-annulus.

The proof follows from the minimality of ∆. 2
The diagram ∆ consists of maximal G1- and G2-subdiagrams that are glued to

each other through (U ,V)-strips. A typical form of ∆ is shown in Fig. 21; the
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same diagram is schematically shown in Fig. 22 (the notion of a (U ,V)-strip is clear
from Fig. 22). The partition of the set of all (U ,V)-cells into (U ,V)-strips is not
necessary unique; we just take some partition.

The notions of an island, a nonsplittable piece (in a maximal G1- or G2-subdia-
gram) and a V-piece are the same as in the previous section.
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We perform Transformations 2 and 3 on ∆. After each transformation we reduce
∆ to a minimal diagram.

Lemma 15. Every maximal G1-subdiagram can be transformed into a disjoint
union of nonsplittable pieces with boundary labels of the form

W1X1W2X2 . . .WkXk = 1,

where all the Xi correspond to boundary paths.

The proof is a simpler version of the proof of Lemma 9, so we omit it.
We construct a dual forest as we did in the previous section, but instead of

V-pieces and nonsplittable pieces in G2-subdiagrams we just use maximal G2-sub-
diagrams.

Lemma 16. Suppose that ∆ contains a nonsplittable G1-piece with the contour
label

W1X1W2X2 . . .WkXk.

Let ni be the number of (U ,V)-cells corresponding to Wi. Then for M6 = M1+M2

(these are the constants from Corollary 6) and for any i,

|ni| ≤M6

∑
i

|Xi| .

Proof. All the Xi’s are nonempty words (recall that if Xi=1, then we consider the
union of two strippaths Wi and Wi+1 as one strippath). Hence

∑
i |Xi| ≥ k.

Lemma 17. Let E1 be the sum of all the cells in all the (U ,V)-strips of ∆, M7 =
M6 + cλM6, and let D be the length of the boundary of ∆. Then E1 ≤M7D.

Proof. Every (U ,V)-strip is subdivided into parts such that each part is assigned ei-
ther to some nonsplittable G1-piece, or to a path on the boundary of ∆ not included
in the boundary of some nonsplittable G1-piece, or to a maximal G2-subdiagram.
Each nonsplittable G1-piece and each such path on the boundary of ∆ cannot be
assigned to more then one (U ,V)-strip, nor to more then one distinct part of this
strip. The length of each piece of a (U ,V)-strip, assigned a maximal G2-subdiagram
Θ, is not greater in G than the sum of the lengths of all other parts of (U ,V)-strips
in Θ (that are assigned to some nonsplittable G1-pieces or to parts of the boundary
of ∆) plus the length of all the boundary-paths of Θ.

Suppose M6 ≥ 1. From Lemma 16 we have that

E1 ≤M6D + cλM6D = M7D.

Now we apply to ∆ the analog of Transformation 6. We replace all maximal Gi-
subdiagrams by diagrams with the same contour, but where the number of cells is
less then the length of the contour times K.

Lemma 18. Let E be the number of cells in ∆, and M8 = K(1 + 2M7c) + M7.
Then

E ≤M8D.

Proof. If E2 is the sum of the cells in all maximal Gi-subdiagrams, then

E2 ≤ K(1 + 2M7c)D.

Finally,
E = E1 + E2 ≤M7D +K(1 + 2M7cD) = M8B. 2

The proposition and Theorem 2 now follow from Lemma 18.
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Figure 23

Proof of Corollary 2. In one direction, Corollary 2 follows from Theorem 2 and
the fact that virtually cyclic subgroups of hyperbolic groups are quasiisometrically
embedded.

Suppose now that A is not conjugate separated in G1 and B is not conjugate
separated in G2. Then for some g1 ∈ G1\A and g2 ∈ G2\B both sets

S1 = {a ∈ A | g−1
1 ag1 ∈ A}

and

S2 = {b ∈ B | g−1
2 bg2 ∈ B}

are infinite. Since S1 and S2 are then infinite subgroups of the virtually cyclic
groups A and B, there are elements of infinite order c ∈ S1 and d ∈ S2. The
inclusion g−1

1 cg1 ∈ A implies that g1 nearly commutes with a power of c. Also,
g−1
2 dg2 ∈ B implies that g2 nearly commutes with a power of d. There is a common

power z of c and d such that g1 and g2 both nearly commute with z. It is easy to
see that the subgroup 〈(g1g2)2, z〉 is free abelian, a contradiction.

5. Other sufficient conditions

Let H be the fundamental group of a finite graph Γ of groups (relative to some
maximal subtree T of Γ) with vertex groups Gi, i = 1, . . . p, edge groups Uij such
that Uij ≤ Gi, and embeddings τ : Uij → Gj such that τ(Uij) = Vij = Uji ≤ Gj .
Then H is generated by the groups Gi and additional elements tij , which are in
bijective correspondence with the non-T edges. H has, in addition to the relations
of groups Gi, the following defining relations: u = τ(u) for any u ∈ Uij , with (ij) a
T -edge, and utij = τ(u) for all u ∈ Uij with (ij) a non T -edge.

Definition 13. A diagram of the type shown in Fig. 23 is called an h-rectangular
subdiagram over H, if the following conditions are satisfied:

1. The strips are either (Uij ,Vij)-strips or tij-strips (which we will also call
(Uij ,Vij)-strips).

2. The subdiagrams between strips are maximal Gi-subdiagrams.
3. The boundary-paths pk, qk are shorter than some fixed number h.
4. If the labels of the strippaths of a maximal Gi-subdiagram belong to the same

edge group Uij , and both strips that bound it are (Uij ,Vij)-strips, then the
label of at least one of its two boundary paths does not belong to Uij .
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The number n of (Uij ,Vij)-strips in the diagram is called the length of the dia-
gram; the paths [x1, x2], [x3, x4] are called the sides of the diagram. The lengths of
the labels of the sides are taken in the corresponding edge groups. If the labels of the
two boundary paths of each maximal Gi-subdiagram are the same (φ(pk) = φ(qk)),
then the diagram is called a conjugacy h-rectangular diagram.

We obtain sufficient conditions for the hyperbolicity of H which are weaker than
the conditions in Theorems 1 and 2.

Theorem 3. Let H be the fundamental group of a finite graph of groups, with the
edge groups Uij quasiisometrically embedded in the corresponding vertex groups Gi
and Gj (ε-quasiconvex). Suppose that all the vertex groups Gi are hyperbolic, and δ
is the maximum of the hyperbolicity constants of the vertex groups. Let H = 8δ+ε.
If there exists a number n such that only a finite number of elements in H can be
labels of the sides of a reduced conjugacy 2H-rectangular diagram of length n, then
H is hyperbolic.

The condition of the theorem implies that all the elements in this finite set have
finite order.

We will prove the theorem after formulating the following corollaries.

Corollary 7. Let H be a fundamental group of a finite graph of groups, with edge
groups Uij quasiisometrically embedded in the corresponding vertex groups Gi and
Gj Suppose that all the vertex groups Gi are torsion-free hyperbolic, and δ is the
largest of the constants of hyperbolicity of the vertex groups. Let H = 8δ + ε. If
there exists a number n such that there are no reduced conjugacy 2H-rectangular
diagrams of length n, then H is hyperbolic.

Corollary 8. Let G1, G2 be hyperbolic groups, U ≤ G1, V ≤ G2 quasiisometrically
embedded, and φ : U → V an isomorphism. Suppose that there exists a number n
such that the set

hn . . . (g2(φ
−1(h1(φ(g1Ug−1

1 ∩ U))h−1
1 ∩ V))g−1

2 ∩ U) . . . h−1
n ∩ V

is finite (here all gi ∈ G1\U , hi ∈ G2\V). Then the group G1 ∗U=V G2 is hyperbolic.

For HNN-extensions 〈G, t|U t = φ(U) = V〉 there is a more complicated condition:

Corollary 9. Let G be a hyperbolic group, U ≤ G, V ≤ G quasiisometrically em-
bedded, and φ : U → V an isomorphism. Suppose there exists a number n such that
for any C1, ..., Cn ∈ {U ,V} the set

(gn . . . (φ
α3 (g2(φ

α2(g1C1g
−1
1 ∩ C2))g

−1
2 ∩ C3)) . . . g

−1
n ) ∩ Cn+1

is finite. Here, if Ci = Ci+1 then gi 6∈ Ci; αi = 1 if Ci = U and αi = −1 if Ci = V.
Then the group H = 〈G, t|U t = φ(U) = V〉 is hyperbolic.

Proof of the theorem. We will prove that any diagram over H satisfies a linear
isoperimetric inequality. The idea behind the proof is exactly the same as the
idea of the proof of Theorems 1 and 2.

It can be shown, as in the proof of Lemma 4, that if the sides of any minimal
conjugacy 2H-rectangular diagram of length n are bounded by a constant C, then
there is a number C̄ such that the sides of any minimal 2H-rectangular diagram of
length n are bounded by C̄. (If they are not bounded, then one can find infinitely
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many elements that are the labels of the sides of conjugacy 2H-rectangular dia-
grams.) Let ∆ be a minimal diagram over H. It is subdivided by (Uαβ ,Vαβ)-strips
into maximal Gα-subdiagrams. The contour of each Gα-subdiagram is a word

W1X1W2X2 . . .WkXk,

where W1, . . . ,Wk ∈ {Uαβ ,Vγα|α, β, γ ∈ {1, . . . , p}}.
We shall give a slightly different definition of a nonsplittable decomposition, than

in Section 3. First, the following:

Definition 14. Given a decomposition

W ≡W1X1W2X2 . . .WkXk,

where W1, . . . ,Wk ∈ {Uαβ,Vγα|α, β, γ = 1, . . . , p}, the Wi are geodesic in the
corresponding groups, the Xi ∈ Gα are reduced, and if Wi,Wi+1 ∈ Uαβ(Vγα), then
Xj 6= 1, we call the decomposition a Gα-edges decomposition.

If W = 1, and the indices in the above definition are taken modulo k, then it is
called a cyclic Gα-edges decomposition.

Definition 15. A cyclic Gα-edges decomposition is called splittable if one of the
following holds:

1. There is a j ≤ k such that W1 ≡ W11W12, W11,W12 ∈ Uαβ , Wj ≡ Wj1Wj2,
Wj1,Wj2 ∈ Uαβ , and

W12X1W2X2 . . .Wj1 = W ′ ∈ Uαβ ,
where

|W12|Uαβ + |Wj1|Uαβ > |W ′|Uαβ +
∣∣Wj1W

′−1W12

∣∣
Uαβ .

2. There is a j ≤ k such that W1 ≡ W11W12, W11,W12 ∈ Vγα, wj ≡ wj1wj2,
wj1, wj2 ∈ Vγα, and

W12X1W2X2 . . .Wj1 = W ′ ∈ Vγα,
where

|W12|Vγα + |Wj1|Vγα > |W ′|Vγα +
∣∣Wj1W

′−1W12

∣∣
Vγα .

3. There is a j ≤ k such that W1 ≡ W11W12W13,W11 6= 1,W13 6= 1,W11,W12,
W13 ∈ Uαβ(Vγα), Wj ≡ Wj1Wj2Wj3,Wj1 6= 1,Wj3 6= 1Wj1,Wj2,Wj3 ∈
Uαβ1(Vγ1α) and

W13X1W2X2 . . .Wj1 = T,

Wj3Xj . . .W11 = T1,

where |T | , |T1| < H. In this case we always take pairs W11,Wj3 and W13,Wj1

of minimal length (in the corresponding edge groups) among the pairs with
the same property. (The length of the pair Wk,Wt is not less than the length
of the pair W̄k, W̄t if the length of Wk is not less than the length of W̄k and
the length of Wt is not less than the length of W̄t.)

A cyclic decomposition of W is called cyclically nonsplittable if all the permuta-
tions of the form

WiXi . . .WkXkWk+1 . . .Wi−1Xi−1 = 1.

are nonsplittable.
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As in Section 3, a maximal nonsplittable Gi-subdiagram is called a nonsplittable
piece.

Definition 16. A thin bridge is a Gi-subdiagram having boundary label

W1X1W2X2

where the Xi’s are shorter than H (the Xi’s can be trivial) and the Wi’s are labels
of strip-paths and geodesic in the corresponding edge groups; moreover, the thin
bridge is required to be maximal among such Gi-subdiagrams.

Lemma 19. Every maximal G-subdiagram in ∆ consists of nonsplittable pieces
connected by thin bridges.

The proof is very similar to the proof of Lemma 9. The diagram ∆ is minimal
hence cannot contain a (Uij ,Vij)-annulus. One can perform on ∆ the obvious
analogs of Transformations 2 and 3.

We can now construct a dual forest in ∆ as we did for HNN-extensions, but
instead of nonsplittable pieces and V-pieces we use nonsplittable pieces and thin
bridges.

Lemma 20. There are constants M1, M2 such that if, in a vertex group Gα, we
have a cyclically nonsplittable decomposition of the word

W ≡W1X1W2X2 . . .WkXk = 1,

then, for Wi ∈ Uαβ(Vγα), we have |Wi|Uαβ(Vγα) ≤M1

∑
i |Xi|+M2k.

The proof is similar to the proof of Corollary 6.
The proof of the following lemma repeats the proof of Lemma 10.

Lemma 21. Let Nk be the number of nonsplittable k-pieces if k ≥ 3, and let N2 be
the number of nonsplittable 2-pieces plus the number of thin bridges in a diagram
∆ over the group H. Let S be the number of (Uij ,Vij)-strips in it, S ≥ 3. Then

J =
∑S

k=2Nkk ≤ 15(S − 2).

Notice that S is no larger than p (the number of vertex groups) times the sum
of the number of distinct boundary-paths of ∆ and the number of tij-edges on the
boundary of ∆; hence, if D is the length of the boundary of ∆, then S ≤ pD.

The proof of the following lemma repeats the proof of Lemma 11.

Lemma 22. Suppose we have a nonsplittable k-piece in ∆ with the contour label

W ≡W1X1W2X2 . . .WkXk.

Let Xi1 , . . . , Xip be pieces of the boundary of ∆. Let ni be the number of (Uαβ ,Vαβ)-
cells corresponding to the word Wi. Then, for any M3 ≥M2 + 2c and for any i, we
have

|ni| ≤M1

∑
j

∣∣Xij

∣∣+M3k.

In constructing the dual forest we assigned to each piece part of each (Uαβ ,Vαβ)-
strip an edge of the dual forest. This edge is associated either with some nonsplit-
table piece or with some thin bridge containing the endpoint of the edge.

The lengths of those parts of the (Uαβ ,Vαβ)-strips that are assigned to the edges
having endpoints in nonsplittable pieces, are estimated in these pieces. The only
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problem is to estimate the length of the (Uαβ ,Vαβ)-strips assigned to edges having
endpoints in thin bridges.

Consider the configuration of thin bridges as shown in Fig. 24. The arrows
correspond to the edges of the dual forest.

The sides of any 2H-rectangular diagram of length n are bounded by C̄. Take
the part of the (Uαβ ,Vαβ)-strip S assigned to the piece associated with the endpoint
of the first edge (I1). S can be split into parts, such that for each part one of the
following possibilities applies:

1. we can construct a 2H-rectangular subdiagram of length more than n starting
with this part;

2. the length of the rectangular subdiagram connecting this part of the strip
S with some part of a strip R, assigned to an edge of the dual forest with
endpoint in some nonsplittable piece, is less than n (then the length of this
part can be bounded by the length of R times some constant C1, depending
only on H and n).

Now, taking M3 > C̄ and M4 = nC1M1 + 15npM3, we have that the number of
all (Uαβ ,Vαβ)-cells in ∆ is less than M4D, where D is the length of the boundary
of ∆. And, taking M5 as in Lemma 13, we get the linear isoperimetric inequality
for ∆ with the constant M5. The theorem has been proved.

To prove the corollaries it suffices to notice that the conditions in the statements
of the corollaries imply the conditions of the theorem.
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6. Some results on quasiconvexity

A subset Y in a geodesic space Γ is called quasiconvex for some ε ≥ 0 if every
geodesic segment [y1, y2] with endpoints in Y lies ε-close to Y. A subgroup U of a
group G is called quasiconvex if Γ(U) is quasiconvex in Γ(G).

In this section we prove the following theorems.

Theorem 4. Let H = 〈G, t|U t = V〉 be hyperbolic with U quasiconvex in H. Then
G is quasiconvex in H, and hence hyperbolic.

Theorem 5. Let H be a separated HNN-extension, H = 〈G, t|U t = V〉, with G
hyperbolic, U and V quasiconvex in G. Then G is quasiconvex in H.
Proof of Theorem 4. We have to show that there exists a number λ such that the
length of arbitrary geodesic in G is shorter than λ times the length of the same
element in H. Let W be a geodesic word in G and V a geodesic word in H such
that V = W in H. Let p be a path such that φ(p) = W , and q a path such that
φ(q) = V. The subgroup U is quasiconvex in H, hence V is quasiconvex in H . Let
λ be a number such that every geodesic in U orV is λ-quasigeodesic in H. Let ∆
be a minimal diagram over H with the boundary qp−1. Then a typical form of ∆
is shown in Fig. 25. The path p is shorter than the path s in Fig. 25, but the path
s is shorter than λ|q|.

The theorem is proved.
Exactly the same reasoning can be used to prove the following more general

result.
Suppose we have a finite graph of groups, with finitely generated edge groups,

and the fundamental group H of the graph is hyperbolic. It then follows that if for
some vertex group G(v) all incoming edge groups are quasiconvex in the whole group
H, then the vertex group G(v) is quasiconvex in H. The result in this formulation
was obtained by I. Kapovich (who used a different technique) [9].

Proof of Theorem 5. We will show that if L is a linear function as in Proposition
2, then the length of an arbitrary geodesic in G is shorter than L(`), where ` is the
length of the same element in H. Let W be a geodesic word in G and V a geodesic
word in H such that V = W in H. Let p be a path such that φ(p) = W and q a
path such that φ(q) = V. Let ∆ be a minimal diagram over H with the boundary
qp−1. Then a typical form of ∆ is shown in Fig. 25. We construct the dual forest for
∆ starting from the pieces between p and s as shown in Fig. 26. Then s is shorter
than L(|q|) and p is shorter than s.

The following theorems can be proved by a similar technique.

Theorem 6. Let H = G1 ∗U G2 be a hyperbolic group, with U quasiconvex in H.
Then G1 and G2 are quasiconvex in H, and hence hyperbolic.

Theorem 7. Let H = G1 ∗U=V G2, with G1 and G2 hyperbolic, U quasiconvex in
G1, V quasiconvex in G2 and U conjugate separated in G1. Then G1 and G2 are
quasiconvex in H.

In the situation where U is malnormal in G1 and V is malnormal in G2, this result
can also be deduced from [15].
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7. Applications to exponential groups

Let A be an arbitrary associative ring with identity and G a group. Fix an action
of the ring A on G, i.e. a map G × A → G. The result of the action of α ∈ A on
g ∈ G is written as gα. Consider the following axioms:

1. g1 = g, g0 = 1, 1α = 1;
2. gα+β = gα · gβ , gαβ = (gα)β ;
3. (h−1gh)α = h−1gαh;
4. [g, h] = 1 =⇒ (gh)α = gαhα.

Definition 17. Groups with A-actions satisfying axioms 1)–4) are calledA–groups.

In particular, an arbitrary group G is a Z-group. We now recall the definition
of A-completion in the case where A is the field of rationals Q. Such completions
were studied by G. Baumslag in [2], [1]. A-completions for arbitrary rings A were
investigated in [12]. We will use some results and constructions from the latter
article.

Definition 18. Let G be a group . Then a Q–groupGQ together with a homomor-
phism G→ GQ is called a tensor Q–completion of the group G if GQ satisfies the
following universal property: for any Q–group H and a homomorphism ϕ : G→ H
there exists a unique Q–homomorphism ψ : GQ → H (a homomorphism that
commutes with the action of Q) such that the following diagram commutes:
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G GQ
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�
�
�	

ϕ ψ

λ

It was proved in [2] (see also [12]) that for every groupG the tensor Q-completion
of G exists and is unique.

In this section we describe the Q-completion GQ of a torsion-free hyperbolic
group G as the union of an effective chain of hyperbolic subgroups. This allows
one to apply techniques of hyperbolic group theory to solve various algorithmic
problems in GQ, in particular, to construct effectively some natural normal forms
for its elements (induced by the normal forms of amalgamated free products).

First of all, let us describe the construction of the complete tensor extension of
centralizers of an arbitrary torsion-free hyperbolic group G by the ring Q (see [12]).

Let C = CG(v) = C(v) be a centralizer in G and v not a proper power, i.e.
C(v) = 〈v〉. The Q-extension of the centralizer C is by definition a free product
with amalgamation

G(C,Q) = G ∗C Q,

where C ' Z ≤ Q. The group G(C,Q) can be obtained as a union of a chain of
subgroups,

G = G0(v) < G1(v) < . . . < Gn(v) . . . ,

where Gi+1(v) = Gi(v) ∗vi=vi+1
i+1

〈vi+1〉; here v0 = v. In other words, G(C,Q) can

be obtained from G as a union of a countable sequence of elementary extensions of
centralizers of the type

E(H, v,m) = H ∗v=wm 〈w〉,(2)

where the subgroup 〈v〉 is maximal abelian in H . If X is a fixed set of generators
of H , then we will consider the set X ∪ {w} as a canonical set of generators for
E(H, v, n). The length function on E(H, v, n), introduced below, is associated with
this set of generators.

A cyclically minimal element v of a group G is called a primitive element if it is
not a proper power.

For an arbitrary group G and a natural number n ≥ 2 choose a set of elements
Vn = {v1 . . . vt} satisfying the following condition (Sn):

1) Vn consists of primitive elements of length not more than n;
2) no two centralizers in the set of centralizers Cn = {C(v)|v ∈ Vn} are conjugate

in G;
3) the set Vn is maximal with respect to properties 1) and 2); i.e., any element

of length not more than n is conjugate to a power of some v ∈ Vn.
By definition, the group G(Cn) is the union of the finite chain of groups

G < E(G, v1, n) = G1 < E(G1, v2, n) = G2 < . . . < E(Gt−1, vt, n) = Gt = G(Cn);
thus G(Cn) is obtained from G by consecutive extensions of centralizers from Cn :

G(Cn) = (. . . (G ∗v1=wn1 〈w1〉) ∗v2=wn2 〈w2〉) ∗ . . . ) ∗vt=wnt 〈wt〉).(3)

Notice that this definition does not depend on the order of the elements in Cn.
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Lemma 23. Let G(Cn) be as above. Then there exists a set Vn+1 in G(Cn) that
satisfies the condition (Sn+1) and contains {w1, . . . , wt}.
Proof. The elements w1, . . . , wt are simple in G(Cn) because their length is equal
to 1. They are pairwise nonconjugate in G(Cn). Indeed, from the description of
conjugate elements in free products with amalgamation ([10]), one can derive the
following assertion: Let g be a cyclically reduced element in E(H, v, n). Suppose g
is conjugate in E(H, v, n) to some element in H . Then g ∈ H.

Applying this fact to the chain (2), one can verify the pairwise nonconjugacy of
the wi’s. This proves the lemma.

We now intend to exhibit GQ as a union of a chain of groups

G = T0 < T1 < T2 < . . . <

∞⋃
n=0

Tn,

defined by induction on n as follows. Assume that the groups Ti, i < n, and the
sets Vi ⊂ Ti−1 have already been constructed and satisfy the condition (Si) in Ti−1.
If Vn = {v1, . . . , vt}, then

Tn = (. . . (Tn−1 ∗v1=wn1 〈w1〉) ∗v2=wn2 〈w2〉) ∗ . . . ) ∗vt=wnt 〈wt〉);
i.e. Tn = Tn−1(Cn), where Cn is the corresponding set of centralizers. By the
previous lemma there exists a subset Vn+1 ⊂ Tn which satisfies the condition (Sn+1)
in Tn and contains w1, . . . , wt.

Definition 19. We will call a sequence of groups H1, H2, . . . effective if there is
an algorithm wich allows one, for any i, to construct a finite representation of the
group Hi.

Theorem 8. Let G be a torsion-free hyperbolic group and

G = T0 < T1 < T2 < . . .

the sequence of groups described above; then

1. Tn is hyperbolic for any n,
2. {Tn}n∈N is an effective sequence of groups,
3.
⋃∞
n=0 Tn = GQ.

Proof. 1. By our construction, Tn+1 can be obtained from Tn by a finite sequence
of extensions of centralizers of the type E(H, v,m) = H ∗v=wm 〈w〉, where the
subgroup 〈v〉 is maximal abelian in H . Suppose H is torsion-free hyperbolic; then
〈v〉 is conjugate separated in H and, by Corollary 2, E(H, v,m) is also hyperbolic.
T0 = G and G is hyperbolic; hence, by induction, all Tn are hyperbolic. Moreover,
the proof of Theorem 2 shows that the constant of hyperbolicity δ(E(H, v,m)) can
be effectively found if we know a finite presentation of H. This means that for any
n we can effectively find the constant of hyperbolicity of the group Tn, if we know
such a constant for G.

2. Recall that Tn+1 = Tn(Cn+1); so, having a finite presentation for Tn and an
effective procedure to construct the set of elements Vn, we can effectively construct
a finite presentation for Tn+1 (see the presentation (2) above).

Lemma 24. If G is a torsion-free hyperbolic group, then there is an algorithm to
construct the set Vn for any number n.
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Proof. To prove the assertion we need the solvability in any hyperbolic group of
the word and conjugacy problems as well as the power problem; i.e. the problem of
deciding if an element is a proper power in G. The word and conjugacy problems
are solved in [8].

To solve the power problem we will use the quasigeodesic property of powers
in hyperbolic groups; namely, there is a constant λ > 0 such that |Wn| ≥ λn|W |
for any cyclically minimal word W (see [14], Lemma 1.12, and [13], Lemma 27).
Examining the proofs of these lemmas, one sees that λ can be found effectively as
a function of δ and |A|, where A is the distinguished system of generators of G. In
light of the solvability of the word and conjugacy problems, it is possible to decide if
an element is cyclically minimal, and to enumerate all cyclically minimal elements
in accordance with increasing length. Note that if a cyclically minimal element
V is equal to Wn, then W is cyclically minimal and n|W | ≤ λ|V |. Therefore, to
determine if a cyclically minimal element V is a proper power, we enumerate all
cyclically minimal elements W such that |W | ≤ λ|V |, and for each n such that
n|W | ≤ λ|V | we verify the equality Wn = V. This shows that we can effectively
list all simple elements of length not greater than n. Now, to create a set Vn one
only needs to list all simple elements of length not greater than n, and delete those
which are conjugate to previous ones. This can be done effectively because of the
decidability of the conjugacy problem.

3. As we mentioned above, every element in V =
⋃Vn has arbitrary roots in the

union T =
⋃∞
n=0 Tn. Moreover, every centralizer CT (v), v ∈ V , is isomorphic to the

additive group of Q, so it admits an action of Q satisfying the module axioms. By
our construction, every centralizer in T is conjugate to the centralizer of an element
v ∈ V . Hence we can, through conjugation, induce an action of Q on all centralizers
in T ; i.e. on the group T . This action is defined unambiguously, because different
centralizers in T have trivial intersection (see [12]). Hence T is a Q-group. Using
the universal property of free products with amalgamation, one can prove that this
group satisfies the universal property of a Q-completion of G. See [12] for details.
The theorem has been proved.

Let us now discuss algorithmic problems over groups of type GQ. Formally,
Q-groups can be considered as groups with operators from Q. This means that
the language of Q-groups contains group multiplication and countably many oper-
ations fα, α ∈ Q (here, by definition, fα(g) = gα for any g ∈ G). There are free
objects (free Q-groups) in the variety of Q-groups, so, as usual, one can consider
presentations of Q-groups in the variety of Q-groups.

Lemma 25. Let 〈X |R〉 be a presentation of a group G. Then the group GQ has
the same presentation 〈X |R〉 in the variety of Q-groups.

The proof follows from the fact that the Q-group with presentation 〈X |R〉 and
GQ have the same universal property in the category of Q-groups.

Therefore, Q-completions of hyperbolic groups have finite presentations as Q-
groups. Let A = {a1, . . . , am} be a generating set for G. Then the elements in GQ

can be represented in the language of Q-groups by words in the alphabet A. We
are now able to formulate naturally the word problem, the conjugacy problem, the
equations problem and the isomorphism problem for finitely presented Q-groups.
Furthermore, when we say that some algorithm is applied to some elements or
groups, this means that the algorithm is applied to the corresponding Q-words and
Q-presentations. We would like to reduce the algorithmic problems for GQ to the
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hyperbolic groups Tn. To this end we need to construct an algorithm to determine
for any element g ∈ GQ the number n(g) such that g ∈ Tn(g). We will do this at the

same time as we construct normal forms for elements from GQ. These normal forms
derive from the construction of GQ, starting from G, as a countable iteration of
extensions by free products with amalgamation. First of all, we introduce normal
forms for the elements in the group

E(H, v,m) = H ∗v=wm 〈w〉,
which is the elementary extension of a centralizer C(v) = 〈v〉 inH by the adjunction

of an mth root to v. It will be convenient to denote w by v
1
m . Let Sm = { km |k =

1, . . . ,m−1}. With this notation, the set {vs|s ∈ Sm} is a system of representatives
in 〈w〉 for the cosets of 〈v〉.
Definition 20. A sequence of elements (h1, v

s1 , h2, . . . , v
sn , hn+1), where hi ∈

H, si ∈ Sm, is a semicanonical form of an element g ∈ E(H, v,m) if

g = h1v
s1 · · · vsnhn+1(4)

and hi 6∈ 〈v〉, i = 2, . . . , n.

Lemma 26. Any two semicanonical forms of g can be transformed into each other
by a finite sequence of commutations of the form vsvt = vtvs, where t ∈ Z, s ∈ Sm.

The proof follows from the definition of reduced forms for elements of a free
product with amalgamation (see [12] for details).

Taking fixed right coset representatives of the subgroup 〈v〉 in H as the elements
hi, i = 2, . . . , n, in (4) we obtain the notion of canonical form of g.

Suppose now that the notions of canonical and semicanonical forms of elements
of the group H have already been introduced. One can then extend them to the
group E(H, v,m).

We will say that the semicanonical (resp. canonical) forms of an element

g = h1v
s1 · · · vsnhn+1

in E(H, v,m) agree with those on H , iff the elements h1, . . . , hn+1, v are in semi-
canonical (resp. canonical) form in the group H . By definition an element h ∈ H
has the same semicanonical (resp. canonical) form in E(H, v,m) as in H .

Now let us consider the union of a chain of groups

G = G0 < G1 < . . . < Gn < . . . <

∞⋃
n=0

Gn,

where every Gn+1 is obtained from Gn by an elementary extension of a centralizer
(i.e. it is an extension of the type E(H, vn+1,mn+1)), and the notions of semi-
canonical and canonical forms on Gn+1 are compatible with those on Gn. The
forms on the terms of the chain induce corresponding well-defined forms on the
resulting group

⋃∞
n=0Gn. Note that the described forms depend on the chosen

elements vn, n ∈ N, and numbers mn, n ∈ N.
By our construction, the Q-completion GQ of a torsion-free hyperbolic group G

is the union of the chain

G = T0 < T1 < . . . < Tn < . . . ,

where Tn+1 is obtained from Tn by a finite sequence of elementary extensions of
centralizers. Hence, to introduce the semicanonical and canonical forms on GQ it
is enough to introduce them on G.
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Definition 21. Let A be the generating set of G. The canonical (as well as the
semicanonical) form of an element g ∈ G is an A-word of miminal length repre-
senting g. The corresponding forms on GQ (as described above) are called induced
semicanonical (canonical) forms. These forms depend on the chosen sets Vn, n ∈ N,
of elements vi.

Let us suppose that some fixed sets of elements Vn, n ∈ N, have been chosen.

Lemma 27. Every element g ∈ GQ has a semicanonical form of the type

(x1, v
s1
1 , x2, . . . , v

sm
m , xm),

where xi ∈ G, vi ∈
⋃Vn, si ∈ ⋃Sn.

The proof by induction is straightforward.
By Definition 20, a semicanonical form of an element g ∈ GQ is a sequence of

group elements (h1, v
s1 , h2, . . . , v

sn , hn+1). When discussing algorithmic problems
in the variety of Q-groups, we will also consider semicanonical forms as sequences
of Q-words representing the corresponding elements. Moreover, if the sets of words
Vn, n ∈ N, are fixed, then the words representing elements vi in semicanonical form
must be fixed words from Vn, and not arbitrary words representing vi in GQ.

Lemma 28. There is an algorithm which for every element g ∈ GQ, given in
semicanonical form, computes a number n = n(g) such that g ∈ Tn.

Proof: According to Lemma 24, there exists an algorithm which, for each n, lists
the elements of the set Vn (i.e. it lists Q-words in the alphabet A representing
these elements). For a given semicanonical form (x1, v

s1
1 , x2, . . . , v

sm
m , xm) one can

effectively find for each vi a number ni such that vi ∈ Vni . By our construction,
this semicanonical form represents an element from the subgroup Tn, where n is
the maximal number in the set consisting of all ni’s and the denominators of all
si’s.

Theorem 9. Let G be a torsion-free hyperbolic group. Then there are algorithms
that, for any element g ∈ GQ, produce its semicanonical and canonical forms with
respect to some fixed family of sets Vn, n ∈ N.

Proof. Let us fix an arbitrary family of sets Vn, n ∈ N (which can be computed by
some algorithm). For any Q-word W in the alphabet A, representing some element
g ∈ GQ, one needs to construct effectively the canonical form of g. We will argue by
induction on the depth of the word W . The depth of W is a positive integer d(W ),
defined by induction: d(a) = 1 for any a ∈ A; d(W1W2) = max{d(W1), d(W2)} for
any Q-words W1,W2; d(W

α) = d(W ) + 1, where α ∈ Q \ Z. It is easy to see that
there exists an algorithm which for any Q-word W calculates d(W ).

Let d(W ) = 1; then W represents an element from the initial group G. In light of
the decidability of the word problem in G, one can effectively construct a canonical
form of g, i.e. a minimal word in the alphabet A representing the element g.

Let d(W ) > 1. Then W = W r1
1 . . .W rh

h , where d(Wi) < d(W ), ri ∈ Q, and
the Q-words W1, . . . ,Wh can be found effectively from W . By induction, we can
effectively determine for any i the semicanonical form ofWi and therefore determine
a number n such that Wi ∈ Tn. By the definition of the sets Vn, n ∈ N, if an integer
k is greater then the length of all Wi in the generators of the group Tn, then any Wi

is conjugate to some power of an element vi from the set Vn+k. By Lemma 24 the
elements from the set Vn+k can be listed effectively. So, looking through all words
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x (for example, according to increasing lengths), one can find effectively the words

vi ∈ Vn+k, some integers li, and words xi such that Wi = x−1
i V lii xi in the group

Tn+k. Using axiom 3) from the definition of an A-group, the word W represents in
Tn+k the same element as the word

x−1
1 V l1r11 x1 . . . x

−1
k V lkrkk xk,

and the latter word is constructed effectively from W . So it is left only to transform
it into semicanonical form. The procedure for this is the following: find equal
neighbours Vi = Vi+1 = V (if any) and verify if the word xix

−1
i+1 between them

belongs to the cyclic subgroup 〈V 〉 (This can be done effectively, as explaned before).
If xix

−1
i+1 = V t for some integer t, then replace the subword V rilixix

−1
i+1V

ri+1li+1

by the word V q, where q = rili + ri+1li+1 + t. And if q = m + s1
s2

, where m is an

integer and 0 < s1 < s2, then replace V q by the word V mV s1/s2 . The resulting
word represents the same element as the original word, but the number of Vi’s in
it is less than in the original one. Arguing by induction, we complete the process.
It is not hard to see that the resulting word will be in semicanonical form. The
theorem has been proved.

Theorem 10. Let G be a torsion-free hyperbolic group. Then the word and conju-
gacy problems are solvable in GQ.

Proof. Let W and V be arbitrary Q-words in the alphabet A. By Theorem 9 and
Lemma 28, one can effectively find a number n = n(W,V ) such that the words
W,V represent some elements g, h ∈ Tn of GQ. By Theorem 8 the group Tn is
hyperbolic, and there is an algorithm to construct a finite presentation of Tn. As
was noticed in Lemma 23, if g, h are conjugate in GQ then they are conjugate in Tn.
So we have reduced the word and conjugacy problems to the hyperbolic case. But
in hyperbolic groups the above-mentioned problems are decidable. This completes
the proof of the theorem.
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